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LOCAL METRICS OF THE GAUSSIAN FREE FIELD

by Ewain GWYNNE & Jason MILLER (*)

Abstract. — We introduce the concept of a local metric of the Gaussian free
field (GFF) h, which is a random metric coupled with h in such a way that it
depends locally on h in a certain sense. This definition is a metric analog of the
concept of a local set for h. We establish general criteria for two local metrics of
the same GFF h to be bi-Lipschitz equivalent to each other and for a local metric
to be a.s. determined by h. Our results are used in subsequent works which prove
the existence, uniqueness, and basic properties of the γ-Liouville quantum gravity
(LQG) metric for all γ ∈ (0, 2), but no knowledge of LQG is needed to understand
this paper.
Résumé. — Nous introduisons la notion de métrique locale d’un champ libre

gaussien h. Il s’agit d’une propriété d’ine distance aléatoire couplée avec h d’une
maniére locale qui rappelle la notion d’ensembles locaux du champ libre gaussien.
Nous établissons des critéres pour vérifier que deux métriques locales associées á
un même champ libre gaussien sont Lipschitz-équivalentes, ou pour vérifier qu’une
métrique locale est en fait une fonction détereministe du champ libre.

Ces résultats sont utilisés dans des travaux ultérieurs qui établissent l’existence,
l’unicité et d’autres propriétés de la métrique associée á la gravité quantique de
Liouville pour tout paramétre γ ∈ (0, 2), mais le présent article ne requiert aucune
connaissance sur la gravité quantique.

1. Introduction

1.1. Overview

Let U ⊂ C be an open planar domain. The Gaussian free field (GFF)
h on U is a random distribution (generalized function) on U which can
be thought of as a generalization of Brownian motion but with two time
variables instead of one, in the sense that the one-dimensional Gaussian free
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field is simply the Brownian bridge. We refer to Section 2.2, [23], and/or
the introductory sections of [13, 19, 22, 24] for more on the GFF.
If (h,A) is a coupling of h with a random compact subset of U , we say

that A is a local set for h if for any open set V ⊂ U , the event {A ⊂ V }
is conditionally independent from h|U\V given h|V .(1) In other words, A
depends “locally” on h, although A is not required to be determined by h.
Local sets of h were first defined in [22, Lemma 3.9]. Important examples
of local sets include sets which are independent from h as well as so-called
“level lines” [22] and “flow lines” [13, 14, 15, 19] of h, both of which are
SLEκ-type curves that are a.s. determined by h.
In this paper, we will study random metrics coupled with the GFF in-

stead of random sets. As we will explain in more detail Section 1.3, this
work is motivated by the question of constructing the Liouville quantum
gravity metric for γ ∈ (0, 2). This is the distance function associated with
the Riemannian metric tensor “eγh (dx2 + dy2)”, where dx2 + dy2 denotes
the Euclidean metric tensor on U , which is in some sense a canonical model
of a random two-dimensional Riemannian metric tensor. However, the ideas
we develop here will apply in a more general framework.
We will now introduce a concept of a local metric of the GFF, which is

directly analogous to the above definition of a local set. We first need some
preliminary definitions. Suppose (X,D) is a metric space.
For a curve P : [a, b]→ X, the D-length of P is defined by

len (P ;D) := sup
T

#T∑
i=1

D(P (ti), P (ti−1))

where the supremum is over all partitions T : a = t0 < · · · < t#T = b of
[a, b]. Note that the D-length of a curve may be infinite.
For Y ⊂ X, the internal metric of D on Y is defined by

(1.1) D(x, y;Y ) := inf
P⊂Y

len (P ;D) , ∀ x, y ∈ Y

where the infimum is over all paths P in Y from x to y. Then D( · , · ;Y ) is
a metric on Y , except that it is allowed to take infinite values.

We say that (X,D) is a length space if for each x, y ∈ X and each ε > 0,
there exists a curve of D-length at most D(x, y) + ε from x to y.

(1)The restriction of h to an open set V can be defined as the restriction of the distribu-
tional pairing φ 7→ (h, φ) to test functions φ which are supported on V . The σ-algebra
generated by h|K for a closed set K can be defined as

⋂
ε>0 σ(h|Bε(K)), where Bε(K)

is the Euclidean ε-neighborhood of K. Hence it makes sense to speak of “conditioning
on h|K” or to say that a random variable is “determined by h|K”.

ANNALES DE L’INSTITUT FOURIER



LOCAL METRICS OF THE GFF 2051

A continuous metric on an open domain U ⊂ C is a metric D on U which
induces the Euclidean topology on U , i.e., the identity map (U, | · |) →
(U,D) is a homeomorphism. We equip the space of continuous metrics on
U with the local uniform topology for functions from U × U to [0,∞) and
the associated Borel σ-algebra. Note that the space of continuous metrics
is not complete w.r.t. this topology. We allow a continuous metric to satisfy
D(u, v) =∞ if u and v are in different connected components of U . In this
case, in order to have Dn → D w.r.t. the local uniform topology we require
that for large enough n, Dn(u, v) =∞ if and only if D(u, v) =∞.

Lemma 1.1. — LetD be a continuous length metric on U and let V ⊂ U
be open. The internal metric D( · , · ;V ) is a continuous length metric on V .

Proof. — Since D( · , · ;V ) > D|V , it is clear that the identity map
(V,D( · , · ;V )) → (V, | · |) is continuous. To check that the inverse map
is continuous, suppose {zn}n∈N is a sequence in V which converges to
z ∈ V with respect to the Euclidean topology. By the continuity of D,
for large enough n ∈ N, the D-distance from zn to z is smaller than the
D-distance from z to ∂V . This implies that a path of near-minimal D-
length from zn to z must stay in V , so since D is a length metric we have
D(z, zn) = D(z, zn;V ) for large enough n. By the continuity of D, we have
D(z, zn)→ 0 so also D(z, zn;V )→ 0. �

Definition 1.2. — Let U ⊂ C be a connected open set and let (h,D)
be a coupling of a GFF on U and a random continuous length metric on
U . We say that D is a local metric for h if for any open set V ⊂ U ,
the internal metric D( · , · ;V ) is conditionally independent from the pair
(h|U\V , D( · , · ;U \ V )) given h|V .

By convention, we define D( · , · ;U \ V ) to be a graveyard point in the
probability space if U \ V = ∅. We emphasize that in Definition 1.2,
D( · , · ;V ) is required to be conditionally independent from the pair (h|U\V ,
D( · , · ;U \V )) given h|V . This means that, unlike in the case of a local set,
a random metric D which is independent from h is not necessarily a local
metric for h. If D is determined by h, then D is a local metric for h if and
only if D( · , · ;V ) is determined by h|V for each open set V ⊂ U . If D is not
necessarily determined by h, then Definition 1.3 implies that D( · , · ;V ) is
conditionally independent from D( · , · ;U \V ) given h; see also Lemma 2.4
for a stronger version of this statement. See Section 2.3 for some equivalent
formulations of Definition 1.2.
The goal of this paper is to prove several general theorems about local

metrics of the GFF. We will give a condition under which two local metrics
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are bi-Lipschitz equivalent to each other (Theorem 1.6) and a condition
under which a local metric is a measurable function of the field (Theo-
rem 1.7).
As mentioned above, our results play an important role in related works

[1, 2, 5, 6, 7] which construct a certain special family of local metrics of
the GFF: the γ-Liouville quantum gravity (LQG) metric for γ ∈ (0, 2). We
discuss these works further in Section 1.3. However, we emphasize that one
does not need to know anything about LQG to understand this paper.

1.2. Main results

Before stating our main results concerning local metrics, we need some
additional definitions which build on Definition 1.2.

Definition 1.3. — Let U ⊂ C be a connected open set and let
(h,D1, . . . , Dn) be a coupling of a GFF on U and n random continuous
length metrics. We say that D1, . . . , Dn are jointly local metrics for h if for
any open set V ⊂ U , the collection of internal metrics {Dj( · , · ;V )}j=1,...,n
is conditionally independent from (h|U\V , {Dj( · , · ;U \ V )}j=1,...,n) given
h|V .

The following lemma gives a convenient way to produce jointly local
metrics. See [22, Lemma 3.10] for the analog of the lemma for local sets.

Lemma 1.4. — Let (h,D1, . . . , Dn) be a coupling of a GFF on a domain
U ⊂ C with n random continuous length metrics such that each Dj for
j = 1, . . . , n is local for h and (D1, . . . , Dn) are conditionally independent
given h. Then D1, . . . , Dn are jointly local for h.

Proof. — Fix V ⊂ U . We first treat the case when n = 2. We will apply
the following elementary probability fact: if (X,Y, Z) is a coupling of three
random variables such that X is independent from Y , X is independent
from Z, and (Y, Z) are conditionally independent given X, then X is inde-
pendent from (Y, Z). See, e.g., [22, Lemma 3.5]. For our purposes, we will
take

(1.2)
X =

(
D1( · , · ;U \ V ), D2( · , · ;U \ V ), h|U\V

)
,

Y = D1( · , · ;V ), Z = D2( · , · ;V )

and apply the statement to the conditional law of (X,Y, Z) given h|V .

ANNALES DE L’INSTITUT FOURIER
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Since D1 and D2 are conditionally independent given h, the conditional
law of D1( · , · ;V ) given

(
D1( · , · ;U \ V ), D2( · , · ;U \ V ), h

)
is the same as

the conditional law of D1( · , · ;V ) given only
(
D1( · , · ;U \ V ), h

)
. By the

locality of D1, this is the same as the conditional law of D1( · , · ;V ) given
only h|V . Hence, in the notation above, X and Y are conditionally inde-
pendent given h|V . Similarly, X and Z are conditionally independent given
h|V . Since D1 and D2 are conditionally independent given h, it follows that
also Y and Z are conditionally independent given X and h|V . The above
probability fact therefore shows that (Y,Z) is conditionally independent
from X given h|V . This means precisely that D1 and D2 are jointly local
for h.
This completes the proof when n = 2. The case when n > 3 follows from

induction and a similar argument to the one above. �

We will sometimes work with GFF’s which are naturally defined modulo
additive constant. When we do so, we will typically normalize the field
so that its circle average hr(z) over ∂Br(z) is zero for some r > 0 and
z ∈ C (see [3, Section 3.1] for the definition and basic properties of circle
averages). We will be interested in local metrics which behave nicely when
we make a different choice of normalization.

Definition 1.5. — Let U ⊂ C be a connected open set and let
(h,D1, . . . , Dn) be a coupling of a GFF on U and n random continu-
ous length metric which are jointly local for h. For ξ ∈ R, we say that
(D1, . . . , Dn) are ξ-additive for h if for each z ∈ U and each r > 0 such
that Br(z) ⊂ U , the metrics (e−ξhr(z)D1, . . . , e

−ξhr(z)Dn) are jointly local
metrics for h− hr(z).

The first main result of this article is the following criterion for two local
metrics to be bi-Lipschitz equivalent. Roughly speaking, it states that if we
can compare the distance across an annulus for one metric to the diameter
of a circle w.r.t. the internal metric on an annulus for the other metric with
high probability at all scales, then we get an a.s. global comparison of the
metrics.

Theorem 1.6 (Bi-Lipschitz equivalence of local metrics). — Let ξ ∈ R,
let h be a whole-plane GFF normalized so that h1(0) = 0, let U ⊂ C, and
let (h,D, D̃) be a coupling of h with two random continuous metrics on U
which are jointly local and ξ-additive for h|U . There is a universal constant
p ∈ (0, 1) such that the following is true. Suppose there is a deterministic
constant C > 0 such that for each compact set K ⊂ U , there exists rK > 0
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such that

P

[
sup

u,v∈∂Br(z)̃
D
(
u,v;B2r(z) \Br/2(z)

)
6CD(∂Br/2(z), ∂Br(z))

]
> p,(1.3)

∀ z ∈ K, ∀ r ∈ (0, rK ].

Then a.s. D̃(z, w) 6 CD(z, w) for each z, w ∈ U .

We also have a criterion for a local metric to be determined by h, which
says that, roughly speaking, if a local metric is determined by h up to
bi-Lipschitz equivalence then it is in fact itself determined by h.

Theorem 1.7 (Measurability of local metrics). — Let U ⊂ C, let h be
a GFF on U , and let (h,D) be a coupling of h with a random continuous
length metric which is local for h. Assume that D is determined by h up to
bi-Lipschitz equivalence in the following sense. Suppose we condition on h
and let D, D̃ be conditionally i.i.d. samples from the conditional law of D
given h. There is a random constant C = Ch > 1, depending only h, such
that a.s. D̃(z, w) 6 CD(z, w) for each z, w ∈ U . Then D is a.s. determined
by h, i.e., one can take C = 1.

Combining Theorem 1.6 with Theorem 1.7 yields the following corollary.

Corollary 1.8. — There is a universal constant p ∈ (0, 1) such that
the following is true. Let U ⊂ C be a domain which contains the unit disk,
let h be a whole-plane GFF normalized so that h1(0) = 0, and let (h,D)
be a coupling of h with a random continuous length metric on U which is
local for h|U and satisfies the following hypotheses.

(1) D is ξ-additive for h|U for some ξ ∈ R (Definition 1.5).
(2) Condition on h and let D and D̃ be conditionally i.i.d. samples from

the conditional law of D given h. There is a deterministic constant
C > 0 such that for each compact set K ⊂ U , there exists rK > 0
such that (1.3) holds for this choice of D and D̃.

Then D is a.s. determined by h.

Proof. — We first claim that (D, D̃) is a pair of ξ-additive local met-
rics for h|U . We know from Definition 1.5 that for each z ∈ U and each
r > 0 such that Br(z) ⊂ U , each of e−ξhr(z)D and e−ξhr(z)D̃ is individu-
ally local for h|U − hr(z). Since B1(0), Br(z) ⊂ U , it follows that h|U and
h|U − hr(z) determine each other. Since e−ξhr(z)D and e−ξhr(z)D̃ are con-
ditionally independent given h|U , they are also conditionally independent
given h|U − hr(z). By Lemma 1.4, these two metrics are jointly local for

ANNALES DE L’INSTITUT FOURIER
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h|U −hr(z). Theorem 1.6 tells us that if (1.3) holds for a large enough uni-
versal p ∈ (0, 1), then a.s. D̃(z, w) 6 CD(z, w) for each z, w ∈ U . Therefore,
Theorem 1.7 implies that D is a.s. determined by h. �

1.3. Applications to Liouville quantum gravity

Here we briefly summarize how our results are used in the construction
of the γ-Liouville quantum gravity (LQG) metric for general γ ∈ (0, 2).
This section is included only for context and is not needed to understand
the rest of the paper.
For γ ∈ (0, 2), a γ-LQG surface is, heuristically speaking, the random

two-dimensional Riemannian manifold parameterized by a domain U ⊂ C
whose Riemannian metric tensor is eγh(dx2 +dy2), where h is some variant
of the GFF on U and dx2 + dy2 is the Euclidean metric tensor. This defi-
nition does not make literal sense since the GFF is only a distribution, not
a function, so cannot be exponentiated. So, one needs to use regularization
procedures to define LQG rigorously. Previous work has constructed the
volume form associated with an LQG surface, called the γ-LQG area mea-
sure [3, 9, 21]. This is a random measure µh which can be obtained as a
limit of regularized versions of eγh dz, where dz denotes Lebesgue measure.
It is expected that a γ-LQG surface also admits a canonical metric. This

metric should be a local metric for h which is, in some sense, obtained by
exponentiating h. Previously, such a metric was only constructed in the
special case when γ =

√
8/3 [16, 17, 20], in which case the associated

metric space is isometric to the Brownian map [10, 11].
Ding, Dubédat, Dunlap, and Falconet [1] showed that for general γ ∈

(0, 2), a certain natural approximation scheme for the γ-LQG metric called
Liouville first passage percolation (LFPP) admits non-trivial subsequential
limiting metrics. To construct a metric on γ-LQG, one wants to show that
there is a unique subsequential limit and that it satisfies certain scale in-
variance properties. This is accomplished in [6], building on [2, 7] and the
present paper.
It can be checked that every subsequential limit of LFPP is a local metric

of the GFF (see [2, Section 2]). Hence our results can be applied to study
such subsequential limits. In particular, Corollary 1.8 will be used in [2]
to show that every subsequential limit can be realized as a measurable
function of the GFF. Theorem 1.6 is used in [6] to show that certain pairs
of subsequential limiting metrics are bi-Lipschitz equivalent, which reduces
the problem of proving uniqueness of the subsequential limit to the (quite
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involved) problem of showing that the two bi-Lipschitz equivalent metrics
in fact differ by a scaling (i.e., the ratio of the two metrics is a positive and
finite constant). Theorem 1.6 is also used in [5] as an intermediate step in
the proof of the conformal covariance of the LQG metric.

1.4. Outline

The rest of this paper is structured as follows. In Section 2.2, we review
some facts about the Gaussian free field and record some elementary prop-
erties of local metrics. In Section 3 we prove a general lemma (Lemma 3.1)
concerning the near-independence of events which depend on the GFF and
a collection of jointly local metrics restricted to disjoint concentric annuli.
This lemma is an extension of a result from [12] and will also be used
in [2, 5, 6, 7]. In Section 4, we use this general “independence across an-
nuli” lemma to prove Theorem 1.6. In Section 5, we prove Theorem 1.7.

Acknowledgments
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sion of this article. We thank Jian Ding, Julien Dubédat, Alex Dunlap,
Hugo Falconet, Josh Pfeffer, Scott Sheffield, and Xin Sun for helpful dis-
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2. Preliminaries

2.1. Basic notation

We write N = {1, 2, 3, . . .} and N0 = N ∪ {0}.
For a < b, we define the discrete interval [a, b]Z := [a, b] ∩ Z.
If f : (0,∞) → R and g : (0,∞) → (0,∞), we say that f(ε) = Oε(g(ε))

(resp. f(ε) = oε(g(ε))) as ε→ 0 if f(ε)/g(ε) remains bounded (resp. tends
to zero) as ε→ 0.

For z ∈ C and r > 0, we write Br(z) for the Euclidean ball of radius r
centered at z. We also define the open annulus

(2.1) Ar1,r2(z) := Br2(z) \Br1(z), ∀ 0 < rr < r2 <∞.
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2.2. The Gaussian free field

Here we give a brief review of the definition of the zero-boundary and
whole-plane Gaussian free fields. We refer the reader to [23] and the intro-
ductory sections of [13, 19, 22] for more detailed expositions.

For an open domain U ⊂ C with harmonically non-trivial boundary (i.e.,
Brownian motion started from a point in U a.s. hits ∂U), we define H(U)
be the Hilbert space completion of the set of smooth, compactly supported
functions on U with respect to the Dirichlet inner product,

(2.2) (φ, ψ)∇ = 1
2π

∫
U

∇φ(z) · ∇ψ(z) dz.

In the case when U = C, constant functions c satisfy (c, c)∇ = 0, so to get
a positive definite norm in this case we instead take H(C) to be the Hilbert
space completion of the set of smooth, compactly supported functions φ on
C with

∫
C φ(z) dz = 0, with respect to the same inner product (2.2).

The (zero-boundary) Gaussian free field on U is defined by the formal
sum

(2.3) h =
∞∑
j=1

Xjφj

where the Xj ’s are i.i.d. standard Gaussian random variables and the
φj ’s are an orthonormal basis for H(U). The sum (2.3) does not con-
verge pointwise, but it is easy to see that for each fixed φ ∈ H(U), the
formal inner product (h, φ)∇ is a mean-zero Gaussian random variable
and these random variables have covariances E[(h, φ)∇(h, ψ)∇] = (φ, ψ)∇.
In the case when U 6= C and U has harmonically non-trivial boundary,
one can use integration by parts to define the ordinary L2 inner products
(h, φ) := −2π(h,∆−1φ)∇, where ∆−1 is the inverse Laplacian with zero
boundary conditions, whenever ∆−1φ ∈ H(U).
In the case when U = C, one can similarly define (h, φ) :=−2π(h,∆−1φ)∇

where ∆−1 is the inverse Laplacian normalized so that
∫
C ∆−1φ(z) dz = 0.

With this definition, one has (h + c, φ) = (h, φ) + (c, φ) = (h, φ) for each
φ ∈ H(C), so the whole-plane GFF is only defined modulo a global additive
constant. We will typically fix this additive constant by requiring that the
circle average hr(z) over ∂Br(z) is zero for some z ∈ C and r > 0. That
is, we consider the field h − hr(z), which is well-defined not just modulo
additive constant. We refer to [3, Section 3.1] for more on the circle av-
erage. The law of the whole-plane GFF is scale and translation invariant
modulo additive constant, which means that for z ∈ C and r > 0 one has
h(r ·+z)− hr(z)

d= h− h1(0).

TOME 70 (2020), FASCICULE 5
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The zero-boundary GFF on a domain U with harmonically non-trivial
boundary possesses the following Markov property (see, e.g., [23, Sec-
tion 2.6]). Let V ⊂ U be a sub-domain with harmonically non-trivial
boundary. Then we can write h = h + h̊, where h is a random distribu-
tion on U which is harmonic on V and is determined by h|U\V ; and h̊ is a
zero-boundary GFF on V which is independent from h|U\V .
In the whole-plane case, the Markov property is slightly more compli-

cated due to the need to fix the additive constant. We will use the following
version, which is proven in [8, Lemma 2.2].

Lemma 2.1 ([8]). — Let h be a whole-plane GFF with the additive con-
stant chosen so that h1(0) = 0. For each open set V ⊂ C with harmonically
non-trivial boundary, we have the decomposition

(2.4) h = h + h̊

where h is a random distribution which is harmonic on V and is determined
by h|C\V and h̊ is independent from h and has the law of a zero-boundary
GFF on V minus its average over ∂D∩ V . If V is disjoint from ∂D, then h̊
is a zero-boundary GFF and is independent from h|C\V .

2.3. Further basic properties of local metrics

Local metrics are related to local sets in the sense of [22, Lemma 3.9] in
the following manner.

Lemma 2.2. — Let (h,D) be a coupling of a GFF on U and a random
continuous length metric on U . For z ∈ U and s > 0, let Bs(z;D) be the
open D-metric ball of radius s centered at z.

(1) If D is a local metric for h and τ is a stopping time for the filtration
generated by (Bs(z;D), h|Bs(z;D)), then Bτ (z;D) is a local set for h.

(2) If D is determined by h and each closed metric ball Bs(z;D) for
z ∈ U and s > 0 is a local set for h, then D is a local metric for h.

Assertion (2) is not true without the assumption that D is determined by
h. A counterexample can be found by considering a random metric which
is independent from h; see the discussion just after Definition 1.2.

Proof of Lemma 2.2.
(1). — We first treat the case of a deterministic time s > 0. We will

use the following criterion from [22, Lemma 3.9]: a closed set A coupled
with h is a local set if and only if for each open set V ⊂ U , the event
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{A ⊂ V } is conditionally independent from h|U\V given h|V . Suppose now
that we are given an open set V ⊂ U and a deterministic s > 0. The
event {Bs(z;D) ⊂ V } is empty if z /∈ V , and if z ∈ V it is the same as
the event that the D-distance from z to each point of ∂V is strictly larger
than s. This event is determined by the internal metric D( · , · ;V ), so it is
conditionally independent from h|U\V given h|V by Definition 1.2.

The case of stopping times which take on only countably many possible
values is immediate from the case of deterministic times. The case of general
stopping times follows from the standard strong Markov property argument
(i.e., look at the times 2−nd2nτe and send n→∞) and the fact that local
sets behave nicely under limits [18, Lemma 6.8].
(2). — Assume that D is determined by h and let V ⊂ U be open. Our

locality assumption on metric balls together with [22, Lemma 3.9] implies
that for each z ∈ V and s > 0, the D-metric ball Bs(z;D) is determined by
h|V on the event {Bs(z;D) ⊂ V } = {D(z, ∂V ) > s}. Letting z vary over
V ∩Q2, letting s vary over (0,∞)∩Q, and using the continuity of D shows
that the set

(2.5) {(z, w) ∈ V × V : D(z, w) < D(z, ∂V )}

and the restriction of D to this set are each determined by h|V .
Now suppose that W ⊂ V is open and bounded with W ⊂ V . By the

continuity of D, a.s. D(W,∂V ) > 0. By the conclusion of the preceding
paragraph, h|V determines the set {(z, w) ∈W×W : D(z, w) < D(W,∂V )}
and the restriction of D to this set. This information, in turn, determines
D( · , · ;W ). Letting W increase to all of V now shows that h|V determined
D( · , · ;V ). Since D is assumed to be determined by h, this implies that D
is a local metric for h. �

There are a few arbitrary choices in Definition 1.2 involving whether to
restrict h to an open set or to its closure. The following lemma says that
these choices do not matter.

Lemma 2.3. — Let (h,D) be a coupling of a GFF on U and a random
continuous length metric on U . The following are equivalent.

(1) D is a local metric for h.
(2) (Replacing h|U\V by h) For each open set V ⊂ U , the internal

metric D( · , · ;V ) is conditionally independent from the pair
(h,D( · , · ;U \ V )) given h|V .

(3) (Conditioning on h|V instead of h|V ) For each open set V ⊂ U , the
internal metricD( · , · ;V ) is conditionally independent from the pair
(h,D( · , · ;U \ V )) given h|V .
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Proof. — Fix an open set V ⊂ U . Since h is determined by h|V and
h|U\V , it is obvious that (1) is equivalent to (2). That (2) implies (3) is a
consequence of the following probability fact: if X,Y, Z are random vari-
ables such that X and (Y, Z) are independent, then X and Z are condition-
ally independent given Y . Indeed, if we assume (2) then (3) is immediate
from this probability fact applied under the conditional law given h|V and
with X = D( · , · ;V ), Y = h|V , and Z = (h,D( · , · ;U \ V )).
Now assume that (h,D) satisfies (3). For each open setW ⊂ V withW ⊂

V , we know that the metric D( · , · ;W ) is conditionally independent from
the pair (h,D( · , · ;U \W )) given h|W . The field h|W is determined by h|V .
The metric D( · , · ;U \ V ) is equal to the internal metric of D( · , · ;U \W )
on U \ V , so is determined by D( · , · ;U \ W ). Therefore, D( · , · ;W ) is
conditionally independent from (h,D( · , · ;U \ V )) given h|V . Letting W
increase to all of V now shows that D( · , · ;V ) is conditionally independent
from (h,D( · , · ;U \ V )) given h|V , so (h,D) satisfies condition (3). �

The following lemma is an immediate consequence of Definition 1.2 and
will be important for the proof of Theorem 1.7.

Lemma 2.4. — Let (h,D) be a coupling of a GFF on U and a random
continuous length metric on U which is local for h. Let W be a count-
able collection of disjoint open subsets of U . Then the internal metrics
{D( · , · ;W ) : W ∈ W} are conditionally independent given h.

Proof. — By further conditioning on h|U\V in Definition 1.2, we get that
if V ⊂ C is an open set, then D( · , · ;V ) and D( · , · ;U \ V ) are condi-
tionally independent given h. We now apply this in the case when V is
a countable union of sets in W. Since the elements of W are disjoint,
we find that D( · , · ;V ) coincides with D( · , · ;W ) on each W ∈ W with
W ⊂ V and any two distinct sets W,W ′ ∈ W with W,W ′ ⊂ V have in-
finite D( · , · ;V )-distance from each other. Therefore, D( · , · ;V ) generates
the same σ-algebra as {D( · , · ;W ) : W ∈ W,W ⊂ V }. We also note that
if W 6⊂ V , equivalently W ∩ V = ∅, then D( · , · ;W ) is the internal metric
of D( · , · ;U \ V ) on W . Applying these observations with V ranging over
all finite unions of sets in W gives the lemma statement. �

3. Iterating events for local metrics in an annulus

Throughout this subsection, we let h be a whole-plane GFF normalized
so that h1(0) = 0, we fix ξ ∈ R, and we let D1, . . . , DN be random metrics
on C which are coupled with h and are jointly local and ξ-additive for h
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(Definitions 1.3 and 1.5). We will prove the following local independence
property for events which depend on h and the metrics D1, . . . , DN in
concentric annuli, which is a key tool in the proof of Theorem 1.6 and
will also be used in [2, 5, 6, 7]. This property is essentially proven in [12,
Section 4], but the statements there are given at a slightly lower level of
generality so we explain the necessary changes here. For the statement, we
recall the notation for Euclidean annuli from (2.1).

Lemma 3.1. — Fix 0 < s1 < s2 < 1. Let {rk}k∈N be a decreasing
sequence of positive numbers such that rk+1/rk 6 s1 for each k ∈ N and
let {Erk}k∈N be events such that each Erk is measurable w.r.t. the σ-algebra
generated by

(3.1)
(
(h−hrk(0))|As1rk,s2rk (0),

{
e−ξhrk (0)Dn( · , · ;As1rk,s2rk(0))

}
n=1,...,N

)
.

For K ∈ N, let N (K) be the number of k ∈ [1,K]Z for which Erk occurs.
(1) For each a > 0 and each b ∈ (0, 1), there exists p = p(a, b, s1, s2) ∈

(0, 1) and c = c(a, b, s1, s2) > 0 such that if

(3.2) P [Erk ] > p, ∀ k ∈ N,

then

(3.3) P [N (K) < bK] 6 ce−aK , ∀ K ∈ N.

(2) For each p ∈ (0, 1), there exists a > 0, b ∈ (0, 1), and c > 0,
depending only on p, s1, s2 such that if (3.2) holds, then (3.3) holds.

In practice, one most often uses Lemma 3.1 to say that it is very likely
that at least one of the events Erk occurs, i.e., we do not care about the
particular value of b. However, it is occasionally useful to make many of
the Erk ’s occur, rather than just one.
For r > 0, we define the σ-algebra

(3.4) Fr :=σ

(
(h−hr(0))|C\Br(0),

{
e−ξhr(0)Dn

(
· , · ;C\Br(0)

)}
n=1,...,N

)
,

which contains all of the information about what happens outside of Br(0).
The idea of the proof of Lemma 3.1 is to bound the Radon–Nikodym de-
rivative between the conditional law of the (n+1)-tuple (3.1) given Fr and
the marginal law of this (n + 1)-tuple, and thereby get approximate inde-
pendence between the events Erk for different values of k. For this purposes
we need the following elementary observation.

Lemma 3.2. — For r′ > r, we have Fr′ ⊂ Fr.
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Proof. — The random variable hr′(0)−hr(0) is equal to the circle average
of h−hr(0) over ∂Br′(0). Therefore, hr′(0)−hr(0) ∈ Fr. Since h−hr′(0) =
h− hr(0)− (hr′(0)− hr(0)), we also have (h− hr′(0))|C\Br′ (0) ∈ Fr. Since
Dn( · , · ;C \Br′(0)) is equal to the internal metric of Dn( · , · ;C \Br(0)) on
C \Br′(0), it follows that also e−ξhr′ (0)Dn( · , · ;C \Br′(0)) ∈ Fr. By (3.4),
we now get Fr′ ⊂ Fr. �

By Lemma 2.1, for each r > 0 we can write (h− hr(0))|Br(0) = hr + h̊r,
where hr is a random harmonic function on Br(0) which is determined
by (h − hr(0))|C\Br(0) and h̊r is a zero-boundary GFF on Br(0) which is
independent from (h− hr(0))|C\Br(0).

Our Radon–Nikodym derivative will be in terms of the fluctuation of the
harmonic part of hr on a smaller ball: for 0 < r < R, let

(3.5) MR
r := sup

z∈Br(0)
|hR(z)− hR(0)|.

Note that MR
r is determined by hR and hence by (h− hR(0))|C\BR(0).

Lemma 3.3. — Fix 0 < s < s′ < 1 and let Fr be as in (3.4). For r > 0,
a.s. the conditional law given Fr of the (n+ 1)-tuple

(3.6)
(

(h− hr(0))|Bsr(0),
{
e−ξhr(0)Dn( · , · ;Bsr(0))

}
n=1,...,N

)
is absolutely continuous with respect to its marginal law. Furthermore, for
each α > 0 and M > 0 there exists C = C(α,M, s, s′) > 0 such that
such that if Hr denotes the Radon–Nikodym derivative of the conditional
law with respect to the marginal law, then on the (Fr-measurable) event
{Mr

s′r 6M}, a.s.

(3.7) max
{
E [Hα

r | Fr] , E
[
H−αr | Fr

]}
6 C.

Proof. — By ξ-additivity, the metrics e−ξhr(0)Dn for n = 1, . . . , N
are jointly local for h − hr(0). Therefore, the metrics {e−ξhr(0) ×
Dn( · , · ;Bsr(0))}n=1,...,N are conditionally independent from Fr given
(h − hr(0))|Bsr(0). We therefore only need to compare the conditional law
of (h − hr(0))|Bsr(0) given Fr to the marginal law of (h − hr(0))|Bsr(0).
Again by locality, the conditional law of (h−hr(0))|Bsr(0) given Fr depends
only on (h − hr(0))|C\Br(0). We have therefore reduced to estimating the
Radon–Nikodym derivative of the conditional law of (h−hr(0))|Bsr(0) given
(h − hr(0))|C\Br(0) with respect to the marginal law of (h − hr(0))|Bsr(0).
By the scale invariance of the law of the GFF, modulo additive constant,
it suffices to estimate this law in the case when r = 1. This is a standard
calculation for the GFF and is carried out in [12, Lemma 4.1] in the special
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case when s = 7/8 and s′ = 15/16. The same proof works for a general
choice of s and s′. �

The following lemma will allow us to apply Lemma 3.3 at a dense set of
scales.

Lemma 3.4. — Fix s ∈ (0, 1) and let {rk}k∈N be a decreasing sequence
of positive numbers such that rk+1/rk 6 s for each k ∈ N. For K ∈ N and
M > 0, let NM (K) be the number of k ∈ [1,K]Z for which Mr

sr 6M . For
each a > 0 and each b ∈ (0, 1), there exists M, c > 0, depending only on a,
b, and s, such that

(3.8) P [NM (K) > bK] > 1− ce−aK , ∀ K ∈ N.

Proof. — This follows from exactly the same argument used to prove [12,
Proposition 4.3], although [12, Proposition 4.3] is only stated in the special
case when rk = 2−kr for some r ∈ (0, 1). �

For the proof of Lemma 3.1, we will also need the following elementary
tail estimate for the binomial distribution; see, e.g., [12, Lemma 2.6].

Lemma 3.5. — Let p ∈ (0, 1) and n ∈ N and let Bn be a random variable
with the binomial distribution with parameters n and p. For α ∈ (0, p),

(3.9) P [Bn < αn] 6
(

1− p
1− α

)n( (1− α)p
α(1− p)

)αn
= e−cp,αn,

where cp,α > 0 satisfies cp,α →∞ as p→ 1 (α fixed).

Proof of Lemma 3.1. — Set s′ := (1 + s2)/2 ∈ (s2, 1). Also fix a pa-
rameter M > 1 which we will eventually choose to be sufficiently large,
depending on a, b, s1, s2 in the case of assertion (1) or p, s1, s2 in the case of
assertion (2). By Lemma 3.3 and Hölder’s inequality and since Erk is deter-
mined by the (n+1)-tuple (3.1), we can find pM = pM (p, s1, s2,M) ∈ (0, 1)
such that the following is true. If (3.2) holds, then for each k ∈ N,

(3.10) P [Erk | Frk ] > pM , a.s. on the event {Mrk
s′rk
6M}.

Furthermore, for any δ > 0 there exists p∗ = p∗(δ, s1, s2,M) ∈ (0, 1) such
that if p > p∗, then pM > 1 − δ. As in the proof of Lemma 3.2, we have
hrk(0) − hs1rk(0) ∈ Fs1rk and hence the triple (3.1) is Fs1rk -measurable.
By this and our measurability hypothesis for the Erk ’s, and the fact that
rk+1/rk 6 s1, we infer that

(3.11) Erk ∈ Fs1rk ⊂ Frk+1 .

For j ∈ N, let kj be the jth smallest k ∈ N for which Mrk
s′rk
6 M . By

Lemma 3.4 applied with s = s′ and b−1/2a in place of a, for a given choice
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of a > 0 and b ∈ (0, 1) we can find M, c0 > 0 depending only on a, b, s1
such that (in the notation of that lemma)

(3.12) P
[
kj >b

−1/2j
]

= P
[
NM (bb−1/2jc)< j

]
6 c0e

−ab−1/2j , ∀ j ∈ N.

In the setting of assertion (1), we henceforth fix M so that (3.12) holds for
the given choice of a, b. In the setting of assertion (2), we instead choose
M so that (3.12) holds for a = 1 and b = 1/2, say.

Each kj is a stopping time for {Frk}k∈N. By (3.10), for j ∈ N, a.s.

P
[
Erkj

∣∣∣Frkj ] > pM .
Combining this with (3.11) shows that for j ∈ N, the number N (kj) as
defined in the lemma statement with K = kj stochastically dominates a
binomial distribution with j trials and success probability pM .
Since pM can be made arbitrarily close to 1 by choosing p to be suffi-

ciently close to 1 (depending on M), it follows from Lemma 3.5 (applied
with α = b1/2) that for each a > 0 and b ∈ (0, 1), there exists p ∈ (0, 1)
and c1 > 0, depending only on a, b, s1, s2,M , such that if (3.2) holds, then

(3.13) P
[
N (kj) < b1/2j

]
6 c1e

−ab−1/2j , ∀ j ∈ N.

Furthermore, if (3.2) holds for some choice of p ∈ (0, 1), then since pM >

0, it follows that (3.13) holds for some choice of a, b, c1 (depending on
p, s1, s2,M).

In the setting of assertion (1), for a given K ∈ N, we now set j = bb1/2Kc
and combine (3.12) with (3.13) to get that

(3.14) P [N (K) < bK] 6 P
[
N (kj) < b1/2j

]
+P [kj > K] 6 (c0 +c1)e−aK .

This gives assertion (1). We similarly obtain assertion (2) by combin-
ing (3.12) and (3.13). �

4. Bi-Lipschitz equivalence

In this section we will prove Theorem 1.6. Throughout, we assume that
we are in the setting of that theorem, so that h is a whole-plane GFF
normalized so that h1(0) = 0 and (D, D̃) are jointly local, ξ-additive metrics
for h|U . Let C > 0 be as in (1.3). For z ∈ U , and r > 0 such that Br(z) ⊂ U ,
let

(4.1) Er(z) :=
{

sup
u,v∈∂Br(z)

D̃
(
u, v;Ar/2,2r(z)

)
6 CD(∂Br/2(z), ∂Br(z))

}
,
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so that if K ⊂ U is compact, then P[Er(z)] > p for all z ∈ K and all
r ∈ (0, rK ]. We think of annuli Ar/2,2r(z) for which Er(z) occurs as “good”.
We will eventually show that with high probability every point in K is
contained in a ball of the form Br/2(z) for which Er(z) occurs. Stringing
together paths in such balls leads to a proof of Theorem 1.6. See Figure 4.1
for an illustration and outline of the proof. The main estimate which we
need is the following lemma, which is a consequence of Lemma 3.1.

∂Br/2(z)

∂Br(z)

∂B2r(z)

Er(z)

P

z1

z2

Figure 4.1. Left: A “good” annulus Ar/2,2r(z), i.e., one for which Er(z)
occurs. The diameter of the blue circle ∂Br(z) w.r.t. the D̃-internal
metric on Ar/2,2r(z) is at most C times the D-distance across the inner
annulus Ar/2,r(z). By Lemma 4.2, if C is taken to be large enough
then for any fixed compact set K ⊂ C it holds with high probability
when ε is small that every point in K is contained in a ball Br/2(w)
where r ∈ [ε2, ε] ∩ {2−kε : k ∈ N} and w ∈ ( 1

4ε
2Z2) ∩ Bε(K) are

such that Er(z) occurs. Right: We consider a D-geodesic P (shown in
red) between arbitrary points z1, z2 and look at the successive times
tj , j ∈ [1, J ]Z at which P crosses an annulus Ar/2,r(w) where z and r
are as above. By Lemma 4.3 the union of the outer circles ∂Br(w) for
these annuli (blue) contains a path (teal) from B2ε(z1) to B2ε(z2). By
the triangle inequality and the definition of a good annulus, this shows
that D̃(z1, z2) is at most CD(z1, z2) plus a small error which tends to
zero as ε→ 0.

Lemma 4.1. — For z ∈ U , and r > 0 such that Br(z) ⊂ U , let ρr(z) be
the largest t ∈ [0, r] such that t = 2−kr for some k ∈ N and Et(z) occurs.
For each q > 0, there is a constant pq > 0 depending only on q such that
the following is true. If K ⊂ U is compact and (1.3) holds for some p > pq
and rK > 0, then for each r ∈ (0, rK ],

(4.2) P [ρr(z) < εr] = Oε(εq), as ε→ 0,
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at a rate depending only on q.

Proof. — Since scaling each of D and D̃ by the same constant fac-
tor does not affect the occurrence of Er(z), it follows that Er(z) is a.s.
determined by e−ξhr(z)D

(
· , · ;Ar/2,2r(z)

)
and e−ξhr(z)D̃

(
· , · ;Ar/2,2r(z)

)
.

Furthermore, by the ξ-additivity of (D, D̃) and the fact that the locality
condition is preserved under translating and scaling space, it follows that
e−ξhr(z)D(r ·+z, r ·+z) and e−ξhr(z)D̃(r ·+z, r ·+z) are jointly local metrics
for the field (h(r ·+z)−hr(z))|r−1(U−z). The field h(r ·+z)−hr(z) has the
same law as h, so we can apply Lemma 3.1 to this field (with rk = 2−kr, any
choice of b ∈ (0, 1), K = blog2 ε

−1c, and a = q log 2) to get the statement
of the lemma. �

Applying Lemma 4.1 a large finite number of times leads to the following.

Lemma 4.2. — There exists a universal constant p ∈ (0, 1) such that if
K ⊂ U is compact and there exists rK > 0 such that (1.3) holds with this
choice of p, then it holds with probability tending to 1 as ε→ 0 (at a rate
which depends on rK and K) that the following is true. For each z ∈ K,
there exists r ∈ [ε2, ε]∩{2−kε : k ∈ N} and w ∈ ( 1

4ε
2Z2)∩Bε(K) such that

z ∈ Br/2(w) and Er(w) occurs.

Proof. — By Lemma 4.1 applied with q = 5, say, and a union bound over
all w ∈ ( 1

4ε
2Z2) ∩ Bε(K), if p > p5 then it holds with probability tending

to 1 as ε→ 0 that ρε(w) ∈ [ε2, ε] for every such w. Since the balls Bε2/2(w)
for w ∈ ( 1

4ε
2Z2)∩Bε(K) cover K, the statement of the lemma follows. �

We now turn our attention to the proof of Theorem 1.6. Fix z1, z2 ∈ C.
We will show that a.s.

(4.3) D̃(z1, z2) 6 CD(z1, z2).

This implies that a.s. (4.3) holds simultaneously for every z1, z2 ∈ Q2. By
the continuity of (z1, z2) 7→ D(z1, z2) and (z1, z2) 7→ D̃(z1, z2), it follows
that a.s. (4.3) holds for every z1, z2 ∈ C simultaneously. Thus we only need
to prove (4.3) for an arbitrary fixed choice of z1, z2 ∈ C.

To this end, fix a small δ > 0 (which we will eventually send to zero)
and let P : [0, T ] → U be a path from z1 to z2 with D-length smaller
than D(z1, z2) + δ, chosen in a measurable manner. We assume that P is
parameterized by its D-length. Since the range of P is a compact subset of
U , we can find compact set K ⊂ U such that P [P ⊂ K] > 1− δ. For ε > 0,
let F ε be the event of Lemma 4.2 with this choice of K, so that P[F ε]→ 1
as ε → 0. We will work on the event {P ⊂ K} ∩ F ε, which happens with
probability tending to 1 as ε→ 0 and then δ → 0.
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Let t0 = 0 and inductively let tj for j ∈ N be the smallest time t > tj−1 at
which P exits a Euclidean ball of the form Br(w) for w ∈ ( 1

4ε
2Z2)∩Bε(K)

and r ∈ [ε2, ε] ∩ {2−kε : k ∈ N} such that z ∈ Br/2(w) and Er(w) occurs;
or let tj = D(z1, z2) if no such t exists. If tj < D(z1, z2), let wj and rj
be the corresponding values of r and w. Let J be the smallest j ∈ N0 for
which tj+1 = D(z1, z2).
The definition of F ε implies that a path in K cannot travel Euclidean

distance further than 2ε without crossing one of the annuli Ar/2,r(w) with
w ∈ ( 1

4ε
2Z2) ∩ Bε(K) and r ∈ [ε2, ε] ∩ {2−kε : k ∈ N} such that Er(w)

occurs. Since P is a path from z1 to z2, it follows that

(4.4) |P (tJ)− z2| 6 2ε.

By the definition of Erj (wj) and since P is parameterized by D-length and
crosses Arj/2,rj (wj) during the time interval [tj−1, tj ], for each j ∈ [1, J ]Z
one has

(4.5)
sup

u,v∈∂Brj (wj)
D̃
(
u, v;Arj/2,2rj (wj)

)
6 CD

(
∂Brj/2(wj), ∂Brj (wj)

)
6 C(tj − tj−1).

In order to use this to get an upper bound for D̃(z1, z2) in terms ofD(z1, z2),
we need the following elementary topological lemma.

Lemma 4.3. — On the event {P ⊂ K} ∩ F ε, the union of the circles
∂Brj (wj) for j ∈ [1, J ]Z contains a path from B2ε(z1) to B2ε(z2).

Proof. — By definition, the union of the balls Brj (wj) for j ∈ [1, J ]Z
covers P ([0, tJ)), and each such ball has radius at most ε. Let B be a sub-
collection of the balls Brj (wj) for j ∈ [1, J ]Z which is minimal in the sense
that P ([0, tJ)) ⊂

⋃
B∈B B and P ([0, tJ)) is not covered by any proper sub-

set of the balls in B. Since P ([0, tJ)) is connected, it follows that
⋃
B∈B B

is connected. Indeed, if this set had two proper disjoint open subsets, then
each would have to intersect P ([0, tJ)) (by minimality) which would con-
tradict the connectedness of P ([0, tJ)). Furthermore, by minimality, no ball
in B is properly contained in another ball in B.
We claim that

⋃
B∈B ∂B is connected. Indeed, if this were not the case

then we could partition B = B1tB2 such that B1 and B2 are non-empty and⋃
B∈B1

∂B and
⋃
B∈B2

∂B are disjoint. By the minimality of B, it cannot
be the case that any ball in B2 is contained in

⋃
B∈B1

B. Furthermore, since⋃
B∈B1

∂B and
⋃
B∈B2

∂B are disjoint, it cannot be the case that any ball in
B2 intersects both

⋃
B∈B1

B and C\
⋃
B∈B1

B (otherwise, such a ball would
have to intersect the boundary of some ball in B1). Therefore,

⋃
B∈B1

B
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and
⋃
B∈B2

∂B are disjoint. Since no element of B1 can be contained in⋃
B∈B2

B, we get that
⋃
B∈B1

B and
⋃
B∈B2

B are disjoint. This contradicts
the connectedness of

⋃
B∈B B, and therefore gives our claim.

Since
⋃
B∈B B contains P ([0, tJ)), P (tJ) ∈ B2ε(z2), and each ball in B

has radius at most ε, it follows that
⋃
B∈B ∂B contains a path from B2ε(z1)

to B2ε(z2), as required. �

By (4.5), Lemma 4.3, and the triangle inequality, on the event
{P ⊂ K} ∩ F ε,

D̃ (B2ε(z1), B2ε(z2)) 6 C
J∑
j=1

(tj − tj−1) 6 C (D(z1, z2) + δ) .

Since D̃ is a continuous function on C × C, a.s. D̃ (B2ε(z1), B2ε(z2)) →
D̃(z1, z2) as ε→ 0. Since P[{P ⊂ K} ∩ F ε]→ 1 as ε→ 0 and then δ → 0,
a.s. (4.3) holds. �

5. Measurability

In this section we will prove Theorem 1.7. Throughout, we assume that
we are in the setting of Theorem 1.7.

The key tool in the proof is the Efron–Stein inequality [4], which says that
if F = F (X1, . . . , Xn) is a measurable function of n independent random
variables, then

(5.1) Var[F ] 6
n∑
i=1

Var [F | {Xj}j 6=i] .

To apply (5.1) in our setting, we will divide U into a fine square grid (which
will be randomly shifted, for technical reasons; see Lemma 5.2) and use the
locality of D to get that the internal metrics of D on the squares of this
grid are conditionally independent given h. We will also show that D is
a.s. determined by this internal metrics (Lemma 5.3). We then fix z, w ∈ U
and apply (5.1) to the conditional law of the random variable F = D(z, w)
given h. To do this we need to bound the conditional variance when we
re-sample the internal metric on one square S. For this purpose, we will
consider a path P from z to w in U of near-minimal D-length and use our
bi-Lipschitz hypothesis to get that the difference between the original value
of D(z, w) and the new value when we re-sample in S is at most a constant
times the D-length of P ∩S. When we send the mesh size to zero, the sum
over all S of the squared error len(P ∩S)2 will converge to zero a.s., which
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will show that Var [D(z, w) |h] = 0 and hence that D is a.s. determined
by h.
We will need a few preparatory lemmas. The following is essentially a re-

formulation of our bi-Lipschitz equivalence hypothesis. The lemma implies
in particular that if we condition on h and sample two metrics from the
conditional law of D given h, then a.s. the two metrics are bi-Lipschitz
equivalent, even if we do not assume that the metrics are conditionally
independent given h.

Lemma 5.1. — Assume we are in the setting of Theorem 1.7, i.e., h is a
GFF on U ⊂ C, D is a local metric for h, and there is a random constant
C = Ch > 1, depending only h, such that the following is true. If D, D̃
are conditionally independent samples from the conditional law of D given
h then a.s. D̃(z, w) 6 CD(z, w) for each z, w ∈ U . Fix a connected open
set V ⊂ U and distinct points z, w ∈ V . Then a.s. C−1E[D(z, w;V ) |h] 6
D(z, w;V ) 6 CE[D(z, w;V ) |h].

Proof. — Condition on h and sample D and D̃ conditionally indepen-
dently from the conditional law of D given h. By our hypothesis for D and
D̃ from Theorem 1.7, a.s. the D̃-length of any path in U is at most C times
its D-length. In particular, a.s. D̃(z, w;V )/D(z, w;V ) 6 C. Let

mh := inf {t > 0 : P [D(z, w;V ) < t |h] > 0} and
Mh := sup {t > 0 : P [D(z, w;V ) > t |h] > 0} .

Then mh and Mh are determined by h and a.s. each of D(z, w;V ) and
E[D(z, w;V ) |h] is in [mh,Mh]. To prove the lemma it therefore suffices to
show that a.s. Mh/mh 6 C.

For any A < Mh/mh, we can choose A1 > mh and A2 < Mh such that
A2/A1 > A. By the conditional independence of D and D̃ given h and the
definitions of mh and Mh,

(5.2) P
[
D̃(z, w;V )/D(z, w;V ) > A |h

]
> P

[
D̃(z, w;V ) > A2 |h

]
P [D(z, w;V ) < A1 |h] > 0.

Since a.s. D̃(z, w;V )/D(z, w;V ) 6 C, we must have A 6 C so a.s.
Mh/mh 6 C. �

We now define the fine square grid which we will work with. Let θ be
sampled uniformly from Lebesgue measure on [0, 1]2, independently from
everything else. Let Gθ be the randomly shifted square grid which is the
union of all of the horizontal and vertical line segments joining points of
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Z2 + θ. The reason for the random index shift θ is to make the following
lemma true.

Lemma 5.2. — Let P : [0, |P |] → U be a random curve with finite D-
length chosen in a manner depending only on (h,D) (not on θ). For each
ε > 0, a.s. len(P ;D) = len(P \ (εGθ);D).

We note that P \ (εGθ) is a countable union of excursions of P into
C \ (εGθ), so its D-length is well-defined.

Proof of Lemma 5.2. — Assume without loss of generality that P is
parameterized by D-length. For each fixed t ∈ [0, len(P ;D)] (chosen in
a manner depending only on P ), we have P[P (t) ∈ εGθ |P ] = 0 since P
is independent from θ. Hence a.s. the Lebesgue measure of P−1(εGθ) is
zero. �

For ε > 0, let Sεθ be the set of open ε × ε squares which are the con-
nected components of C \ (εGθ) and which intersect U . As a consequence
of Lemma 5.2, if P : [0, |P |]→ U is a path as in that lemma then a.s.

(5.3) len(P ;D) =
∑
S∈Sε

θ

len(P ∩ S;D).

In fact, we can a.s. recover D from its internal metrics on the squares
S ∈ Sεθ , as the following lemma demonstrates.

Lemma 5.3. — The metric D is a.s. determined by h, θ, and the set of
internal metrics {D( · , · ;S ∩ U) : S ∈ Sεθ}.

Proof. — Condition on h, θ and {D( · , · ;S ∩U) : S ∈ Sεθ} and let D and
D′ be two conditionally independent samples from the conditional law of
D, so that a.s. D( · , · ;S ∩ U) = D′( · , · ;S ∩ U) for each S ∈ Sεθ . To prove
the lemma it suffices to show that a.s. D = D′.

We first observe that since (h,D) d= (h,D′), Lemma 5.1 (applied with
V = U) implies that for each fixed z, w ∈ U , a.s.

D(z, w), D′(z, w) ∈
[
C−1E[D(z, w) |h], CE[D(z, w) |h]

]
.

This holds a.s. for all z, w ∈ U ∩Q2 simultaneously, so since D and D′ are
continuous metrics, a.s.

(5.4) C−2D(z, w) 6 D′(z, w) 6 C2D(z, w), ∀ z, w ∈ U.

Now fix z, w ∈ U and δ > 0 and let P be a path from z to w with D-
length at most D(z, w) + δ, chosen in a manner depending only on D. By
Lemma 5.2, a.s.

(5.5) lim
ζ→0

len (P ∩Bζ(εGθ);D) = 0, (ε, δ fixed).

ANNALES DE L’INSTITUT FOURIER



LOCAL METRICS OF THE GFF 2071

By (5.4), we infer that (5.5) also holds with D′-length instead of D-length.
Consequently, a.s.

(5.6)

len(P ;D) =
∑
S∈Sε

θ

len (P ∩ S;D)

and len(P ;D′) =
∑
S∈Sε

θ

len (P ∩ S;D′) .

Since the internal metrics of D and D′ on S∩U coincide for each S ∈ Sεθ ,
a.s. the D′-length of every path which is contained in some S ∈ Sεθ is
the same as its D-length. Therefore, (5.6) implies that a.s. len(P ;D) =
len(P ;D′). Since D′ is a length metric and by our choice of P , we have
D′(z, w) 6 D(z, w) + δ. Since δ > 0 is arbitrary, a.s. D′(z, w) 6 D(z, w).
Symmetrically, a.s. D(z, w) 6 D′(z, w). Applying this for all z, w ∈ Q2 ∩U
now shows that a.s. D = D′, as required. �

Lemma 5.3 together with the following lemma will allow us to express
D as a function of a collection of random variables which are conditionally
independent given (h, θ), so that we can apply the Efron–Stein inequality.

Lemma 5.4. — Fix ε > 0. Under the conditional law given (h, θ), a.s. the
internal metrics {D( · , · ;S ∩ U) : S ∈ Sεθ} are conditionally independent.

Proof. — We condition on θ, which determines Sεθ , then apply Lemma 2.4
to the collection of disjoint open sets W = {S ∩ U : S ∈ Sεθ}. �

Proof of Theorem 1.7. — It will be convenient to only have to consider
a finite set of squares in Sεθ , so we fix a large bounded, connected open set
V ⊂ U (if U itself is bounded, we can just take V = U). Let

Sεθ (V ) := {S ∈ Sεθ : S ∩ V 6= ∅} .

Also fix points z, w ∈ V . We will show that the internal distance D(z, w;V )
is a.s. determined by h. Letting z, w vary over V ∩Q2 and then letting V
increase to all of U will conclude the proof.

Step 1: application of the Efron–Stein inequality. — By Lemma 5.3,
D is a.s. given by a measurable function of h, θ, and the set of internal
metrics {D( · , · ;S ∩ U) : S ∈ Sεθ}. By Lemma 5.4, these internal metrics
are conditionally independent given (h, θ). Hence, for each S ∈ Sεθ (V ), we
can produce a new random metric DS by re-sampling D( · , · ;S ∩ U) from
its conditional law given (h, θ) and leaving D( · , · ;S′) unchanged for each
S′ ∈ Sεθ \ {S}. This metric satisfies (h, θ,D) d= (h, θ,DS).
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By the Efron–Stein inequality (5.1), applied under the conditional law
given (h, θ), a.s.

(5.7) Var [D(z, w;V ) |h, θ]

6
1
2

∑
S∈Sε

θ
(V )

E
[(
DS(z, w;V )−D(z, w;V )

)2
∣∣∣h, θ].

Since the conditional laws of (D,DS) and (DS , D) given (h, θ) agree, the
conditional law of D(z, w;V )−DS(z, w;V ) is symmetric around the origin,
so each summand in (5.7) satisfies

(5.8) E
[(
DS(z, w;V )−D(z, w;V )

)2
∣∣∣h, θ]

= 2E
[(
DS(z, w;V )−D(z, w;V )

)2
+

∣∣∣h, θ] ,
where (x)+ = x if x > 0 or 0 if x 6 0. Most of the rest of the proof is
devoted to showing that the right side of (5.7) tends to zero a.s. as ε→ 0.

Step 2: comparison of D and DS . — Since (h,DS) d= (h,D), Lemma 5.1
implies that if u, v ∈ U , then a.s.

D(u, v;V ), DS(u, v;V ) ∈
[
C−1E[D(z, w;V ) |h], CE[D(z, w;V ) |h]

]
.

This holds a.s. for all u, v ∈ U ∩Q2 simultaneously, so since D( · , · ;V ) and
DS( · , · ;V ) are continuous metrics on V , a.s.

(5.9) C−2D(u, v;V ) 6 DS(u, v;V ) 6 C2D(u, v;V ), ∀ u, v ∈ V.

SinceD( · , · ;V ) is a length metric, we can choose, in a manner depending
only on (h,D), a path P : [0, |P |] → V from z to w in V whose D-length
is at most D(z, w;V ) + ε2. Henceforth fix such a path and recall (5.3). By
the definition of DS ,

(5.10) len (P ∩ S′;D) = len
(
P ∩ S′;DS

)
, ∀ S′ ∈ Sεθ (V ) \ {S}.

By (5.9),

(5.11) C−2 len (P ∩ S;D) 6 len
(
P ∩ S;DS

)
6 C2 len (P ∩ S;D) .

By Lemma 5.2, a.s. the contribution to the D-length of P of the intersec-
tions of P with the boundaries of the squares in Sεθ is zero. Since D and
DS are a.s. bi-Lipschitz equivalent (by (5.9)), an argument as in the proof
of Lemma 5.3 shows that the same is true with the DS-length in place of
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the D-length. By combining this with (5.10) and (5.11), we get that a.s.

DS(z, w;V ) 6 len(P ;DS) =
∑

S′∈Sε
θ

(V )

len
(
P ∩ S′;DS

)
6 D(z, w;V ) + C2 len (P ∩ S;D) + ε2.

Therefore, a.s.,

(5.12)
(
DS(z, w;V )−D(z, w;V )

)
+ 6 C

2 len (P ∩ S;D) + ε2.

By plugging (5.12) into (5.8) and then into (5.7) and then applying the
Cauchy–Schwarz inequality,

(5.13) Var [D(z, w;V ) |h, θ]

6 E

 ∑
S∈Sε

θ
(V )

(
C2 len (P ∩ S;D) + ε2)2

∣∣∣∣∣∣h, θ


6 2C4E

 ∑
S∈Sε

θ
(V )

(len (P ∩ S;D))2

∣∣∣∣∣∣h, θ
+ 2ε4#Sεθ (V )

6 2C4E

 ∑
S∈Sε

θ
(V )

len (P ∩ S;D)
(

max
S∈Sε

θ
(V )

len (P ∩ S;D)
) ∣∣∣∣∣∣h, θ


+ 2ε4#Sεθ (V )

6 2C4E
[
D(z, w;V )2 |h,θ

]1/2 E

[(
max

S∈Sε
θ

(V )
len (P ∩S;D)

)2
∣∣∣∣∣h,θ

]1/2

+ 2ε4#Sεθ (V ).

Step 3: conclusion. — We will now argue that the right side of (5.13)
tends to zero a.s. as ε→ 0. Since V is bounded, we have #Sεθ (V ) = Oε(ε−2),
so 2ε4#Sεθ (V )→ 0 as ε→ 0. By Lemma 5.1, a.s. the first expectation the
last line of (5.13) is finite. We will now argue that the second expectation
a.s. tends to zero as ε → 0. The path P is a.s. contained in V , so in
particular the range of P is a compact subset of U .

Since len(P ;D) 6 D(z, w)+ε2, for any S ∈ Sεθ (V ) the D-length of P ∩S
is at most supu,v∈S D(u, v) + ε2 (otherwise, by replacing the segment of P
between the first and last points of S hit by P , we could find a path from
z to w of D-length smaller than D(z, w)). Since D is a continuous metric
on U and the Euclidean side length of each S ∈ Sεθ is ε, it is a.s. the case
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that

(5.14) lim
ε→0

max
S∈Sε

θ
(V )

len (P ∩ S;D)

6 lim
ε→0

max
S∈Sε

θ
(V ):P∩S 6=∅

(
sup
u,v∈S

D(u, v) + ε2
)

= 0.

Each of the random variables len (P ∩ S;D) is bounded above by len(P ;D),
which by Lemma 5.1 and our choice of P is a.s. bounded above by the
h-measurable random variable CE[D(z, w;V ) |h] + ε2. By (5.14) and the
bounded convergence theorem, the second expectation in the last line of
(5.13) a.s. tends to zero as ε→ 0. Consequently, a.s. Var [D(z, w;V ) |h, θ]→
0 as ε → 0, so a.s. D(z, w;V ) is determined by (h, θ). Since D( · , · ;V ) is
continuous and this holds for any fixed choice of z, w ∈ V , a.s. D( · , · ;V )
is determined by (h, θ). Since (h,D) is independent from θ, a.s. D( · , · ;V )
is determined by h. Since U is a length metric, letting V increase to all of
U shows that a.s. D is determined by h. �
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