Application of braiding sequences IV: link polynomials and geometric invariants
Annales de l'Institut Fourier, Volume 70 (2020) no. 4, pp. 1431-1475.

We apply the concept of braiding sequences to the Conway and skein polynomial, and some geometric invariants of positive links. Using degree and coefficient growth properties of the Conway polynomial, estimates of braid index and Legendrian invariants are given. We enumerate alternating (and some other classes of) links of given genus asymptotically up to constants by braid index.

Nous appliquons le concept de séquences de tressage aux polynômes de skein et de Conway, mais aussi à quelques invariants géométriques des entrelacs positifs. On donne des estimations pour l’indice des tresses et pour des invariants legendriens, en utilisant le degré et des propriétés de croissance des coefficients du polynôme de Conway. Nous énumérons asymptotiquement à une constante près les entrelacs alternants (et quelques autres) de genre donné par leur indice de tresses.

Received:
Accepted:
Published online:
DOI: 10.5802/aif.3371
Classification: 57M25, 57M27, 57M50, 05A16, 05C10
Keywords: positive knot, alternating knot, braid index, genus, link polynomial, Legendrian knot, Bennequin inequality, enumeration
Mot clés : noeud positif, noeud alternant, indice de tresses, genre, invariant polynomial d’entrelacs, noeud legendrien, inégalité de Bennequin, énumération des noeuds

Stoimenow, Alexander 1

1 Deadok Innopolis Daejon 34125 (Korea)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_4_1431_0,
     author = {Stoimenow, Alexander},
     title = {Application of braiding sequences {IV:} link polynomials and geometric invariants},
     journal = {Annales de l'Institut Fourier},
     pages = {1431--1475},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {4},
     year = {2020},
     doi = {10.5802/aif.3371},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3371/}
}
TY  - JOUR
AU  - Stoimenow, Alexander
TI  - Application of braiding sequences IV: link polynomials and geometric invariants
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 1431
EP  - 1475
VL  - 70
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3371/
DO  - 10.5802/aif.3371
LA  - en
ID  - AIF_2020__70_4_1431_0
ER  - 
%0 Journal Article
%A Stoimenow, Alexander
%T Application of braiding sequences IV: link polynomials and geometric invariants
%J Annales de l'Institut Fourier
%D 2020
%P 1431-1475
%V 70
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3371/
%R 10.5802/aif.3371
%G en
%F AIF_2020__70_4_1431_0
Stoimenow, Alexander. Application of braiding sequences IV: link polynomials and geometric invariants. Annales de l'Institut Fourier, Volume 70 (2020) no. 4, pp. 1431-1475. doi : 10.5802/aif.3371. https://aif.centre-mersenne.org/articles/10.5802/aif.3371/

[1] A’Campo, Norbert Generic immersions of curves, knots, monodromy and Gordian number, Publ. Math., Inst. Hautes Étud. Sci., Volume 88 (1998), pp. 151-169 | DOI | MR | Zbl

[2] Alexander, James Waddell Topological invariants of knots and links, Trans. Am. Math. Soc., Volume 30 (1928) no. 2, pp. 275-306 | DOI | MR

[3] Bar-Natan, Dror On the Vassiliev knot invariants, Topology, Volume 34 (1995) no. 2, pp. 423-472 | DOI | MR | Zbl

[4] Bar-Natan, Dror; Stoimenow, Alexander The Fundamental Theorem of Vassiliev invariants, Geometry and Physics (Aarhus, 1995) (Lecture Notes in Pure and Applied Mathematics), Volume 184 (1997), pp. 101-134 | MR | Zbl

[5] Bennequin, Daniel Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982) (Astérisque), Volume 107-108 (1983), pp. 87-161 | Numdam | MR | Zbl

[6] Birman, Joan S.; Menasco, William W. Studying knots via braids VI: A non-finiteness theorem, Pac. J. Math., Volume 156 (1992) no. 2, pp. 265-285 | DOI | Zbl

[7] Birman, Joan S.; Williams, Robert F. Knotted periodic orbits in dynamical systems - I, Lorenz’s equations, Topology, Volume 22 (1983) no. 1, pp. 47-82 | DOI | MR | Zbl

[8] Boileau, Michel; Weber, Claude Le problème de J. Milnor, sur le nombre gordien des nœuds algébriques, Enseign. Math., Volume 30 (1984) no. 3-4, pp. 173-222 | Zbl

[9] van Buskirk, James M. Positive links have positive Conway polynomials, Knot Theory and Manifolds (Lecture Notes in Mathematics), Volume 1144 (1983), pp. 146-159 | DOI | Zbl

[10] Chmutov, Sergei V.; Goryunov, Victor; Murakami, Hitoshi Regular Legendrian knots and the HOMFLY polynomial of immersed plane curves, Math. Ann., Volume 317 (2000) no. 3, pp. 389-413 | DOI | MR | Zbl

[11] Conway, John Horton An enumeration of knots and links, and some of their algebraic properties, Computational Problems in abstract algebra. Proc. Conf., (Oxford, 1967) (1970), pp. 329-358

[12] Cromwell, Peter R. Homogeneous links, J. Lond. Math. Soc., Volume 39 (1989) no. 3, pp. 535-552 | DOI | MR

[13] Cromwell, Peter R. Knots and Links, Cambridge University Press, 2004, xviii+328 pages | MR | Zbl

[14] Cromwell, Peter R.; Morton, Hugh R. Positivity of knot polynomials on positive links, J. Knot Theory Ramifications, Volume 1 (1992) no. 2, pp. 203-206 | DOI | MR | Zbl

[15] Fiedler, Thomas Gauss sum invariants for knots and links, Mathematics and its Applications, 532, Kluwer Academic Publishers, 2002, xvi+412 pages | Zbl

[16] Fiedler, Thomas; Stoimenow, Alexander New knot and link invariants, Knots in Hellas, 98. Proceedings of the International Conference on Knot Theory an its ramifications, European Cultural Centre of Delphi, Greece, August 7–15, 1998 (Series on Knots and Everything), Volume 24 (2000), pp. 59-79 | MR | Zbl

[17] Franks, John; Williams, Robert F. Braids and the Jones-Conway polynomial, Trans. Am. Math. Soc., Volume 303 (1987), pp. 97-108 | DOI | Zbl

[18] Freyd, Peter J.; Hoste, Jim; Lickorish, William Bernard Raymond; Millett, Kenneth C.; Ocneanu, Adrian; Yetter, David N. A new polynomial invariant of knots and links, Bull. Am. Math. Soc., Volume 12 (1985), pp. 239-246 | DOI | MR

[19] Fuchs, Dmitry; Tabachnikov, Serge Invariants of Legendrian and transverse knots in the standard contact space, Topology, Volume 36 (1997) no. 5, pp. 1025-1053 | DOI | MR | Zbl

[20] Hedden, Matthew Notions of positivity and the Ozsváth-Szabó concordance invariant, J. Knot Theory Ramifications, Volume 19 (2010) no. 5, pp. 617-629 | DOI | MR | Zbl

[21] Hosokawa, Fujitsugu On –polynomials of links, Osaka J. Math., Volume 10 (1958), pp. 273-282 | MR | Zbl

[22] Hoste, Jim The first coefficient of the Conway polynomial, Proc. Am. Math. Soc., Volume 95 (1985) no. 2, pp. 299-302 | DOI | MR | Zbl

[23] Jones, Vaughan F. R. A polynomial invariant of knots and links via von Neumann algebras, Bull. Am. Math. Soc., Volume 12 (1985), pp. 103-111 | DOI | Zbl

[24] Kanda, Yutaka On the Thurston–Bennequin invariant of Legendrian knots and nonexactness of Bennequin’s inequality, Invent. Math., Volume 133 (1998) no. 2, pp. 227-242 | DOI | MR | Zbl

[25] Kanenobu, Taizo Kauffman polynomials and Vassiliev link invariants, Knots 96. Proceedings of the international conference and worshop on knot theory, Tokyo, Japan, July, 22–26, 1996 (1997), pp. 411-431 | Zbl

[26] Kanenobu, Taizo Vassiliev knot invariants of order 6, J. Knot Theory Ramifications, Volume 10 (2001) no. 5, pp. 645-665 (Proceedings of the International Conference “Knots in Hellas 98”, Delphi, Vol. 3) | DOI | MR | Zbl

[27] Kauffman, Louis H. An invariant of regular isotopy, Trans. Am. Math. Soc., Volume 318 (1990) no. 2, pp. 417-471 | DOI | MR | Zbl

[28] Kidwell, Mark Elliot On the degree of the Brandt–Lickorish–Millett–Ho polynomial of a link, Proc. Am. Math. Soc., Volume 100 (1987), pp. 755-762 | DOI | MR | Zbl

[29] Kreimer, Dirk Knots and Feynman diagrams, Cambridge Lecture Notes in Physics, 13, Cambridge University Press, 2000 | MR | Zbl

[30] Lickorish, William Bernard Raymond Polynomials for links, Bull. Lond. Math. Soc., Volume 20 (1988) no. 6, pp. 558-588 | DOI | MR

[31] Lickorish, William Bernard Raymond; Millett, Kenneth C. A polynomial invariant for oriented links, Topology, Volume 26 (1987) no. 1, pp. 107-141 | DOI | MR | Zbl

[32] Menasco, William W.; Zhang, Xingru Positive knots and knots with braid index three have property P, J. Knot Theory Ramifications, Volume 12 (2003) no. 4, pp. 427-444 | DOI | Zbl

[33] Milnor, John Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press; University of Tokyo Press, 1968 | MR | Zbl

[34] Morton, Hugh R. Seifert circles and knot polynomials, Math. Proc. Camb. Philos. Soc., Volume 99 (1986) no. 1, pp. 107-109 | DOI | MR | Zbl

[35] Murasugi, Kunio On the genus of the alternating knot. I, II, J. Math. Soc. Japan, Volume 10 (1958), p. 94-105, 235–248 | MR | Zbl

[36] Murasugi, Kunio On a certain numerical invariant of link types, Trans. Am. Math. Soc., Volume 117 (1965), pp. 387-422 | DOI | MR | Zbl

[37] Murasugi, Kunio; Przytycki, Józef The skein polynomial of a planar star product of two links, Math. Proc. Camb. Philos. Soc., Volume 106 (1989) no. 2, pp. 273-276 | DOI | MR | Zbl

[38] Nakamura, Takuji Positive alternating links are positively alternating, J. Knot Theory Ramifications, Volume 9 (2000) no. 1, pp. 107-112 | DOI | MR | Zbl

[39] Ohyama, Yoshiyuki On the minimal crossing number and the braid index of links, Can. J. Math., Volume 45 (1993) no. 1, pp. 117-131 | DOI | MR | Zbl

[40] Ozawa, Makoto Closed incompressible surfaces in complements of positive knots, Comment. Math. Helv., Volume 77 (2002) no. 2, pp. 235-243 | DOI | MR | Zbl

[41] Polyak, Mickael; Viro, Oleg Gauss diagram formulas for Vassiliev invariants, Int. Math. Res. Not., Volume 11 (1994), pp. 445-454 | DOI | Zbl

[42] Polyak, Mickael; Viro, Oleg On the Casson knot invariant, J. Knot Theory Ramifications, Volume 10 (2001) no. 5, pp. 711-738 | DOI | MR | Zbl

[43] Van Quach Hongler, Cam; Weber, Claude On the topological invariance of Murasugi special components of an alternating link, Math. Proc. Camb. Philos. Soc., Volume 137 (2004) no. 1, pp. 95-108 | MR | Zbl

[44] Rudolph, Lee Quasipositivity as an obstruction to sliceness, Bull. Am. Math. Soc., Volume 29 (1993) no. 1, pp. 51-59 | DOI | MR | Zbl

[45] Rudolph, Lee Positive links are strongly quasipositive, Proceedings of the Kirbyfest (Berkeley, CA, 1998) (Geometry and Topology Monographs), Volume 2 (1999), pp. 555-562 | MR | Zbl

[46] Stoimenow, Alexander Gauß sum invariants, Vassiliev invariants and braiding sequences, J. Knot Theory Ramifications, Volume 9 (2000) no. 2, pp. 221-269 | DOI | Zbl

[47] Stoimenow, Alexander Knots of genus one or on the number of alternating knots of given genus, Proc. Am. Math. Soc., Volume 129 (2001) no. 7, pp. 2141-2156 | DOI | MR | Zbl

[48] Stoimenow, Alexander Some minimal degree Vassiliev invariants not realizable by the Homfly and Kauffman polynomial, C. R. Acad. Bulg. Sci., Volume 54 (2001) no. 4, pp. 9-14

[49] Stoimenow, Alexander On the crossing number of positive knots and braids and braid index criteria of Jones and Morton–Williams–Franks, Trans. Am. Math. Soc., Volume 354 (2002) no. 10, pp. 3927-3954 | DOI | MR | Zbl

[50] Stoimenow, Alexander On the coefficients of the link polynomials, Manuscr. Math., Volume 110 (2003) no. 2, pp. 203-236 | DOI | MR

[51] Stoimenow, Alexander Positive knots, closed braids, and the Jones polynomial, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 2, pp. 237-285 | Numdam | MR | Zbl

[52] Stoimenow, Alexander Gauß diagram sums on almost positive knots, Compos. Math., Volume 140 (2004) no. 1, pp. 228-254 | DOI | Zbl

[53] Stoimenow, Alexander Newton-like polynomials of links, Enseign. Math., Volume 51 (2005) no. 3-4, pp. 211-230 | MR | Zbl

[54] Stoimenow, Alexander On some restrictions to the values of the Jones polynomial, Indiana Univ. Math. J., Volume 54 (2005) no. 2, pp. 557-574 | DOI | MR | Zbl

[55] Stoimenow, Alexander A property of the skein polynomial with an application to contact geometry, J. Differ. Geom., Volume 77 (2007) no. 3, pp. 555-566 | MR | Zbl

[56] Stoimenow, Alexander Square numbers and polynomial invariants of achiral knots, Math. Z., Volume 255 (2007) no. 4, pp. 703-719 | DOI | Zbl

[57] Stoimenow, Alexander Knots of (canonical) genus two, Fundam. Math., Volume 200 (2008) no. 1, pp. 1-67 | DOI | MR | Zbl

[58] Stoimenow, Alexander Application of braiding sequences I: On the characterization of Vassiliev and polynomial link invariants, Commun. Contemp. Math., Volume 12 (2010) no. 5, pp. 681-726 | DOI | MR | Zbl

[59] Stoimenow, Alexander On the definition of graph index, J. Aust. Math. Soc., Volume 94 (2013) no. 3, pp. 417-429 | DOI | MR | Zbl

[60] Stoimenow, Alexander On the crossing number of semiadequate links, Forum Math., Volume 26 (2014) no. 4, pp. 1187-1246 | MR | Zbl

[61] Stoimenow, Alexander Application of braiding sequences II: polynomial invariants of positive knots, Proc. Edinb. Math. Soc., II. Ser., Volume 59 (2016) no. 4, pp. 1037-1064 | DOI | MR | Zbl

[62] Stoimenow, Alexander Diagram genus, generators and applications, Monographs and Research Notes in Mathematics, CRC Press, 2016, xviii+173 pages | Zbl

[63] Stoimenow, Alexander Properties of Closed 3-Braids and Braid Representations of Links, SpringerBriefs in Mathematics, Springer, 2017, x+110 pages | Zbl

[64] Stoimenow, Alexander; Tchernov, Vladimir; Vdovina, Alina The canonical genus of a classical and virtual knot, Geom. Dedicata, Volume 95 (2002) no. 1, pp. 215-225 | DOI | MR | Zbl

[65] Stoimenow, Alexander; Vdovina, Alina Counting alternating knots by genus, Math. Ann., Volume 333 (2005) no. 1, pp. 1-27 | DOI | MR | Zbl

[66] Tanaka, Toshifumi Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Am. Math. Soc., Volume 127 (1999) no. 11, pp. 3427-3432 | DOI | MR | Zbl

[67] Traczyk, Paweł On the index of graphs: Index versus cycle index, J. Knot Theory Ramifications, Volume 3 (1994) no. 4, pp. 531-536 | DOI | MR | Zbl

[68] Traczyk, Paweł Reducing braid index by Murasugi–Przytycki operation, J. Knot Theory Ramifications, Volume 20 (2011) no. 1, pp. 223-229 | DOI | MR | Zbl

[69] Trapp, Rolland Twist sequences and Vassiliev invariants, J. Knot Theory Ramifications, Volume 3 (1994) no. 3, pp. 391-405 | DOI | MR | Zbl

[70] Vassiliev, Viktor Anatol’evich Cohomology of knot spaces, Theory of Singularities and its Applications (Advances in Soviet Mathematics), Volume 1 (1990), pp. 23-69 | DOI | MR

[71] Vogel, Pierre Algebraic structures on modules of diagrams, J. Pure Appl. Algebra, Volume 215 (2011) no. 6, pp. 1292-1339 (Université Paris VII preprint, June 1996) | DOI | MR | Zbl

[72] Yokota, Yoshiyuki Polynomial invariants of positive links, Topology, Volume 31 (1992) no. 4, pp. 805-811 | DOI | MR | Zbl

[73] Zulli, Louis The rank of the trip matrix of a positive knot diagram, J. Knot Theory Ramifications, Volume 6 (1997) no. 2, pp. 299-301 | DOI | MR | Zbl

Cited by Sources: