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TRANSCENDENTAL VERSIONS IN Cn OF THE
NAGATA CONJECTURE

by Stéphanie NIVOCHE (*)

Abstract. — The Nagata Conjecture is one of the most intriguing open prob-
lems in the area of curves in the plane. It is easily stated. Namely, it predicts that
the smallest degree d of a plane curve passing through r > 10 general points in
the projective plane P2 with multiplicities at least l at every point, satisfies the
inequality d >

√
r · l. This conjecture has been proven by M. Nagata in 1959, if r is

a perfect square greater than 9. Up to now, it remains open for every non-square
r > 10, after more than a half century of attention by many researchers.

In this paper, we formulate new transcendental versions of this conjecture coming
from pluripotential theory and which are equivalent to a version in Cn of the Nagata
Conjecture.
Résumé. — La conjecture de Nagata est l’un des problèmes ouverts les plus

intriguants dans le domaine des courbes du plan complexe. Elle s’énonce simple-
ment. En effet, elle affirme que le plus petit degré d d’une courbe plane passant par
r > 10 points généraux dans le plan projectif P2 avec des multiplicités au moins
l en chaque point, satisfait l’inégalité d >

√
r · l. Cette conjecture a été vérifiée

par M. Nagata en 1959, si r est un carré parfait strictement supérieur à 9. Jusqu’à
présent, elle est restée ouverte pour tout entier r > 10 non carré, après plus d’un
demi-siècle d’attention de la part de nombreux chercheurs.

Dans cet article, nous formulons de nouvelles versions transcendentales de cette
conjecture issues de la théorie du pluripotentiel, et qui sont équivalentes à une
version dans Cn de la conjecture Nagata.

1. Introduction

1.1. History and known results

In 1900, at the international Congress of Mathematicians in Paris,
D. Hilbert posed twenty-three problems. The fourteenth one may be for-
mulated as follows:
Keywords: Nagata conjecture, pluripotential theory, pluricomplex Green function.
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28 Stéphanie NIVOCHE

Let K be a field and x1, . . . , xn algebraically independent elements
over K. Let L be a subfield of K(x1, . . . , xn) containing K. Is the ring
K[x1, . . . , xn] ∩ L finitely generated over K?

Hilbert conjectured that all such algebras are finitely generated over K.
Contributions to the fourteenth problem are obtained confirming Hilbert’s
conjecture in special cases and for certain classes of rings. In 1953, a signif-
icant contribution was made by 0. Zariski, who generalized the fourteenth
problem in the following way:

Problem of Zariski. — Let K be a field and K[a1, . . . , an] an affine
normal domain (i.e. a finitely generated integrally closed domain over K).
Let L be a subfield of K(a1, . . . , an) containing K. Is the ring K[a1, . . . , an]∩
L finitely generated over K?

He answered the question in the affirmative when trans.degK L 6 2.
Later, in 1957, D. Rees gave a counter example to the problem of Zariski
when trans.degKL = 3. Finally Masayoshi Nagata in [24] gave a counter
example to the original fourteenth problem itself. This counter example is
in the case of trans.degKL = 13.
In 1959, M. Nagata [22] gave another counter example (a suitably con-

structed ring of invariants for the action of a linear algebraic group) in the
case of trans.degKL = 4. In this work, he finally formulated a conjecture,
which governs the minimal degree required for a plane algebraic curve to
pass through a collection of general points with prescribed multiplicities:

Suppose p1, . . . , pr are r general points in P2 and that m1, . . . ,mr are
given positive integers. Then for r > 9, any curve C in P2 that passes
through each of the points pi with multiplicity mi must satisfy degC >
1√
r
·
∑r
i=1mi.

One says that a property P holds for r general points in P2 if there is a
Zariski-open subset W of (P2)r such that P holds for every set (p1, . . . , pr)
of r points in W . As Nagata pointed out, it is enough to consider the
uniform case. Thus this conjecture is equivalent to the following one, which
it usually called:

The Nagata Conjecture. — Suppose p1, . . . , pr are r general points
in P2 and that m is a given positive integer. Then for r > 9, any curve C
in P2 that passes through each of the points pi with multiplicity at least m
must satisfy degC >

√
r ·m.

The only case when this is known to hold true is when r > 9 is a perfect
square. This was proved by Nagata with technics of specializations of the
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TRANSCENDENTAL VERSIONS OF THE NAGATA CONJECTURE 29

points in the plane. More recently, without any extra condition connecting
the degree, m and r, G. Xu [30] proved that degC >

√
r−1
r ·

∑r
i=1mi and

H. Tutaj-Gasinska [27] proved that degC > 1√
r+(1/12)

·
∑r
i=1mi (see also

B. Harbourne [13] and B. Harbourne and J. Roé [14]).
A more modern formulation of this conjecture is often given in terms of

Seshadri constants, introduced by J.-P. Demailly ([8] and [10]) in the course
of his work on Fujita’s conjecture. The Nagata Conjecture is generalized
to other surfaces under the name of the Nagata–Biran conjecture (let X
be a smooth algebraic surface and L be an ample line bundle on X of
degree d. The Nagata–Biran conjecture states that for sufficiently large r
the Seshadri constant satisfies ε(p1, . . . , pr;X,L) = d√

r
). Nagata has also

remarked that the condition r > 9 is necessary. The cases r > 9 and
r 6 9 are distinguished by whether or not the anti-canonical bundle on the
blowup of P2 at a collection of r points is nef.
Fix r general points p1, . . . , pr in P2 and a nonnegative integer m. Define

δ(r,m) to be the least integer d such that there is a curve of degree d
vanishing at each point pi with multiplicity at least m. For r 6 9, applying
methods of [23], Harbourne [13] shows that δ(r,m) = dcrme, where cr =
1; 1; 3/2; 2; 2; 12/5; 21/8; 48/17 and 3 for r = 1, . . . , 9 respectively (for
any real number c, dce is the smallest integer larger than or equal to c).
When r = 1, 4 and 9, we can remark that the Nagata conjecture holds with
a weak inequality instead of a strict one.
Iarrobino [16] generalized Nagata Conjecture in any dimension n>2.

Based on a conjecture of Fröberg, Iarrobino predicted that:

An hypersurface in Pn passing through r generic points with multiplicity
m has a degree > r1/n ·m, except for an explicit finite list of (r, n).

L. Evain [12] proved this conjecture when the number of points in Pn is
of the form sn (in this case the list is (4, 2), (9, 2) and (8, 3)).
An affirmative answer to the Nagata conjecture would provide important

applications in the theory of linear systems in the projective plane. It would
also provide information for the study of the singular degrees (works of
Bombieri, Skoda, Waldschmidt, Chudnovsky) with a lot of applications in
number theory (arithmetic nature of values of Abelian functions of several
variables), in symplectic geometry (symplectic packings in the unit ball)
and in algebraic geometry (study of multiple-point Seshadri constants for
generic rational surfaces).

During the last three/four decades, the use of pluripotential theory in
analytic/algebraic geometry has been very fruitful since it allows a lot
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30 Stéphanie NIVOCHE

of flexibility while keeping track of the analytic features. This point of
view was proven to be very efficient by J.-P. Demailly, Y.-T. Siu and their
schools, to name a few. Our idea in this paper is to develop transcenden-
tal techniques, to overcome the intrinsic rigidity of polynomials and to
obtain a new approach to this problem of algebraic geometry. Instead of
considering complex polynomials, we work with plurisubharmonic (written
psh for simplicity) functions, having logarithmic poles at prescribed points.
These last functions are much more flexible than the first ones (Lelong). See
Section 2.1 for some recalls about pluripotential theory. Thus two points
of view are possible. A global one and a local one. We can consider psh
functions in all Cn, with a logarithmic behavior at infinity. This class of
plurisubharmonic functions contains in particular the logarithm of modulus
of polynomials, with prescribed properties in the Nagata conjecture. The
subclass of plurisubharmonic functions which are maximal (for the com-
plex Monge–Ampère operator) outside prescribed points is of particular
interest. They inevitably have to satisfy certain conditions of growth at in-
finity. We look for the minimal growth that they can have. In [5], D. Coman
and S. Nivoche have obtained some preliminary results about this subject
and have established a link between a quantity of the same nature such
as the singular degrees of M. Waldschmidt [28], [29], and a quantity com-
ing directly from pluripotential theory. We can also consider psh functions
in a bounded domain in Cn, with logarithmic poles at prescribed points
and with zero value at the boundary. We study in particular the subclass
of pluricomplex Green functions in this domain with logarithmic poles of
weight 1 at fixed points. Especially we look at what happens when the poles
collide to a single point in the domain. The nature of the logarithmic sin-
gularity of the limit function is in connection with the algebraic properties
of the set of fixed points and its singular degree of M. Waldschmidt.
In this paper, we establish a link between some well known algebraic

quantities of the same nature as the singular degree of M. Waldschmidt,
and some others quantities coming directly from pluripotential theory. We
outline new conjectures in term of pluripotential theory, and we prove that
they are all equivalent to the Nagata conjecture.

1.2. Results

1.2.1. A first conjecture of pluripotential theory

We are going to study the convergence of multipole pluricomplex Green
functions for a bounded hyperconvex domain in Cn, in the case where
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poles contract to one single point. First we start with the case where the
domain is the unit ball centered at the origin. Let S be a finite set of
distinct points in Cn and denote |S| its cardinality. Let R be a positive real
number sufficiently large such that S ⊂ B(O,R). Denote by gR(S, · ) the
pluricomplex Green function in ball B(O,R) with logarithmic poles in S,
of weight one. gR(S, z) = g1(S/R, z/R) for any z ∈ B(O,R). Thus its is
natural to study g∞ a negative psh function defined in the unit ball B(O, 1)
by the following upper semi-continuous regularization

g∞(z) =
(

lim sup
t∈C∗→0

g1(tS, z)
)∗

.

Clearly, if we replace the set S by λS, where λ ∈ C∗, then we obtain the
same limit function g∞. ‖ · ‖ is the Euclidean norm in Cn and B(z0, R)
is the hermitian ball centered at z0 with radius R. g∞ always satisfies in
B(O, 1) the following inequalities

|S| · ln‖z‖ 6 g∞(z) 6 gB(O,1)(O, z) = ln‖z‖.

It tends to 0 on the boundary of the unit ball and it has an unique
logarithmic singularity at the origin. Let us also consider another fam-
ily (g̃1(tS, · ))t∈C∗ of continuous and psh functions, defined in B(O, 1) by
g̃1(tS, z) = sup{g1(tS, w) : ‖w‖ = ‖z‖} and the following continuous and
psh function in B(O, 1)

g̃∞(z) = sup{g∞(w) : ‖w‖ = ‖z‖}.

No upper regularization is needed in this definition, since it is a convex in-
creasing (hence continuous) function of log ‖z‖. We want to study precisely
the nature of the logarithmic singularity of these functions g∞ and g̃∞ at
the origin. In particular we want to understand what their Lelong numbers
at the origin are.
We recall that if u is a psh function, then the classical Lelong number

ν(u, z) of u at a point z is (P. Lelong, 1969) the (2n−2)-dimensional density
of the measure ddcu at z:

ν(u, z) := lim
r→0

1
(πr2)n−1

∫
|w−z|<r

ddcu ∧ (ddc|w − z|2)n−1.

We can also compute this number as follows (V. Avanissian, C. Kiselman):

ν(u, z) = lim
y→−∞

sup|w|=1 u(z + wey)
y

= lim
y→−∞

1
y

∫
|w|=1

u(z + wey)dλ̃(w),

where dλ̃ is the normalized surface measure on the unit sphere.
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32 Stéphanie NIVOCHE

There already exist some results about the convergence of multipole
Green functions in [20], [26] and [11]. In this paper, we establish a di-
rect connection between the nature of the logarithmic singularity of these
psh functions g∞ and g̃∞ and the algebraic properties of the set S. More
precisely, by using a Schwarz’ Lemma for finite sets ([21], [29]) and a gen-
eralization of a result in [25], we prove in Section 2.3 the following theorem
which describes properties of these two psh functions, in connection with
Ω(S), the singular degree of S introduced by Waldschmidt ([28], [3]) and
which is an affine invariant in connection with the Nagata Conjecture. For
any polynomial P ∈ C[z] = C[z1, . . . , zn], degP is its degree and ord(P, p)
denotes the vanishing order of P at any point p. If l is a positive integer
we define

Ω(S, l) = min{degP : P ∈ C[z], ord(P, p) > l, ∀ p ∈ S}.

The limit

Ω(S) := lim
l→+∞

Ω(S, l)/l = inf
l>1

Ω(S, l)/l

exists and is called the singular degree of S. On the other hand, according
to Theorem 1.1 (and Example 5.8) in [26], we already know that the family
(g1(tS, · ))t∈C∗ converges locally uniformly outside the origin in B(O, 1)
to g∞.

Theorem 1.1. — Let S be a finite set of points in Cn. The two psh
functions g∞ and g̃∞ satisfy several properties:

(i) ν(g∞, O) = Ω(S) and (ddcg∞)n = 0 in B(O, 1) \ {O}. Ω(S)n 6
(ddcg∞)n({O}) 6

∫
B(O,1)(ddcg∞)n 6 |S| and we have

g∞(z) 6 Ω(S) ln‖z‖, in B(O, 1).

(ii) The family (g̃1(tS, · ))t∈C∗ converges locally uniformly outside the
origin in B(O, 1) to g̃∞ which is equal to Ω(S) ln‖z‖ in B(O, 1).

(iii) If Ω(S) = |S|1/n then (ddcg∞)n({O}) = Ω(S)n = |S| and

g∞(z) = |S|1/n ln‖z‖, in B(O, 1).

(iv) Conversely if g∞ is equal to Ω(S) ln‖ · ‖ in B(O, 1), then Ω(S) =
|S|1/n.

We will deduce several applications from this theorem, in particular an
equivalence between the following conjecture of pluripotential theory in Cn
and a weak version of the Nagata Conjecture in Pn.
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Conjecture (P1). — In Cn, except for a finite number of integer val-
ues r, for any general set S = {p1, . . . , pr} of r points, the family of pluri-
complex Green functions (gB(O,1)(tS, · ))t∈C∗ converges locally uniformly
outside the origin of B(O, 1) to r1/ngB(O,1)(O, · ), when t tends to 0.

Conjecture (A1) (Weak Version of the Nagata Conjecture in Pn). —
In Pn, except for a finite number of integer values r, for any general set
S = {p1, . . . , pr} of r points, Ω(S) = r1/n.

With the homogeneous coordinates [z0 : z1 : · · · : zn] in Pn, we know
that Pn is a complex manifold of dimension n, which is covered by n copies
Ui = {[z0 : z1 : · · · : zn] ∈ Pn | zi 6= 0} of Cn. If S = {p1, . . . , pr} is a set of
r distinct points in Pn, in the previous definition of Ω(S), we have just to
replace polynomials P ∈ C[z] = C[z1, . . . , zn] by homogeneous polynomials
in C[z0, z1, . . . , zn]. We can remark that if n = 2, this Weak version of
the Nagata Conjecture is identical to the original one when the number
of points is not a perfect square. More generally in Pn, a stronger version
of the Weak version of the Nagata Conjecture is satisfied for a number of
points of the form sn, according to [12]. When the number of points is
not of the form sn, this weak version corresponds to Iarrobino’s conjecture
in Pn.
In the previous construction of this function g∞, we can replace the

unit ball B(O, 1) by any bounded hyperconvex domain D in Cn (see the
definition in Section 2.1) and the origin by any point zo in D. In this case
the function g∞ is defined in D by(

lim sup
t∈C∗→0

gD(zo + tS, · )
)∗

,

where gD(zo+ tS, · ) is the pluricomplex Green function in D with logarith-
mic poles of weight one at any points of the set z0+tS. g∞ has similar prop-
erties as in Theorem 1.1, where we replace the pluricomplex Green function
in the unit ball with logarithmic pole at the origin ln‖ · ‖ = gB(O,1)(O, · )
by the pluricomplex Green function in D with a logarithmic pole at z0,
gD(zo, · ). First, according to Theorem 1.1 (and Example 5.8) in [26], the
family (gD(zo + tS, · ))t∈C∗ converges locally uniformly outside zo in D to
g∞. In addition, this function satisfies the following theorem.

Theorem 1.2. — Let S be a finite set of points in Cn. Let D be a
bounded hyperconvex domain in Cn. Fix zo in D. The psh function g∞
satisfies several properties:

TOME 71 (2021), FASCICULE 1



34 Stéphanie NIVOCHE

(i) ν(g∞, zo) = Ω(S) and (ddcg∞)n = 0 in D \ {zo}. Also Ω(S)n 6
(ddcg∞)n({zo}) 6

∫
D

(ddcg∞)n 6 |S| and we have

g∞(z) 6 Ω(S)gD(zo, z), in D.

(ii) If Ω(S) = |S|1/n then (ddcg∞)n({zo}) = Ω(S)n = |S| and

g∞(z) = |S|1/ngD(zo, z), in D.

(iii) Conversely if g∞ is equal to Ω(S)gD(zo, · ) inD, then Ω(S) = |S|1/n.

We shall not develop the proof of this theorem, because it is very similar
to the proof of Theorem 1.1. Indeed, if D is a bounded hyperconvex domain
in Cn and zo is any point in D, there exists two positive real numbers R1
and R2 such that B(z0, R1) ⊂ D ⊂ B(z0, R2),

gB(z0,R2)(z0 + tS, z) 6 gD(z0 + tS, z) 6 gB(z0,R1)(z0 + tS, z) in B(z0, R1)

and

gB(z0,Ri)(z0 + tS, z) = gB(O,1)

(
tS

Ri
,
z − z0

Ri

)
in B(z0, Ri), for i = 1, 2.

Thus we have

gB(O,1)

(
tS

R2
,
z−z0

R2

)
6 gD(z0 +tS, z)6 gB(O,1)

(
tS

R1
,
z−z0

R1

)
, in B(z0, R1).

1.2.2. New affine invariants and others conjectures of
pluripotential theory

Instead of considering psh functions in bounded domains in Cn, here
we study a class of entire psh functions in Cn, with logarithmic poles in a
finite set of points S and with a logarithmic growth at infinity. In particular
we are interested in the subclass of such functions which are also locally
bounded outside of S. If u is a psh function in Cn, let us denote γu the
following upper limit:

γu := lim sup
|z|→∞

u(z)
log ‖z‖ ∈ [0,+∞].

If S = {p1, . . . , pr} ⊂ Cn is a finite set of distinct points, we associate to
any psh function u in Cn, a number ω(S, u) defined by

ω(S, u) :=
∑k
j=1 ν(u, pj)

γu
.
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For instance, if the psh function u is of the form ln|Q| where Q is a poly-
nomial, then ν(u, z) is the vanishing order of Q at z and γu is the degree
of Q. We associate to S an affine invariant ωpsh(S) defined by

ωpsh(S) := sup{ω(S, u) : u ∈ PSH(Cn)}.

We also consider the class of psh functions in Cn which are locally bounded
in Cn \ S. We set

ω+
psh(S) := sup{ω(S, u) : u ∈ PSH(Cn) ∩ L∞loc(Cn \ S)}.

ω+
psh(S) is also an affine invariant. Then naturally, a second conjecture of

pluripotential theory can be formulated as follow:

Conjecture (P2). — In Cn, except for a finite number of integer values
r, for any general set S = {p1, . . . , pr} of r points, ωpsh(S) = ω+

psh(S).

This problem is non-trivial and it is related to the algebraic geometric
properties of S. There exists another well known invariant of algebraic
geometry defined by

ω(S) := sup
{∑r

j=1 ord(P, pj)
degP : P ∈ C[z]

}
.

ω(S) is an affine invariant, related to the singular degree of S. G.V. Chud-
novsky defined in [3] the very singular degree of S, |S|/ω(S). Since for any
positive integer l, ω(S) > |S|l

Ω(S,l) , the following relation between ω(S) and
Ω(S) is always satisfied:

ω(S) > |S|
Ω(S) .

In Section 1.1, we have stated a general version of the Nagata conjecture
(see also Harbourne in [13]): if r > 9 then for generic set S ⊂ P2 with |S| = r

one has
∑r
j=1 ord(P, pj) <

√
r degP , for every polynomial P ∈ C[z]. As

Nagata has pointed out, this version is equivalent to the uniform one “the
usual Nagata conjecture”. More generally in Pn, we state the following
conjecture of algebraic geometry.

Conjecture (A2). — In Pn, except for a finite number of integer values
r, for any general set S = {p1, . . . , pr} of r points, ω(S) = |S|1− 1

n .

It is well known that Conjectures (A1) and (A2) are equivalent. Finally
we can state a last conjecture of pluripotential theory, which can be seen
as the dual version of the first one (P1).

TOME 71 (2021), FASCICULE 1



36 Stéphanie NIVOCHE

Conjecture (P3). — In Cn, except for a finite number of integer values
r, for any general set S of r points, we have: for any ε > 0, there exists an
entire continuous psh function v in L∞loc(Cn \ S), such that ν(v, p) > 1 for
any p ∈ S and γv 6 (1 + ε)|S|1/n.

Theorem 1.3. — Each conjecture (P1), (P2) and (P3) is equivalent to
(A1) and (A2).

We will prove Theorem 1.3 in Section 3.3.

Acknowledgments
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2. Conjecture (P1) in connection with pluricomplex Green
functions in domains in Cn

2.1. Some recalls of pluripotential theory

For a bounded domain D ⊂ Cn, the pluricomplex Green function in D
with logarithmic poles in a finite subset S of D, generalizes the one-variable
Green functions (for the Laplacian). It is defined by

gD(S, z) = sup
{
u(z) :

upsh on D, u 6 0,
u(z) 6 ln‖z − p‖+ O(1) for any point p in S

}
.

([6], [7], [17], [18], [19]). If D is hyperconvex (i.e. there exists an exhaus-
tive continuous psh function D → (−∞, 0)) then we have an alternative
description of the pluricomplex Green functions in terms of the complex
Monge–Ampère operator, namely gD(S, · ) is the unique solution to the
following Dirichlet problem:

u is plurisubharmonic and negative on D, continuous on D \ S,
(ddcu)n = 0 on D \ S,
u(z) = ln‖z − p‖+ O(1) as z → p, ∀ p ∈ S,
u(z)→ 0 as z → ∂D.

In this case, (ddcu)n =
∑
p∈S δp.

The complex Monge–Ampère operator is a good candidate to replace
Laplacian in one variable. But a important difference between cases of one
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variable and several variables is that this complex Monge–Ampère operator
is not linear anymore. Here d = ∂ + ∂ =

∑n
j=1

∂
∂zj

+
∑n
j=1

∂
∂z̄j

and dc =
i

2π (∂−∂). ddc = i
π∂∂. The normalization of the dc operator is chosen such

that we have precisely (ddc ln‖z−p‖)n = δp, the Dirac measure at point p.
The nth exterior power of ddc = i

π∂∂, i.e. (ddc)n = ddc∧ . . .∧ddc (n times),
defines the complex Monge–Ampère operator in Cn. If u ∈ C2(D), then
(ddcu)n = 2nn!

πn det[ ∂2u
∂zj∂z̄k

]dV , where dV = ( i2 )ndz1 ∧ dz1 ∧ . . .∧ dzn ∧ dzn
is the usual volume form in Cn. It is a positive measure, defined inductively
for locally bounded psh functions according to the definition of Bedford–
Taylor [1], [2], and it can also be extended to psh functions with isolated
or compactly supported poles [9].

2.2. The singular degree of a finite set

The singular degree of S introduced by Waldschmidt [29] (see also [3])
is an affine invariant in connection with the Nagata Conjecture. If l is a
positive integer we define

Ω(S, l) = min{degP : P ∈ C[z], ord(P, pj) > l, 1 6 j 6 r}.

Ω(S, 1) is sometimes called the degree of S. We clearly have Ω(S, l1 + l2) 6
Ω(S, l1) + Ω(S, l2), and in particular Ω(S, l) 6 Ω(S, 1)l. The limit

Ω(S) := lim
l→+∞

Ω(S, l)
l

exists and is called the singular degree of S. We have for each l > 1
Ω(S, 1)
n

6 Ω(S) = inf
l

Ω(S, l)
l
6

Ω(S, l)
l
6 Ω(S, 1).

The second, the third and the fourth inequalities are trivial, while the proof
of the first one uses complex analysis. By using Hormander–Bombieri–
Skoda theorem, M. Waldschmidt proved more generally that for any posi-
tive integer l1 and l2

Ω(S, l1)
l1 + n− 1 6 Ω(S) 6 Ω(S, l2)

l2
.

Upper bound for the numbers Ω(S, l) is well known. It is a result of Wald-
schmidt ([29, Lemma 1.3.13]):

Ω(S, l) 6 (l + n− 1)|S|1/n − (n− 1).

And a consequence is Ω(S) 6 |S|1/n. An important and difficult problem
is to find a lower bound for Ω(S). The Nagata Conjecture can be stated
again in term of the invariants Ω(S, l):
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In C2, if r > 9, then Ω(S, l) > l
√
r ∀ l > 1 holds for a set S of r points

in general position.

This statement doesn’t hold for r 6 9.

2.3. Proof of Theorem 1.1

Let S be a finite set of distinct points in Cn. We use the same notation
as in Section 1.2.1. For any t ∈ C∗ sufficiently small, the function g1(tS, · )
always satisfies the following inequalities∑

p∈S
g1(tp, z) 6 g1(tS, z) 6 inf

p∈S
g1(tp, z),

where g1(tp, · ) is the pluricomplex Green function with an unique logarith-
mic pole at tp with weight one. Consequently, the psh function g∞ satisfies
in B(O, 1)

|S| . ln‖z‖ 6 g∞(z) 6 g1(O, z) = ln‖z‖.
In addition, this function tends to 0 on the boundary of the unit ball
and it has an unique singularity at the origin. The functions g1(tS, · ) are
continuous in B(O, 1) valued in [−∞, 0] and psh in B(O, 1) with a finite
set of singularities tS.

The following very simple example, helps us to understand what different
situations can occur in Theorem 1.1.

Example 2.1. — Let S = {(1/2, 0), (−1/2, 0)} in C2. We know that
Ω(S)=1. To simplify computation, we use the sup norm |z|=max{|z1|, |z2|}
instead of the Euclidean norm and we are in the unit polydisc instead of
the unit ball. For any t ∈ C∗ sufficiently small,

g1(tS, z) = max
{

ln
∣∣∣∣ (z1 − t/2)(z1 + t/2)
(1− tz1/2)(1 + tz1/2)

∣∣∣∣ , ln|z2|
}

is the pluricomplex Green function in the unit polydisc P (O, 1) with log-
arithmic poles in tS with weight 1. (g1(tS, · ))t∈C∗ converges uniformly on
any compact set of the form P (O, 1) \ P (O, %) (where 0 < % < 1) to g∞
which is explicitely equal to g∞(z) = max{2 ln|z1|, ln|z2|} in P (O, 1). It is
also easy to verify that g̃∞(z) = max{ln|z1|, ln|z2|} = ln|z| in P (O, 1).

Proof of Theorem 1.1. — In the first three steps and step 7, we prove
item (ii). In steps 4 and 5, we prove item (i). In step 6, we prove item (iii)
and in step 8, we prove item (iv).
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Step 1. — Let Q be a holomorphic polynomial and % be a positive real
number. It is well known that

1
deg(Q) ln

(
|Q(z)|
‖Q‖%

)
6 ln+

(
‖z‖
%

)
, in Cn.

‖f‖% = supz∈B(O,%) |f(z)| is the sup-norm in B(O, %). The function on the
right hand side, is called the pluricomplex Green function with logarithmic
pole at infinity for the compact set B(O, %) (Zahariuta, Siciak). ln+ is the
function max{ln, 0}. Consequently, we obtain for any positive real number
R such that 0 < % 6 R,

(2.1) ln‖Q‖% − ln‖Q‖R > deg(Q). ln
( %
R

)
.

On the other hand, according to a Schwarz’ Lemma (Moreau [21], Wald-
schmidt [29, p. 146]): for any ε > 0, there exists a real number r2(S, ε) such
that for any r2 < % < R with 2en.% < R and for any polynomial Q such
that ord(Q, p) > l for all p ∈ S, we have

(2.2) ln‖Q‖% − ln‖Q‖R 6 (Ω(S, l)− lε). ln
(

2en%
R

)
6 −l(Ω(S)− ε) ln

(
R

2en%

)
.

We can suppose in addition that r2(S, ε) > supp∈S ‖p‖ := ‖S‖.
Step 2. — We can generalize Theorem 1.1 of [25] (for a pluricomplex

Green function with one logarithmic pole) to the case of a pluricomplex
Green function with a finite number of logarithmic poles:

gR(S, · ) = sup
l>1

HS,R,l = lim
l→∞

HS,R,l,

where each psh function HS,R,l (l is a positive integer) is defined by

HS,R,l = sup
{

1
l

ln|f | : f ∈ O(B(O,R)), ‖f‖R 6 1,
ord(f, s) > l for any s ∈ S

}
.

Here O(D) is the Frechet space of holomorphic functions in an open set D.
We can replace in the previous definition of HS,R,l, holomorphic functions
by polynomials satisfying the same properties. Indeed, if l and d are two
positive fixed integers, then we have a continuous linear map ϕ from Cd[z]
to Cml (ml = |S|

(
l−1+n
n

)
) as follow

ϕ : P 7→ (P (α)(s),∀ |α| 6 l − 1, ∀ s ∈ S).

Cd[z] is the linear space of polynomials of degree less or equal to d of
dimension

(
d+n
n

)
. If d is sufficiently large, then this map ϕ is surjective

(we can prove it by using Cartan–Serre’s Theorem). Kerϕ is the kernel of
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ϕ and it has dim(Kerϕ) =
(
d+n
n

)
− |S|

(
l−1+n
n

)
. We choose E a subspace

of Cd[z], such that Kerϕ ⊕ E = Cd[z]. Then there exists a map ψ from
Cml to E, which is the inverse of the restriction of ϕ to E. ψ is a bijective
continuous linear map from Cml to E with norm ‖ψ‖ (which depends on
l and d). According to the fact that the family (HS,R′,l)R′>R converges
uniformly on B(O,R) to HS,R,l when R′ goes to R and because B(O,R)
is a Runge domain in Cn; for any f with ‖f‖R = 1 which appears in the
definition of HS,R,l, we can find a sequence (Pj)j of polynomials such that
1 − 1/j 6 ‖Pj‖R 6 1 + 1/j and ‖f − Pj‖R 6 1/j. There exists δ > 0
such that P (s, δ) ⊂ B(O,R), for all s ∈ S. P (s, δ) is the polydisc centered
in s with multiradius (δ, . . . , δ). According to Cauchy’s inequalities applied
in each polydisc P (s, δ) and since ‖f − Pj‖P (s,δ) 6 1/j, we obtain that
|(f − Pj)(α)(s)| = |(Pj)(α)(s)| 6 α!/(jr|α|), for all |α| 6 l − 1 and for all
s ∈ S. Denote by Qj the polynomial in Cd[z], equal to ψ((Pj)(α)(s),∀ |α| 6
l − 1, ∀ s ∈ S). There exists a positive constant cl,d such that ‖Qj‖R 6
cl,d/j. Then if we replace Pj by Rj := (Pj − Qj)/‖Pj − Qj‖R we obtain
that ‖f −Rj‖R 6 O(1/j), with ord(Rj , p) > l, for all p ∈ S.

Step 3. — Since for any positive integer l, there exists a polynomial Q
such that ord(Q, p) > l for any p ∈ S, deg(Q) = Ω(S, l) and ‖Q‖R = 1,
according to inequalities (2.1) and (2.2), we obtain

Ω(S, l)
l

ln
( %
R

)
6 sup
z∈B(O,%)

HS,R,l(z) 6
(

Ω(S, l)
l
− ε
)

ln
(

2%en

R

)
.

Since HS,1/|t|,l(z) = HtS,1,l(tz) when |z| 6 1/|t| and t ∈ C∗, we have in
particular

Ω(S, l)
l

ln(|t|%) 6 sup
z∈B(O,|t|%)

HtS,1,l(z) 6
(

Ω(S, l)
l
− ε
)

ln(2%|t|en),

or which is equivalent: for any t ∈ C∗ and %′ > 0 such that |t|r2(S, ε) 6
%′ 6 1

Ω(S, l)
l

ln %′ 6 sup
z∈B(O,%′)

HtS,1,l(z) 6
(

Ω(S, l)
l
− ε
)

ln (2%′en) .

We can suppose in addition that t is sufficiently small such that tS ⊂
B(O, %′). We know that the sequence (HtS,1,l)l converges uniformly on
B(O, 1) \ B(O, %′) to g1(tS, · ) when l tends to infinity ([25]). From the
previous estimates, we deduce

Ω(S) ln %′ 6 sup
z∈B(O,%′)

g1(tS, z) 6 (Ω(S)− ε) ln (2%′en) ,
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for any %′ > 0 and t ∈ C∗ satisfying |t|r2(S, ε) 6 %′ 6 1 and tS ⊂ B(O, %′).
If z 6= O, |t|r2(S, ε) 6 ‖z‖ 6 1 and tS ⊂ B(O, ‖z‖),

(2.3) Ω(S) ln‖z‖ 6 g̃1(tS, z) 6 (Ω(S)− ε) ln (2‖z‖en) .

In particular if |t|r2(S, ε) = ‖z‖ (we have r2(S, ε) > ‖S‖), we have

g̃1(tS, z) 6 (Ω(S)− ε) ln(2en|t|r2(S, ε))

=
(

(Ω(S)− ε) ln(2en)
ln(|t|r2) + (Ω(S)− ε)

)
ln‖z‖.

For t sufficiently small, (Ω(S)−ε) ln(2en)
ln(|t|r2) +(Ω(S)−ε) > 0, the psh function(

(Ω(S)− ε) ln(2en)
ln(|t|r2) + (Ω(S)− ε)

)
ln‖ · ‖ is maximal in B(O, 1) \ {O} and

equal to 0 on ∂B(O, 1). Thus we obtain in B(O, 1) \B(O, |t|r2),

Ω(S) ln‖z‖ 6 g̃1(tS, z) 6
(

(Ω(S)− ε) ln(2en)
ln(|t|r2) + (Ω(S)− ε)

)
ln‖z‖.

Consequently, for any 0 < % < 1, (g̃1(tS, · ))t converges uniformly in
B(O, 1) \B(O, %) to Ω(S) ln‖ · ‖ when t converges to 0.

Step 4. — Let 0 < % < 1 be fixed. Let ε1 be a positive real num-
ber such that ε1r2(S, ε) 6 % 6 1. Since sup|t|6ε1 supz∈B(O,%) g1(tS, z) =
supz∈B(O,%) sup|t|6ε1 g1(tS, z), we obtain according to the previous esti-
mates (2.3)

(2.4) Ω(S) ln % 6 sup
z∈B(O,%)

(
sup
|t|6ε1

g1(tS, z)
)∗
6 (Ω(S)− ε) ln (2%en) .

Since g∞ = limε1→0(sup|t|6ε1 g1(tS, · ))∗, where this limit decreases when
ε1 decreases, and according to the fact that the family (g1(tS, · ))t∈C∗ con-
verges locally uniformly outside the origin in B(O, 1) to g∞ ([26, Theo-
rem 1.1]), we can deduce that

Ω(S) ln % 6 sup
z∈B(O,%)

g∞(z) 6 (Ω(S)− ε) ln (2%en) .

Consequently, lim%→0
supz∈B(O,%) g∞(z)

ln % := ν(g∞, O) = Ω(S). In particular,
according to the maximality of the psh function ln‖z‖ in B(O, 1)\{O}, we
obtain in B(O, 1) that

g∞(z) 6 Ω(S) ln‖z‖.

And (ddcg∞)n({O}) > Ω(S)n.
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Step 5. — By the comparison principle for the complex Monge–Ampère
operator [2], we have for any ε > 0∫

{u<v}
(ddcv)n 6

∫
{u<v}

(ddcu)n,

where u and v are two psh functions in B(O, 1) defined by u = (1 + ε) ×
g1(tS, · ) and v = (sup|t|6ε1 g1(tS, · ))∗. u has isolated logarithmic singulari-
ties and v is bounded. Since u and v tend to 0 on the boundary of the unit
ball, we deduce that∫
B(O,1)

(ddc( sup
|t|6ε1

g1(tS, · ))∗)n 6
∫
B(O,1)

(ddc(1+ε)g1(tS, · ))n = (1+ε)n|S|.

According to the monotonicity of the family ((sup|t|6ε1 g1(tS, · ))∗)ε1 when
ε1 decreases, and by making tend ε to 0, we deduce that∫

B(O,1)
(ddcg∞)n 6 |S|.

Since the family (g1(tS, ·))t∈C∗ converges locally uniformly outside the origin
inB(O, 1) to g∞, then the complex Monge–Ampère measure (ddcg1(tS, · ))n
converges to (ddcg∞)n in B(O, 1) \ {O}. Since (ddcg1(tS, · ))n =

∑
p∈S δtp,

we have (ddcg∞)n = 0 in B(O, 1) \ {O}.
Step 6. — If Ω(S) = |S|1/n then all inequalities in item (i) are equalities.

ν(g∞, O) = Ω(S), (ddcg∞)n = 0 in B(O, 1) \ {O} and (ddcg∞)n({O}) =
Ω(S)n = |S|. We conclude this case by proving that g∞(z) = |S|1/n ln‖z‖
in B(O, 1). Assume that there exists a point a ∈ B(O, 1) \ {O} such that
g∞(a) < |S|1/n ln‖a‖. Let γ be a C∞(B(O, 1)) and strictly psh function
such that γ 6 −1 in B(O, 1) (classical argument, used in the proof of
Theorem 4.3 in [7] for instance. We can choose γ(z) = ‖z‖2− 2). Let ε > 0
be sufficiently small such that the following psh function v defined by

v(z) = max{Ω(S) ln‖z‖+ εγ(z), g∞(z)}

satisfies
(a) v(z) = Ω(S) ln‖z‖+O(1) when z → O,
(b) v(z) = g∞(z) in a neighborhood of ∂B,
(c) v(z) = Ω(S) ln‖z‖+ εγ(z) in a neighborhood of a.

According to (a) and (b), we deduce that 1{O}(ddcv)n = Ω(S)nδO = |S|δO
and

∫
B(O,1)(ddcv)n =

∫
B(O,1)(ddcg∞)n = |S| (according to the compar-

ison principle for MA operator). Hence (ddcv)n = 0 in B(O, 1) \ {O}.
This is in contradiction with the third above property. Consequently g∞ ≡
|S|1/n ln‖ · ‖ in B(O, 1).
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Step 7. — According to the third section of this proof, g∞(z)6Ω(S) ln‖z‖
in B(O, 1). Then g̃∞ satisfies the same estimate in B(O, 1):

g̃∞(z) 6 Ω(S) ln‖z‖.

Let us prove that g̃∞(z) = Ω(S) ln‖z‖ in B(O, 1). Suppose that there exists
O 6= z ∈ B(O, 1), such that −∞ < g̃∞(z) = c ln‖z‖ < Ω(S) ln‖z‖. Then
g̃∞(w) satisfies the same estimates for any w such that ‖w‖ = ‖z‖ and we
deduce that

g∞(w) 6 c ln‖w‖ < Ω(S) ln‖w‖, ∀ w ∈ ∂B(O, ‖z‖).

By definition we have lim supt→0 g1(tS, w) 6 (lim supt→0 g1(tS, w))∗ =
g∞(w). According to Hartog’s Lemma, we obtain for the positive constant
d = (Ω(S)− c) ln‖z‖, that there exists ε0 such that for any |t| 6 ε0

g1(tS, w) 6 c ln‖w‖+ d/2 < Ω(S) ln‖w‖, ∀ w ∈ ∂B(O, ‖z‖).

In particular, supw∈∂B(O,‖z‖) g1(tS, w) 6 c ln‖z‖+ d/2 < Ω(S) ln‖z‖. This
contradicts what it has been proved in Step 3 and consequently, g̃∞ ≡
Ω(S) ln‖ · ‖ in B(O, 1).

Step 8. — Let us prove the last item (iv). We suppose that (g1(tS, · ))t∈C∗
converges locally uniformly outside the origin inB(O, 1) to g∞ = Ω(S) ln‖·‖
in B(O, 1). Then for any ε > 0 and for any 0 < % < 1, there exists ε0 > 0
such that for any |t| 6 ε0, we have tS ⊂ B(O, %) and

(1 + ε)Ω(S) ln‖z‖ 6 g1(tS, z) 6 (1− ε)Ω(S) ln‖z‖, ∀ z ∈ B(O, 1) \B(O, %).

Let us construct a continuous and psh entire function v such that

v(z) =


g1(tS, z), z ∈ B(O, %),
max{g1(tS, z), (1 + ε)Ω(S) ln‖z‖}, z ∈ B(O, 1) \B(O, %),
(1 + ε)Ω(S) ln‖z‖, z ∈ Cn \B(O, 1).

We obtain that |S| =
∫
B(O,%)(ddcv)n 6

∫
Cn(ddcv)n = (1+ε)nΩ(S)n. We al-

ready know that Ω(S) 6 |S|1/n. Consequently, Ω(S) = |S|1/n. This achieves
the proof of Theorem 1.1. �

2.4. A Schwarz’ Lemma

With the first item of the previous theorem, we obtain a slightly different
version of Schwarz’ Lemma from the previous ones [21].
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Corollary 2.2. — For any positive real numbers % < 1 and ε, there
exits a positive real number Rε,% such that: if R and r satisfy R > Rε,% and
%R 6 r 6 R we have:

ln‖f‖r 6 ln‖f‖R − l(Ω(S)− ε) ln(R/r),

for any integer l > 1 and for any entire function f with ord(f, p) > l for all
p ∈ S.

Proof. — According to Theorem 1.1, g∞(z) 6 Ω(S) ln‖z‖ in B(O, 1).
If we apply Hartogs lemma to the compact set ∂B(O, %), we obtain that:
there exists a positive real number Rε,% such that for any R > Rε,%, we
have S/R ⊂ B(O, %) and

g1(S/R, z) 6 (Ω(S)− ε) ln‖z‖, on ∂B(O, %).

(Ω(S)− ε) ln‖ · ‖ is maximal in B(O, 1) \ {O} and these two functions are
equal to 0 on the boundary of B(O, 1). Consequently, the same inequality
is satisfied in B(O, 1) \B(O, %) and

gR(S, z) 6 (Ω(S)− ε) ln‖z/R‖, on B(O,R) \B(O, %R).

Finally, if l is a positive integer and f is an entire function with ord(f, p) > l
for any p ∈ S (ln(|f |/‖f‖R) 6 l.gR(S, · ) in B(O,R)), then for any %R 6
r 6 R we obtain

ln‖f‖r 6 ln‖f‖R − l(Ω(S)− ε) ln(R/r). �

2.5. Pluricomplex Green functions with a finite set of
logarithmic poles with different homogeneous weights

Let D be a bounded hyperconvex domain in Cn. Let S = {p1, . . . , pr}
be a finite set of r distinct points in D and M = {m1, . . . ,mr} be a set
of r positive integers. Denote by gD((S,M), · ), the pluricomplex Green
function in the domain D, with logarithmic poles at any points pj of S and
with homogeneous weight mj respectively. According to [12], to any point
pj ∈ S we can associate a generic set Sj of mn

j distinct points in Cn such
that Ω(Sj) = mj . Denote by Σ(t1, . . . , tr) the set {pj+ tjSj : 16 j6 r} of∑r
j=1m

n
j distinct points. For sufficiently small (t1, . . . , tr) ∈ (C∗)r the set

Σ(t1, . . . , tr) is contained in D. Denote by gD(Σ(t1, . . . , tr), · ) the pluri-
complex Green function in D, with logarithmic poles at any points of
Σ(t1, . . . , tr) and with weight 1. These functions satisfy in D

r∑
j=1

gD(pj + tjSj , z) 6 gD(Σ(t1, . . . , tr), z) 6 inf
16j6r

gD(pj + tjSj , z).
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According to Theorem 1.1, for any 16j6r, the family (gD(pj+tjSj ,·))tj∈C∗
converges locally uniformly outside the point pj in D to mjgD(pj , · ). By
using the same technics as in the proof of Theorem 1.1, we deduce the
following theorem.

Theorem 2.3. — The family of pluricomplex Green functions
(gD(Σ(t1, . . . , tr), · ))(t1,...,tr)∈(C∗)r converges locally uniformly outside the
set S in D to gD((S,M), · ), when (t1, . . . , tr) tends to O.

3. New affine invariants and others conjectures of
pluripotential theory

3.1. Affine invariants associated to finite sets of points in Cn

Fix a finite set S = {p1, . . . , pr} ⊂ Cn of r distinct points, |S| = r is its
cardinality. In Section 1.2.2 we have defined two affine invariants ωpsh(S)
and ω+

psh(S).
ωpsh(S) := sup{ω(S, u) : u ∈ PSH(Cn)}

and
ω+

psh(S) := sup{ω(S, u) : u ∈ PSH(Cn) ∩ L∞loc(Cn \ S)},
where for any psh function u in Cn,

γu := lim sup
|z|→∞

u(z)
log |z| and ω(S, u) :=

∑k
j=1 ν(u, pj)

γu
.

ν(u, z) is the Lelong number of the psh function u at the point z. Let us
remark that for any psh function u in Cn, we have always γu ∈ [0,+∞].
Indeed, if u is psh in Cn and u(z) 6 o(log |z|) as |z| → ∞, then u is
constant (it is a generalization of Liouville’s Theorem, see for example [15]).
Conversely, if u(z) = |z| then γu = +∞. ωpsh(S) and ω+

psh(S) are related
to the algebraic geometric properties of S and in particular to the affine
invariant ω(S) of S, that they generalize. Here are some simple properties
of these invariants.

Lemma 3.1.
(i) ω(S) 6 ωpsh(S) and ω+

psh(S) 6 ωpsh(S).
(ii) The sets {ω(S, u) : u ∈ PSH(Cn)} and {ω(S, u) : u ∈ PSH(Cn) ∩

L∞loc(Cn \ S)} are connected.

(0, ωpsh(S)) ⊆ {ω(S, u) : u ∈ PSH(Cn)} ⊆ (0, ωpsh(S)],

(0, ω+
psh(S)) ⊆ {ω(S, u) : u ∈ PSH(Cn) ∩ L∞loc(Cn \ S)} ⊆ (0, ω+

psh(S)].
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Proof. — For a > 1 let fa : R → R be the convex increasing function
defined by fa(t) = t if t < 0, fa(t) = at if t > 0. If u ∈ PSH(Cn) then
fa ◦ u ∈ PSH(Cn), γfa◦u = aγu, ν(fa ◦ u, z) = ν(u, z) for any point z and
finally ω(S, fa ◦ u) = ω(S, u)/a. �

For technical reasons, we need to introduce some other constants. Let l
be a positive real, we define

Ωpsh(S, l) := inf{γu : u ∈ PSH(Cn), ν(u, p) > l for any p ∈ S}.

It is easy to see that Ωpsh(S, l)/l doesn’t depend on l. Then we just intro-
duce the common value Ωpsh(S, 1), that we denote by Ωpsh(S). In the same
way we have

Ω+
psh(S) := inf{γu : u∈PSH(Cn)∩L∞loc(Cn \ S), ν(u, p)> 1 for any p∈S}.

This invariant was already introduced in [5]. All these invariants can be
compared.

Lemma 3.2.
(i) The sets {γu : u ∈ PSH(Cn), ν(u, p) > 1 for any p ∈ S} and
{γu : u ∈ PSH(Cn) ∩ L∞loc(Cn \ S), ν(u, p) > 1 for any p ∈ S}
are connected and since the function u(z) =

∑
p∈S ln|z − p| + |z|

satisfies γu = +∞, we have

(Ωpsh(S),+∞] ⊂ {γu : u ∈ PSH(Cn), ν(u, p) > 1, ∀ p ∈ S}
⊂ [Ωpsh(S),+∞]

and

(Ω+
psh(S),+∞] ⊂ {γu :u∈PSH(Cn)∩L∞loc(Cn \S), ν(u, p)> 1, ∀ p∈S}

⊂ [Ω+
psh(S),+∞].

(ii) We have Ωpsh(S) 6 Ω(S) and Ωpsh(S) 6 Ω+
psh(S).

(iii) We have ω(S) > |S|
Ω(S) , ωpsh(S) > |S|

Ωpsh(S) and ω+
psh(S) > |S|

Ω+
psh(S) .

(iv) If S′ ⊆ S ⊂ Cn then

ω+
psh(S′) 6 ω+

psh(S) 6 ω+
psh(S′) + ω+

psh(S \ S′).

The proof of this lemma is similar to the proof of Proposition 3.1 in [5].
In what follows, we will prove that ω+

psh(S) 6 Ωpsh(S) 6 Ω(S), in the 2-
dimensional case. So we are interested in finding lower bounds for ω+

psh(S),
and then for Ω(S). It is relevant for Conjecture (A1). On the other hand
we are interested in finding upper bounds for ωpsh(S), and then for ω(S).
It is relevant for Conjecture (A2), which is equivalent to Conjecture (A1).
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3.2. Comparisons of these invariants

3.2.1. A very simple situation in one complex variable

The situation is very simple for subharmonic functions in C. Let v
be an entire subharmonic (sh) function such that ν(v, pj) = αj (posi-
tive real number) for 1 6 j 6 r. Let u be the sh function defined by
u(z) =

∑r
j=1 αj ln|z − pj |. Then w := v − u is a sh function in C.

0 6 γw = lim sup
|z|→+∞

v(z)− u(z)
ln|z| = lim sup

|z|→+∞

v(z)
ln|z| − lim

|z|→+∞

u(z)
ln|z| = γv − γu,

then γv > γu =
∑
j αj . ω(S, u) = 1 and ω(S, v) 6 1. Consequently,

ωsh(S) = ω+
sh(S) = 1. For polynomials, it is also very simple. Indeed, if P

is a polynomial such that ord(P, pj) = αj (positive integer) for 1 6 j 6 r,
then P can be divided by

∏r
j=1(z − pj)αj . There exists a polynomial Q

such that P (z) =
∏r
j=1(z − pj)αjQ(z) and deg(P ) > deg(Q). Conse-

quently, ω(S) = 1. It is easy to see that we also have in this situation,
Ω(S) = Ωsh(S) = Ω+

sh(S) = |S|.

3.2.2. In the multivariable case

Here is a comparison principle which relates Lelong numbers at the points
of S of two psh functions with their logarithmic growth at infinity. The proof
of this result is simple and is similar to the proof of Theorem 3.4 in [5] (or
Proposition 2.1 in [4]).

Theorem 3.3. — Let S ⊂ Cn be a finite set. Let v be a psh function
in Cn. Let u ∈ PSH(Cn) ∩ L∞loc(Cn \ S). Then∑

p∈S
ν(u, p)n−1ν(v, p) 6 γn−1

u γv.

Proof. — Let u ∈ PSH(Cn) ∩ L∞loc(Cn \ S) be such that γu > 0. Let
us suppose that u has singularities at any point of S. It follows from a
comparison theorem for Lelong numbers with weights due to Demailly [9]
that for any p ∈ S

lim
r→0

∫
B(p,r)

(ddcu)n−1 ∧ ddcv = νu(ddcv, p) > ν(u, p)n−1ν(v, p)

and ∫
Cn

(ddcu)n−1 ∧ ddcv >
∑
p∈S

ν(u, p)n−1ν(v, p).
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In addition,∫
Cn

(ddcu)n−1 ∧ ddcv 6 γn−1
u

∫
Cn

(ddc log |z|)n−1 ∧ ddcv 6 γn−1
u γv.

and the proof is completed. �

Corollary 3.4. — For any finite set S ⊂ Cn, we have

(3.1) ω+
psh(S)n−1 6 Ωpsh(S)|S|n−2 6 Ω(S)|S|n−2 6 |S|(n−1)2/n,

(3.2) |S|
Ω(S) 6 ω(S) 6 ωpsh(S) 6 Ω+

psh(S)n−1 6 |S|n−1.

In particular, for n = 2, ω+
psh(S) 6 Ωpsh(S) and ωpsh(S) 6 Ω+

psh(S).

The inequalities ω(S) 6 Ω+
psh(S)n−1 6 |S|n−1 are already proved in [5].

Proof.

Step 1. — Let v be a psh function in Cn such that ν(v, p) > 1 for
any p ∈ S. Let u be a function in PSH(Cn) ∩ L∞loc(Cn \ S). According
to Theorem 3.3, we have 1

γn−1
u

∑
p∈S ν(u, p)n−1 6 γv. If we take the in-

fimum in the right hand side of this inequality for any such v, then we
obtain 1

γn−1
u

∑
p∈S ν(u, p)n−1 6 Ωpsh(S). By using Hölder inequality, we

deduce 1
γu

∑
p∈S ν(u, p) 6 Ωpsh(S)1/(n−1)|S|(n−2)/(n−1). Finally by taking

the supremum in the left hand side of this inequality for any u ∈ PSH(Cn)∩
L∞loc(Cn \ S), we obtain

ω+
psh(S)n−1 6 Ωpsh(S)|S|n−2.

Step 2. — Let v be a psh function in Cn and u be a function in
PSH(Cn) ∩ L∞loc(Cn \ S) such that ν(u, p) > 1 for any p ∈ S. According to
Theorem 3.3, we have

∑
p∈S ν(v, p)/γv 6 γn−1

u . We take the supremum in
the left side of this inequality for any such v and the infimum in the right
side of this inequality for any such previous u and we obtain

ωpsh(S) 6 Ω+
psh(S)n−1.

Step 3. — By definition of Ω+
psh(S), with the psh function u(z) =∑

p∈S log |z − p| we obtain

Ω+
psh(S) 6 |S|.

The others inequalities are obvious. This achieves the proof. �
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3.3. Proof of Theorem 1.3

We already know that Conjectures (P1) and (A1) are equivalent, accord-
ing to Theorem 1.1. Indeed, with item (iii), we have: (A1) implies (P1) and
with item (i), we have: (P1) implies (A1). In addition it is well know that
Conjectures (A1) and (A2) are equivalent ([22]).
Step 1. — From Conjecture (P3) we deduce Conjectures (A1), (P2) and

(A2). Let us suppose that Conjecture (P3) is satisfied: for any ε > 0, there
exists an entire psh function v in L∞loc(Cn \ S), such that ν(v, p) > 1 for
any p ∈ S and such that γv 6 (1 + ε)|S|1/n. Then ω(S, v) > |S|

(1+ε)|S|1/n =
|S|1−1/n

1+ε . Consequently,

(3.3) ωpsh(S) > ω+
psh(S) > |S|1−1/n

and

(3.4) Ωpsh(S) 6 Ω+
psh(S) 6 |S|1/n.

On the other hand, we have the chain (3.1) of inequalities:

ω+
psh(S)n−1 6 Ωpsh(S)|S|n−2 6 Ω(S)|S|n−2 6 |S|(n−1)2/n.

Then we deduce that

ω+
psh(S)n−1 = Ωpsh(S)|S|n−2 = Ω(S)|S|n−2 = |S|(n−1)2/n,

ω+
psh(S) = |S|(n−1)/n and Ωpsh(S) = Ω(S) = |S|1/n.

Conjecture (A1) is solved. According to (3.4), we deduce that Ω+
psh(S) =

|S|1/n. According to (3.2), we obtain ωpsh(S) 6 Ω+
psh(S)n−1 = |S|1−1/n.

And according to inequalities (3.3), we deduce that

ωpsh(S) = |S|1−1/n.

Conjecture (P2) is solved. Since ω(S) 6 ωpsh(S) = |S|1−1/n and ω(S) >
|S|

Ω(S) , conjecture (A2) is solved.
Step 2. — From conjecture (P2) we deduce conjectures (A1) and (A2).

Let us suppose that conjecture (P2) is satisfied: ωpsh(S) = ω+
psh(S). Ac-

cording to the two chains of inequalities (3.1) and (3.2), we obtain some
identities.

|S|n−1

Ω(S)n−1 6 ω(S)n−1 6 ωpsh(S)n−1 = ω+
psh(S)n−1

6 Ωpsh(S)|S|n−2 6 Ω(S)|S|n−2 6 |S|(n−1)2/n.
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We deduce in particular that |S|n−1

Ω(S)n−1 6 Ω(S)|S|n−2, which is equivalent to
Ω(S) > |S|1/n. And since we always have Ω(S) 6 |S|1/n, Conjecture (A1)
is finally solved and all previous inequalities are equalities:

|S|(n−1)2/n = ω(S)n−1 = ωn−1
psh (S) = ω+

psh(S)n−1 = Ωpsh(S)|S|n−2.

We deduce that ω(S) = ωpsh(S) = ω+
psh(S) = |S|(n−1)/n and Ωpsh(S) =

|S|1/n. In particular conjecture (A2) is solved.
Step 3. — Now let us prove that conjecture (A1) implies conjecture (P3).

Since conjectures (A1) and (P1) are equivalent, (g1(tS, · ))t∈C∗ converges
locally uniformly in B(O, 1) \ {O} to |S|1/n ln‖ · ‖: for any ε > 0 and any
0 < % < 1, there exists ε0 > 0 such that for any |t| 6 ε0, we have

(1 + ε)|S|1/n ln‖z‖ 6 g1(tS, z) 6 (1− ε)|S|1/n ln‖z‖ in B(O, 1) \B(O, %).

Consequently, the following psh and continuous function v is well defined
in Cn

v(z) =


g1(tS, z), z ∈ B(O, %)
max{g1(tS, z), (1 + ε)|S|1/n ln‖z‖}, z ∈ B(O, 1) \B(O, %)
(1 + ε)|S|1/n ln‖z‖, z ∈ Cn \B(O, 1)

Let us denote by w the entire psh function defined by: w(z) = v(tz). w is
locally bounded in Cn\S. ν(w, p) = 1 for any p ∈ S and γw = (1+ε)|S|1/n,
as required in conjecture (P3). The proof is complete. �
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