Nous prouvons l’absence rationalité stable pour de nombreuses hypersurfaces pondérées lisses de dimension au moins . Il est en particulier prouvé qu’une hypersurface pondérée de Fano très générale lisse de l’indice un n’est pas stablement rationnelle.
We prove the failure of stable rationality for many smooth well formed weighted hypersurfaces of dimension at least . It is in particular proved that a very general smooth well formed Fano weighted hypersurface of index one is not stably rational.
Révisé le :
Accepté le :
Publié le :
Keywords: Fano variety, stable rationality, weighted hypersurface
Mot clés : variété de Fano, rationalité stable, hypersurface pondérée
Okada, Takuzo 1
@article{AIF_2021__71_1_203_0, author = {Okada, Takuzo}, title = {Smooth weighted hypersurfaces that are not stably rational}, journal = {Annales de l'Institut Fourier}, pages = {203--237}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3390}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3390/} }
TY - JOUR AU - Okada, Takuzo TI - Smooth weighted hypersurfaces that are not stably rational JO - Annales de l'Institut Fourier PY - 2021 SP - 203 EP - 237 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3390/ DO - 10.5802/aif.3390 LA - en ID - AIF_2021__71_1_203_0 ER -
%0 Journal Article %A Okada, Takuzo %T Smooth weighted hypersurfaces that are not stably rational %J Annales de l'Institut Fourier %D 2021 %P 203-237 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3390/ %R 10.5802/aif.3390 %G en %F AIF_2021__71_1_203_0
Okada, Takuzo. Smooth weighted hypersurfaces that are not stably rational. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 203-237. doi : 10.5802/aif.3390. https://aif.centre-mersenne.org/articles/10.5802/aif.3390/
[1] A very general sextic double solid is not stably rational, Bull. Lond. Math. Soc., Volume 48 (2016) no. 2, pp. 321-324 | DOI | MR | Zbl
[2] The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR
[3] Cyclic covers that are not stably rational, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 80 (2016) no. 4, pp. 35-48 | MR | Zbl
[4] Hypersurfaces quartiques de dimension : non rationalité stable, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 2, pp. 371-397 | DOI | Zbl
[5] Algebraic Geometry, Graduate Texts in Mathematics, Springer, 1977 no. 52, xvi+496 pages | Zbl
[6] A very general quartic double fourfold is not stably rational, Algebr. Geom., Volume 6 (2019) no. 1, pp. 64-75 | MR | Zbl
[7] On stable rationality of Fano threefolds and del Pezzo fibrations, J. Reine Angew. Math., Volume 751 (2019), pp. 275-287 | DOI | MR | Zbl
[8] Nonrational hypersurfaces, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 241-249 | DOI | MR | Zbl
[9] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 32, Springer, 1996, viii+320 pages | MR | Zbl
[10] On a generalization of complete intersections, J. Math. Kyoto Univ., Volume 15 (1975) no. 3, pp. 619-646 | MR | Zbl
[11] Stable rationality of cyclic covers of projective spaces, Proc. Edinb. Math. Soc., II. Ser., Volume 62 (2019) no. 3, pp. 667-682 | DOI | MR | Zbl
[12] Stable rationality of orbifold Fano 3-fold hypersurfaces, J. Algebr. Geom., Volume 28 (2019) no. 1, pp. 99-138 | DOI | MR | Zbl
[13] Bounds for smooth Fano weighted complete intersections (2016) (https://arxiv.org/abs/1611.09556) | Zbl
[14] Stably rational hypersurfaces of small slopes, J. Am. Math. Soc., Volume 32 (2019) no. 4, pp. 1171-1199 | DOI | MR | Zbl
[15] Hypersurfaces that are not stably rational, J. Am. Math. Soc., Volume 29 (2016) no. 3, pp. 883-891 | DOI | MR | Zbl
[16] Unirational threefolds with no universal codimension cycles, Invent. Math., Volume 201 (2015) no. 1, pp. 207-237 | DOI | MR | Zbl
Cité par Sources :