[Métriques locales du champ libre gaussien]
Nous introduisons la notion de métrique locale d’un champ libre gaussien
Ces résultats sont utilisés dans des travaux ultérieurs qui établissent l’existence, l’unicité et d’autres propriétés de la métrique associée á la gravité quantique de Liouville pour tout paramétre
We introduce the concept of a local metric of the Gaussian free field (GFF)
Révisé le :
Accepté le :
Publié le :
Keywords: Gaussian free field, local metrics, local sets, Liouville quantum gravity
Mots-clés : Champ libre gaussien, métriques locales, ensembles locaux, gravité quantique de Liouville
Gwynne, Ewain 1 ; Miller, Jason 1

@article{AIF_2020__70_5_2049_0, author = {Gwynne, Ewain and Miller, Jason}, title = {Local metrics of the {Gaussian} free field}, journal = {Annales de l'Institut Fourier}, pages = {2049--2075}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {5}, year = {2020}, doi = {10.5802/aif.3398}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3398/} }
TY - JOUR AU - Gwynne, Ewain AU - Miller, Jason TI - Local metrics of the Gaussian free field JO - Annales de l'Institut Fourier PY - 2020 SP - 2049 EP - 2075 VL - 70 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3398/ DO - 10.5802/aif.3398 LA - en ID - AIF_2020__70_5_2049_0 ER -
%0 Journal Article %A Gwynne, Ewain %A Miller, Jason %T Local metrics of the Gaussian free field %J Annales de l'Institut Fourier %D 2020 %P 2049-2075 %V 70 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3398/ %R 10.5802/aif.3398 %G en %F AIF_2020__70_5_2049_0
Gwynne, Ewain; Miller, Jason. Local metrics of the Gaussian free field. Annales de l'Institut Fourier, Tome 70 (2020) no. 5, pp. 2049-2075. doi : 10.5802/aif.3398. https://aif.centre-mersenne.org/articles/10.5802/aif.3398/
[1] Tightness of Liouville first passage percolation for
[2] Weak LQG metrics and Liouville first passage percolation, Probab. Theory Relat. Fields, Volume 178 (2020) no. 1-2, pp. 369-436 | DOI | MR | Zbl
[3] Liouville quantum gravity and KPZ, Invent. Math., Volume 185 (2011) no. 2, pp. 333-393 | DOI | MR
[4] The jackknife estimate of variance, Ann. Stat., Volume 9 (1981) no. 3, pp. 586-596 | MR
[5] Conformal covariance of the Liouville quantum gravity metric for
[6] Existence and uniqueness of the Liouville quantum gravity metric for
[7] Confluence of geodesics in Liouville quantum gravity for
[8] Harmonic functions on mated-CRT maps, Electron. J. Probab., Volume 24 (2019), 58, 55 pages | MR | Zbl
[9] Sur le chaos multiplicatif, Ann. Sci. Math. Qué., Volume 9 (1985) no. 2, pp. 105-150 | MR
[10] Uniqueness and universality of the Brownian map, Ann. Probab., Volume 41 (2013) no. 4, pp. 2880-2960 | DOI | MR
[11] The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., Volume 210 (2013) no. 2, pp. 319-401 | DOI | MR
[12] The geodesics in Liouville quantum gravity are not Schramm–Loewner evolutions, Probab. Theory Relat. Fields, Volume 177 (2020) no. 3-4, pp. 677-709 | DOI | MR | Zbl
[13] Imaginary geometry I: Interacting SLEs, Probab. Theory Relat. Fields, Volume 164 (2016) no. 3-4, pp. 553-705 | DOI | MR | Zbl
[14] Imaginary geometry II: Reversibility of
[15] Imaginary geometry III: Reversibility of
[16] Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding (2016) (https://arxiv.org/abs/1605.03563)
[17] Liouville quantum gravity and the Brownian map III: the conformal structure is determined (2016) (https://arxiv.org/abs/1608.05391, to appear in Probab. Theory Relat. Fields) | Zbl
[18] Quantum Loewner evolution, Duke Math. J., Volume 165 (2016) no. 17, pp. 3241-3378 | DOI | MR | Zbl
[19] Imaginary geometry IV: Interior rays, whole-plane reversibility, and space-filling trees, Probab. Theory Relat. Fields, Volume 169 (2017) no. 3-4, pp. 729-869 | DOI | MR | Zbl
[20] Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric, Invent. Math., Volume 219 (2020) no. 1, pp. 75-152 | DOI | MR | Zbl
[21] Gaussian multiplicative chaos and applications: A review, Probab. Surv., Volume 11 (2014), pp. 315-392 | DOI | MR | Zbl
[22] A contour line of the continuum Gaussian free field, Probab. Theory Relat. Fields, Volume 157 (2013) no. 1-2, pp. 47-80 | DOI | MR | Zbl
[23] Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, Volume 139 (2007) no. 3-4, pp. 521-541 | DOI | MR
[24] Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab., Volume 44 (2016) no. 5, pp. 3474-3545 | DOI | MR
Cité par Sources :