Soit le corps , ou une extension finie de , et soit une extension centrale finie du groupe des -points d’un groupe réductif fini sur . Soit aussi une representation lisse de (Fréchet à croissance modérée dans le cas ). Pour chaque orbite nilpotente , on considère un certain quotient de Whittaker de . Nous définissons le support de Whittaker comme étant l’ensemble des maximales parmi celles pour lesquelles .
Dans cet article, nous prouvons que toutes les sont des orbites nilpotentes quasi-admissibles, généralisant les résultats de Mœglin et de Jiang–Liu–Savin. Si est p-adique et est quasi-cuspidale, alors nous montrons que toutes les sont F-distinguées, c’est-à-dire qu’elles ne rencontrent l’algèbre de Lie d’aucun sous-groupe de Levi de G défini sur .
Nous donnons aussi une adaptation de nos méthodes aux représentations automorphes, généralisant ainsi des résultats de Ginzburg–Rallis–Soudry, Shen et Cai, et confirmant certaines conjectures de Ginzburg.
Nos méthodes combinent celles des auteurs susmentionnés et de nos propres travaux antérieurs.
Let be either or a finite extension of , and let be a finite central extension of the group of -points of a reductive group defined over . Also let be a smooth representation of (Fréchet of moderate growth if ). For each nilpotent orbit we consider a certain Whittaker quotient of . We define the Whittaker support to be the set of maximal among those for which .
In this paper we prove that all are quasi-admissible nilpotent orbits, generalizing results of Mœglin and Jiang–Liu–Savin. If is -adic and is quasi-cuspidal then we show that all are -distinguished, i.e. do not intersect the Lie algebra of any proper Levi subgroup of defined over .
We also give an adaptation of our argument to automorphic representations, generalizing results of Ginzburg–Rallis–Soudry, Shen, and Cai, and confirming some conjectures of Ginzburg.
Our methods are a synergy of the methods of the above-mentioned authors, and of our own earlier work.
Révisé le :
Accepté le :
Publié le :
Keywords: Fourier coefficient, wave-front set, oscillator representation, Heisenberg group, metaplectic group, admissible orbit, distinguished orbit, cuspidal representation, automorphic form
Mot clés : coefficient de Fourier, front d’onde, représentation oscillateur, groupe de Heisenberg, groupe métaplectique, orbite admissible, orbite distinguée, représentation cuspidale, forme automorphe
Gomez, Raul 1 ; Gourevitch, Dmitry 2 ; Sahi, Siddhartha 3
@article{AIF_2021__71_1_239_0, author = {Gomez, Raul and Gourevitch, Dmitry and Sahi, Siddhartha}, title = {Whittaker supports for representations of reductive groups}, journal = {Annales de l'Institut Fourier}, pages = {239--286}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3372}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3372/} }
TY - JOUR AU - Gomez, Raul AU - Gourevitch, Dmitry AU - Sahi, Siddhartha TI - Whittaker supports for representations of reductive groups JO - Annales de l'Institut Fourier PY - 2021 SP - 239 EP - 286 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3372/ DO - 10.5802/aif.3372 LA - en ID - AIF_2021__71_1_239_0 ER -
%0 Journal Article %A Gomez, Raul %A Gourevitch, Dmitry %A Sahi, Siddhartha %T Whittaker supports for representations of reductive groups %J Annales de l'Institut Fourier %D 2021 %P 239-286 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3372/ %R 10.5802/aif.3372 %G en %F AIF_2021__71_1_239_0
Gomez, Raul; Gourevitch, Dmitry; Sahi, Siddhartha. Whittaker supports for representations of reductive groups. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 239-286. doi : 10.5802/aif.3372. https://aif.centre-mersenne.org/articles/10.5802/aif.3372/
[1] Fourier coefficients attached to small automorphic representations of , J. Number Theory, Volume 192 (2018), pp. 80-142 | DOI | MR | Zbl
[2] Schwartz functions on Nash Manifolds, Int. Math. Res. Not., Volume 2008 (2008) no. 5, rnm155, 37 pages | DOI | MR | Zbl
[3] Generalized Harish–Chandra descent, Gelfand pairs and an Archimedean analog of Jacquet–Rallis’s Theorem, Duke Math. J., Volume 149 (2009) no. 3, pp. 509-567 | MR | Zbl
[4] Primitive ideals and orbital integrals in complex classical groups, Math. Ann., Volume 259 (1982), pp. 153-199 | DOI | MR | Zbl
[5] Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra, Volume 80 (1983), pp. 350-382 | DOI | MR | Zbl
[6] Representations Of The Group GL(N, F), Where F Is A Non-Archimedean Local Field, Usp. Mat. Nauk, Volume 31 (1976) no. 3, pp. 5-70 | Zbl
[7] Éléments de mathématique. Fasc. XXXVIII : Groupes et algèbres de Lie. Chapitre VII : Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII : Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles, 1364, Hermann, 1975, 271 pages | Zbl
[8] Fourier Coefficients for Degenerate Eisenstein Series and the Descending Decomposition, Manuscr. Math., Volume 156 (2018) no. 3-4, pp. 469-501 | MR | Zbl
[9] Sur les représentations différentiables des groupes de Lie algébriques, Ann. Sci. Éc. Norm. Supér., Volume 24 (1991) no. 3, pp. 257-318 | DOI | Numdam | MR | Zbl
[10] Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., 1993, xiv+186 pages | Zbl
[11] Quelques propriétés des groupes abéliens localement compacts, Bull. Sci. Math. II. Sér., Volume 81 (1957), pp. 38-48 | Zbl
[12] Construction de représentations unitaires d’un groupe de Lie, Harmonic Analysis and Group Representations, CIME Foundation; Birkhäuser, 1982, pp. 129-222
[13] Chevalley’s theorem for affine Nash groups, J. Lie Theory, Volume 26 (2016) no. 2, pp. 359-369 | MR | Zbl
[14] Eisenstein series and automorphic representations. With applications in string theory, Cambridge Studies in Advanced Mathematics, 176, Cambridge University Press, 2018 | Zbl
[15] Certain conjectures relating unipotent orbits to automorphic representations, Isr. J. Math., Volume 151 (2006), pp. 323-355 | DOI | MR | Zbl
[16] Towards a classification of global integral constructions and functorial liftings using the small representations method, Adv. Math., Volume 254 (2014), pp. 157-186 | DOI | MR | Zbl
[17] On a correspondence between cuspidal representations of and , J. Am. Math. Soc., Volume 12 (1999) no. 3, pp. 849-907 | DOI | MR | Zbl
[18] On Fourier coefficients of automorphic forms of symplectic groups, Manuscr. Math., Volume 111 (2003), pp. 1-16 | DOI | MR
[19] The descent map from automorphic representations of to classical groups, World Scientific, 2011, ix+339 pages | DOI | Zbl
[20] Generalized and degenerate Whittaker models, Compos. Math., Volume 153 (2017) no. 2, pp. 223-256 | DOI | MR | Zbl
[21] A reduction principle for Fourier coefficients of automorphic forms (2018) (https://arxiv.org/abs/1811.05966)
[22] Fourier coefficients of minimal and next-to-minimal automorphic representations of simply-laced groups (2019) (https://arxiv.org/abs/1908.08296)
[23] Eulerianity of Fourier coefficients of automorphic forms (2020) (https://arxiv.org/abs/2004.14244)
[24] Generalized and degenerate Whittaker quotients and Fourier coefficients, Representations of reductive groups (Proceedings of Symposia in Pure Mathematics), Volume 101, American Mathematical Society, 2019, pp. 133-154 | DOI | MR
[25] Small representations, string instantons, and Fourier modes of Eisenstein series, J. Number Theory, Volume 146 (2015), pp. 187-309 | DOI | MR | Zbl
[26] Tempered representations and nilpotent orbits, Represent. Theory, Volume 16 (2012), pp. 610-619 | DOI | MR | Zbl
[27] Descent Construction for GSpin Groups, Memoirs of the American Mathematical Society, 243, American Mathematical Society, 2016 no. 1148 | MR | Zbl
[28] On the lifting of elliptic cusp forms to Siegel cusp forms of degree , Ann. Math., Volume 154 (2001) no. 3, pp. 641-681 | DOI | MR | Zbl
[29] Periods of automorphic forms, Proceedings of the International Conference on Complex Geometry and Related Fields (Shangai, China, 2004) (Studies in Advanced Mathematics), Volume 39 (2007), pp. 125-148 | MR | Zbl
[30] Fourier coefficients and cuspidal spectrum for symplectic groups, Geometric Aspects of the Trace Formula (Simons Symposia) (2018), pp. 211-244 | DOI | Zbl
[31] Raising nilpotent orbits in wave-front sets, Represent. Theory, Volume 20 (2016), pp. 419-450 | DOI | MR | Zbl
[32] Generalized Gelfand–Graev representations and Ennola duality, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Advanced Studies in Pure Mathematics), Volume 6, North-Holland, 1985, pp. 175-206 | DOI | MR | Zbl
[33] Some applications of the Weil representation, J. Anal. Math., Volume 32 (1977), pp. 235-248 | DOI | MR | Zbl
[34] The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group, Am. J. Math., Volume 81 (1959) no. 4, pp. 973-1032 | DOI | MR | Zbl
[35] On Whittaker vectors and representation theory, Invent. Math., Volume 48 (1978), pp. 101-184 | DOI | MR | Zbl
[36] Non-existence of singular cusp forms, Compositio Math., Volume 83 (1992) no. 1, pp. 43-51 | Numdam | Zbl
[37] On minimal representations of Chevalley groups of type , and , Math. Ann., Volume 340 (2008) no. 1, pp. 195-208 | DOI
[38] Restriction de la représentation de Weil à un sous-groupe compact maximal, J. Math. Soc. Japan, Volume 68 (2016) no. 1, pp. 245-293 | DOI | Zbl
[39] Whittaker vectors and associated varieties, Invent. Math., Volume 89 (1987), pp. 219-224 | DOI | MR | Zbl
[40] Fourier coefficients of automorphic forms, character variety orbits, and small representations, J. Number Theory, Volume 132 (2012) no. 12, pp. 3070-3108 | DOI | MR | Zbl
[41] Front d’onde des représentations des groupes classiques -adiques, Am. J. Math., Volume 118 (1996) no. 6, pp. 1313-1346 | DOI | Zbl
[42] Modeles de Whittaker dégénérés pour des groupes -adiques, Math. Z., Volume 196 (1987) no. 3, pp. 427-452 | DOI | MR | Zbl
[43] Spectral decomposition and Eisenstein series. Une paraphrase de l’Écriture [A paraphrase of Scripture], Cambridge Tracts in Mathematics, 113, Cambridge University Press, 1995, xxviii+338 pages (translated from the French by Leila Schneps) | Zbl
[44] Admissible nilpotent coadjoint orbits of -adic reductive Lie groups, Represent. Theory, Volume 3 (1999), pp. 105-126 | DOI | MR | Zbl
[45] Admissible nilpotent orbits of real and -adic split exceptional groups, Represent. Theory, Volume 6 (2002), pp. 160-189 | DOI | MR | Zbl
[46] On nilpotent orbits of and over a local non-Archimedean field, Algebr. Represent. Theory, Volume 14 (2011) no. 1, pp. 161-190 | DOI | MR | Zbl
[47] Classification of admissible nilpotent orbits in simple exceptional real Lie algebras of inner type, Represent. Theory, Volume 5 (2001), pp. 455-493 | DOI | MR | Zbl
[48] Classification of admissible nilpotent orbits in simple real Lie algebras and , Represent. Theory, Volume 5 (2001), pp. 494-502 | DOI | MR | Zbl
[49] Generalized Bessel models for a symplectic group of rank , Math. USSR, Sb., Volume 19 (1973) no. 2, pp. 243-255 | DOI
[50] Classification of admissible nilpotent orbits in the classical real Lie algebras, J. Algebra, Volume 136 (1991) no. 2, pp. 290-333 | DOI | MR
[51] Self-dual Projective Algebraic Varieties Associated With Symmetric Spaces, Algebraic Transformation Groups and Algebraic Varieties (Encyclopaedia of Mathematical Sciences), Volume 132, Springer, 2004 | DOI | MR | Zbl
[52] Picard–Lefschetz theory and characters of a semisimple Lie group, Invent. Math., Volume 121 (1995) no. 3, pp. 579-611 | DOI | MR | Zbl
[53] The multiplicity one theorem for , Ann. Math., Volume 100 (1974), pp. 171-193 | DOI | MR
[54] Top Fourier Coefficients for Cuspidal Representations of Symplectic Groups, Int. Math. Res. Not., Volume 2017 (2017) no. 10, pp. 2909-2947 | DOI | MR | Zbl
[55] Almost linear Nash groups, Chin. Ann. Math., Ser. B, Volume 36 (2015) no. 3, pp. 355-400 | MR | Zbl
[56] Topological vector spaces, distributions and kernels, Academic Press Inc., 1967, xvi+624 pages | Zbl
[57] On a result of Mœglin and Waldspurger in residual characteristic 2, Math. Z., Volume 277 (2014) no. 3-4, pp. 1027-1048 | DOI | MR | Zbl
[58] The Unitary Dual of , Invent. Math., Volume 116 (1994) no. 1-3, pp. 677-791 | DOI | MR | Zbl
[59] Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals, Representations of Lie groups, Kyoto, Hiroshima, 1986 (Okamoto, Kiyosato; Oshima, Toshio, eds.) (Advanced Studies in Pure Mathematics), Volume 14, Academic Press Inc., 1988, pp. 123-151 | MR
[60] Sur certains groupes d’opérateurs unitaires, Acta Math., Volume 111 (1964), pp. 143-211 | DOI | Zbl
[61] On Whittaker vectors for generalized Gelfand–Graev representations of semisimple Lie groups, J. Math. Kyoto Univ., Volume 26 (1986) no. 2, pp. 263-298 | MR | Zbl
Cité par Sources :