We prove the failure of stable rationality for many smooth well formed weighted hypersurfaces of dimension at least . It is in particular proved that a very general smooth well formed Fano weighted hypersurface of index one is not stably rational.
Nous prouvons l’absence rationalité stable pour de nombreuses hypersurfaces pondérées lisses de dimension au moins . Il est en particulier prouvé qu’une hypersurface pondérée de Fano très générale lisse de l’indice un n’est pas stablement rationnelle.
Revised:
Accepted:
Published online:
Keywords: Fano variety, stable rationality, weighted hypersurface
Mot clés : variété de Fano, rationalité stable, hypersurface pondérée
Okada, Takuzo 1
@article{AIF_2021__71_1_203_0, author = {Okada, Takuzo}, title = {Smooth weighted hypersurfaces that are not stably rational}, journal = {Annales de l'Institut Fourier}, pages = {203--237}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3390}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3390/} }
TY - JOUR AU - Okada, Takuzo TI - Smooth weighted hypersurfaces that are not stably rational JO - Annales de l'Institut Fourier PY - 2021 SP - 203 EP - 237 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3390/ DO - 10.5802/aif.3390 LA - en ID - AIF_2021__71_1_203_0 ER -
%0 Journal Article %A Okada, Takuzo %T Smooth weighted hypersurfaces that are not stably rational %J Annales de l'Institut Fourier %D 2021 %P 203-237 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3390/ %R 10.5802/aif.3390 %G en %F AIF_2021__71_1_203_0
Okada, Takuzo. Smooth weighted hypersurfaces that are not stably rational. Annales de l'Institut Fourier, Volume 71 (2021) no. 1, pp. 203-237. doi : 10.5802/aif.3390. https://aif.centre-mersenne.org/articles/10.5802/aif.3390/
[1] A very general sextic double solid is not stably rational, Bull. Lond. Math. Soc., Volume 48 (2016) no. 2, pp. 321-324 | DOI | MR | Zbl
[2] The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR
[3] Cyclic covers that are not stably rational, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 80 (2016) no. 4, pp. 35-48 | MR | Zbl
[4] Hypersurfaces quartiques de dimension : non rationalité stable, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 2, pp. 371-397 | DOI | Zbl
[5] Algebraic Geometry, Graduate Texts in Mathematics, Springer, 1977 no. 52, xvi+496 pages | Zbl
[6] A very general quartic double fourfold is not stably rational, Algebr. Geom., Volume 6 (2019) no. 1, pp. 64-75 | MR | Zbl
[7] On stable rationality of Fano threefolds and del Pezzo fibrations, J. Reine Angew. Math., Volume 751 (2019), pp. 275-287 | DOI | MR | Zbl
[8] Nonrational hypersurfaces, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 241-249 | DOI | MR | Zbl
[9] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 32, Springer, 1996, viii+320 pages | MR | Zbl
[10] On a generalization of complete intersections, J. Math. Kyoto Univ., Volume 15 (1975) no. 3, pp. 619-646 | MR | Zbl
[11] Stable rationality of cyclic covers of projective spaces, Proc. Edinb. Math. Soc., II. Ser., Volume 62 (2019) no. 3, pp. 667-682 | DOI | MR | Zbl
[12] Stable rationality of orbifold Fano 3-fold hypersurfaces, J. Algebr. Geom., Volume 28 (2019) no. 1, pp. 99-138 | DOI | MR | Zbl
[13] Bounds for smooth Fano weighted complete intersections (2016) (https://arxiv.org/abs/1611.09556) | Zbl
[14] Stably rational hypersurfaces of small slopes, J. Am. Math. Soc., Volume 32 (2019) no. 4, pp. 1171-1199 | DOI | MR | Zbl
[15] Hypersurfaces that are not stably rational, J. Am. Math. Soc., Volume 29 (2016) no. 3, pp. 883-891 | DOI | MR | Zbl
[16] Unirational threefolds with no universal codimension cycles, Invent. Math., Volume 201 (2015) no. 1, pp. 207-237 | DOI | MR | Zbl
Cited by Sources: