Motivé par des développements récents en topologie de basse dimension, nous fournissons un nouveau critère pour l’existence d’un ordre à gauche sur un groupe sous l’hypothèse que le groupe admet un ordre circulaire : un groupe est ordannable à gauche si et seulement si peut être ordonné de façon circulaire pour tous les . Cela implique que chaque groupe circulairement ordonné qui n’est pas ordonnable à gauche donne lieu à un ensemble d’entiers strictement positifs qui décrit exactement l’obstruction à l’existence d’un ordre à gauche, ensemble que nous appelons le spectre d’obstruction. Nous décrivons précisément le comportement du spectre d’obstruction par rapport à la torsion du groupe et montrons que ce même comportement peut être reflété par des groupes sans torsion, dont les spectres d’obstruction sont en général plus complexes.
Motivated by recent activity in low-dimensional topology, we provide a new criterion for left-orderability of a group under the assumption that the group is circularly-orderable: A group is left-orderable if and only if is circularly-orderable for all . This implies that every circularly-orderable group which is not left-orderable gives rise to a collection of positive integers that exactly encode the obstruction to left-orderability, which we call the obstruction spectrum. We precisely describe the behaviour of the obstruction spectrum with respect to torsion, and show that this same behaviour can be mirrored by torsion-free groups, whose obstruction spectra are in general more complex.
Révisé le :
Accepté le :
Publié le :
Keywords: Ordered groups, actions on the circle, 3-manifolds
Mot clés : Groupes ordonnés, actions sur le cercle, 3-variétés
Bell, Jason 1 ; Clay, Adam 2 ; Ghaswala, Tyrone 2
@article{AIF_2021__71_1_175_0, author = {Bell, Jason and Clay, Adam and Ghaswala, Tyrone}, title = {Promoting circular-orderability to left-orderability}, journal = {Annales de l'Institut Fourier}, pages = {175--201}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3394}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3394/} }
TY - JOUR AU - Bell, Jason AU - Clay, Adam AU - Ghaswala, Tyrone TI - Promoting circular-orderability to left-orderability JO - Annales de l'Institut Fourier PY - 2021 SP - 175 EP - 201 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3394/ DO - 10.5802/aif.3394 LA - en ID - AIF_2021__71_1_175_0 ER -
%0 Journal Article %A Bell, Jason %A Clay, Adam %A Ghaswala, Tyrone %T Promoting circular-orderability to left-orderability %J Annales de l'Institut Fourier %D 2021 %P 175-201 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3394/ %R 10.5802/aif.3394 %G en %F AIF_2021__71_1_175_0
Bell, Jason; Clay, Adam; Ghaswala, Tyrone. Promoting circular-orderability to left-orderability. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 175-201. doi : 10.5802/aif.3394. https://aif.centre-mersenne.org/articles/10.5802/aif.3394/
[1] Space of invariant circular orders of groups, Groups Geom. Dyn., Volume 12 (2018) no. 2, pp. 721-763 | DOI | MR
[2] Mapping class groups and their relationship to braid groups, Commun. Pure Appl. Math., Volume 22 (1969), pp. 213-238 | DOI | MR
[3] On L-spaces and left-orderable fundamental groups, Math. Ann., Volume 356 (2013) no. 4, pp. 1213-1245 | DOI | MR
[4] Taut foliations in branched cyclic covers and left-orderable groups, Trans. Am. Math. Soc., Volume 372 (2019) no. 11, pp. 7921-7957 | DOI | MR | Zbl
[5] Orderable 3-manifold groups, Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 243-288 | DOI | MR | Zbl
[6] A note on group rings of certain torsion-free groups, Can. Math. Bull., Volume 15 (1972), pp. 441-445 | DOI | MR | Zbl
[7] Circular groups, planar groups, and the Euler class, Proceedings of the Casson Fest (Geometry and Topology Monographs), Volume 7 (2004), pp. 431-491 | DOI | MR | Zbl
[8] Dynamical forcing of circular groups, Trans. Am. Math. Soc., Volume 358 (2006) no. 8, pp. 3473-3491 | DOI | MR
[9] Laminations and groups of homeomorphisms of the circle, Invent. Math., Volume 152 (2003) no. 1, pp. 149-204 | DOI | MR | Zbl
[10] Non-left-orderable surgeries on twisted torus knots, Proc. Am. Math. Soc., Volume 144 (2016) no. 6, pp. 2683-2696 | DOI | MR | Zbl
[11] Generalizations of the Burns–Hale theorem, Commun. Algebra, Volume 48 (2020) no. 11, pp. 4846-4858 | DOI | MR | Zbl
[12] Free products of circularly-ordered groups with amalgamated subgroup, J. Lond. Math. Soc., II. Ser., Volume 100 (2019) no. 3, pp. 775-803 | DOI | MR | Zbl
[13] Ordered groups and topology, Graduate Studies in Mathematics, 176, American Mathematical Society, 2016, x+154 pages | MR | Zbl
[14] Left-orderable fundamental groups and Dehn surgery, Int. Math. Res. Not. (2013) no. 12, pp. 2862-2890 | DOI | MR | Zbl
[15] Right-ordered groups, Mich. Math. J., Volume 6 (1959), pp. 267-275 | MR | Zbl
[16] Orderability and Dehn filling, Geom. Topol., Volume 22 (2018) no. 3, pp. 1405-1457 | DOI | MR | Zbl
[17] Transverse foliations of Seifert bundles and self-homeomorphism of the circle, Comment. Math. Helv., Volume 56 (1981) no. 4, pp. 638-660 | DOI | MR | Zbl
[18] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2012, xiv+472 pages | MR | Zbl
[19] Groups acting on the circle, Enseign. Math., Volume 47 (2001) no. 3-4, pp. 329-407 | MR | Zbl
[20] The second homology group of the mapping class group of an orientable surface, Invent. Math., Volume 72 (1983) no. 2, pp. 221-239 | DOI | MR | Zbl
[21] Lectures on Seifert manifolds, Brandeis Lecture Notes, 2, Brandeis University, 1983, i+84+27 pages | MR
[22] Rotation numbers of products of circle homeomorphisms, Math. Ann., Volume 271 (1985) no. 3, pp. 381-400 | DOI | MR
[23] A survey of Heegaard Floer homology, New ideas in low dimensional topology (Series on Knots and Everything), Volume 56, World Scientific, 2015, pp. 237-296 | DOI | MR | Zbl
[24] The Nielsen realization problem, Ann. Math., Volume 117 (1983) no. 2, pp. 235-265 | DOI | MR | Zbl
[25] Some invariants of pretzel links, Bull. Aust. Math. Soc., Volume 75 (2007) no. 2, pp. 253-271 | DOI | MR | Zbl
[26] Intersection and union of relatively convex subgroups of orderable groups, Algebra Logika, Volume 7 (1968) no. 3, pp. 48-50 | MR
[27] Right-ordered groups, Siberian School of Algebra and Logic, Consultants Bureau, 1996, x+250 pages | MR | Zbl
[28] Generating the surface mapping class group by two elements, Trans. Am. Math. Soc., Volume 357 (2005) no. 8, pp. 3299-3310 | DOI | MR | Zbl
[29] Amenable groups with a locally invariant order are locally indicable, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 467-478 | DOI | MR | Zbl
[30] On the existence of linear order in a group, Bull. Acad. Polon. Sci. Cl. III., Volume 2 (1954), pp. 21-23 | MR | Zbl
[31] Foliations transverse to fibers of Seifert manifolds, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 155-162 | DOI | MR | Zbl
[32] Left-orderablity for surgeries on -pretzel knots, Topology Appl., Volume 261 (2019), pp. 1-6 | DOI | MR | Zbl
[33] Linear-order on a group, Osaka J. Math., Volume 4 (1952), pp. 17-18 | MR | Zbl
[34] A simple example of a torsion-free, nonunique product group, Bull. Lond. Math. Soc., Volume 20 (1988) no. 4, pp. 302-304 | DOI | MR | Zbl
[35] Mappings of nonzero degree between 3-manifolds: a new obstruction, Advances in topological quantum field theory (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 179, Kluwer Academic Publishers, 2004, pp. 267-273 | DOI | MR | Zbl
[36] On cyclically ordered groups, Fundam. Math., Volume 47 (1959), pp. 161-166 | DOI | MR | Zbl
[37] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., Volume 6 (1982) no. 3, pp. 357-381 | DOI | MR | Zbl
[38] Ueber die hyperelliptischen Curven and diejenigan vom Geschlechte , welche eindeutigen Transformationen in sich zulassen, Bihang Kongl. Svenska Vetenskaps-Akademiens Handlingar (1895-1896) | Zbl
[39] Cyclically ordered groups, Sib. Mat. Zh., Volume 17 (1976) no. 5, p. 1046-1051, 1197 | MR | Zbl
Cité par Sources :