Transcendental versions in n of the Nagata conjecture
[Versions transcendentales dans n de la conjecture de Nagata]
Annales de l'Institut Fourier, Online first, 26 p.

La conjecture de Nagata est l’un des problèmes ouverts les plus intriguants dans le domaine des courbes du plan complexe. Elle s’énonce simplement. En effet, elle affirme que le plus petit degré d d’une courbe plane passant par r10 points généraux dans le plan projectif 2 avec des multiplicités au moins l en chaque point, satisfait l’inégalité d>r·l. Cette conjecture a été vérifiée par M. Nagata en 1959, si r est un carré parfait strictement supérieur à 9. Jusqu’à présent, elle est restée ouverte pour tout entier r10 non carré, après plus d’un demi-siècle d’attention de la part de nombreux chercheurs.

Dans cet article, nous formulons de nouvelles versions transcendentales de cette conjecture issues de la théorie du pluripotentiel, et qui sont équivalentes à une version dans n de la conjecture Nagata.

The Nagata Conjecture is one of the most intriguing open problems in the area of curves in the plane. It is easily stated. Namely, it predicts that the smallest degree d of a plane curve passing through r10 general points in the projective plane 2 with multiplicities at least l at every point, satisfies the inequality d>r·l. This conjecture has been proven by M. Nagata in 1959, if r is a perfect square greater than 9. Up to now, it remains open for every non-square r10, after more than a half century of attention by many researchers.

In this paper, we formulate new transcendental versions of this conjecture coming from pluripotential theory and which are equivalent to a version in n of the Nagata Conjecture.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3402
Classification : 14H50,  32U10,  32U25,  32U35,  32U40,  32W20
Mots clés : Conjecture de Nagata, théorie du pluripotentiel, fonction de Green pluricomplexe
@unpublished{AIF_0__0_0_A2_0,
     author = {Nivoche, St\'ephanie},
     title = {Transcendental versions in ${{\protect \mathbb{C}}}^n$ of the Nagata conjecture},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3402},
     language = {en},
     note = {Online first},
}
Nivoche, Stéphanie. Transcendental versions in ${{\protect \mathbb{C}}}^n$ of the Nagata conjecture. Annales de l'Institut Fourier, Online first, 26 p.

[1] Bedford, Eric; Taylor, Bert A. The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44

[2] Bedford, Eric; Taylor, Bert A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982) no. 1-2, pp. 1-40 | Zbl 0315.31007

[3] Chudnovsky, Gregory V. Singular points on complex hypersurfaces and multidimensional Schwarz lemma, Seminar on Number Theory, Paris 1979/80 (Progress in Mathematics), Volume 12, Birkhäuser, 1981, pp. 29-69

[4] Coman, Dan Entire pluricomplex Green functions and Lelong numbers of projective currents, Proc. Am. Math. Soc., Volume 134 (2006) no. 7, pp. 1927-1935

[5] Coman, Dan; Nivoche, Stéphanie Plurisubharmonic functions with singularities and affine invariants for finite sets in n , Math. Ann., Volume 322 (2002) no. 2, pp. 317-332

[6] Demailly, Jean-Pierre Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. Fr., Nouv. Sér., Volume 19 (1985), pp. 1-125

[7] Demailly, Jean-Pierre Mesures de Monge–Ampère et mesures pluriharmoniques, Math. Z., Volume 194 (1987) no. 4, pp. 519-564

[8] Demailly, Jean-Pierre Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 87-104

[9] Demailly, Jean-Pierre Monge–Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (The University Series in Mathematics), Plenum Press, 1993, pp. 115-193

[10] Demailly, Jean-Pierre Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) (ICTP Lecture Notes), Volume 6, Abdus Salam International Centre for Theoretical Physics, 2001, pp. 1-148

[11] Dieu, Nguyen Quang; Thomas, Pascal J. Convergence of multipole Green functions, Indiana Univ. Math. J., Volume 65 (2016) no. 1, pp. 223-241

[12] Evain, Laurent On the postulation of s d fat points in d , J. Algebra, Volume 285 (2005) no. 2, pp. 516-530

[13] Harbourne, Brian On Nagata’s Conjecture, J. Algebra, Volume 236 (2001) no. 2, pp. 692-702

[14] Harbourne, Brian; Roé, Joaquim Discrete behavior of Seshadri constants on surfaces, J. Pure Appl. Algebra, Volume 212 (2008) no. 3, pp. 616-627

[15] Hörmander, Lars Notions of Convexity, Progress in Mathematics, 127, Birkhäuser, 1994

[16] Iarrobino, Anthony Inverse system of a symbolic power. III. Thin algebras and fat points, Compos. Math., Volume 108 (1997) no. 3, pp. 319-356

[17] Klimek, Maciej Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. Fr., Volume 113 (1985), pp. 231-240

[18] Lelong, Pierre Notions capacitaires et fonctions de Green pluricomplexes dans les espaces de Banach, C. R. Math. Acad. Sci. Paris, Volume 305 (1987) no. 3, pp. 71-76

[19] Lelong, Pierre Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach, J. Math. Pures Appl., Volume 68 (1989), pp. 319-347

[20] Magnússon, Jón I.; Rashkovskii, Alexander; Sigurdsson, Ragnar; Thomas, Pascal J. Limits of multipole pluricomplex Green functions, Int. J. Math., Volume 23 (2012) no. 6, 1250065, 38 pages

[21] Moreau, Jean-Charles Lemmes de Schwarz en plusieurs variables et applications arithmétiques, Séminaire Pierre Lelong (Analyse) année 1975/76 (Lecture Notes in Mathematics), Volume 822, Springer, 1980, pp. 174-190

[22] Nagata, Masayoshi On the 14-th problem of Hilbert, Am. J. Math., Volume 81 (1959), pp. 766-772

[23] Nagata, Masayoshi On rational surfaces, II, Mem. Coll. Sci., Univ. Kyoto, Ser. A, Volume 33 (1960), pp. 271-293 | Zbl 0100.16801

[24] Nagata, Masayoshi On the fourteenth problem of Hilbert, Proceedings of the International Congress of Mathematicians (Edinburgh, 1958), Cambridge University Press, 1960, pp. 459-462

[25] Nivoche, Stéphanie The pluricomplex Green function, capacitative notions, and approximation problems in n , Indiana Univ. Math. J., Volume 44 (1995) no. 2, pp. 489-510

[26] Rashkovskii, Alexander; Thomas, Pascal J. Powers of ideals and convergence of Green functions with colliding poles, Int. Math. Res. Not., Volume 2014 (2014) no. 5, pp. 1253-1272

[27] Tutaj-Gasińska, Halszka A bound for Seshadri constants on 2 , Math. Nachr., Volume 257 (2003), pp. 108-116

[28] Waldschmidt, Michel Propriétés arithmétiques de fonctions de plusieurs variables, Séminaire Pierre Lelong (Analyse) année 1975/76 (Lecture Notes in Mathematics), Volume 578, Springer, 1977, pp. 108-135

[29] Waldschmidt, Michel Nombres transcendants et groupes algébriques, Astérisque, Société Mathématique de France, 1987, 218 pages

[30] Xu, Geng Curves in 2 and symplectic packings, Math. Ann., Volume 299 (1994) no. 4, pp. 609-613