[Sur la géométrie anticanonique des variétés faiblement -Fano de dimension trois II]
By a canonical (resp. terminal) weak -Fano -fold we mean a normal projective one with at worst canonical (resp. terminal) singularities on which the anti-canonical divisor is -Cartier, nef and big. For a canonical weak -Fano -fold , we show that there exists a terminal weak -Fano -fold , being birational to , such that the -th anti-canonical map defined by is birational for all . As an intermediate result, we show that for any -Mori fiber space of a canonical weak -Fano -fold, the -th anti-canonical map defined by is birational for all .
Par variété de dimension trois canonique (resp. terminale) faiblement -Fano, nous entendons une variété normale projective avec au plus des singularités canoniques (resp. terminales) sur laquelle le diviseur anticanonique est -Cartier, nef et big. Pour une variété de dimension trois canonique faiblement -Fano , nous montrons qu’il existe une variété de dimension trois terminale faiblement -Fano birationnelle à , de sorte que l’application pluri-anticanonique définie par est birationnelle sur son image pour tous les . Comme un résultat intermédiaire, nous montrons que pour n’importe quelle -fibration de Mori d’une variété de dimension trois canonique faiblement -Fano, l’application pluri-anticanonique définie par est birationnelle sur son image pour tous les .
Révisé le :
Accepté le :
Publié le :
Keywords: Fano variety, pluri-anti-canonical map
Mots-clés : variétés de Fano, l’application pluri-anticanonique
Chen, Meng 1 ; Jiang, Chen 2
CC-BY-ND 4.0
@article{AIF_2020__70_6_2473_0,
author = {Chen, Meng and Jiang, Chen},
title = {On the anti-canonical geometry of weak $\protect \mathbb{Q}${-Fano} threefolds {II}},
journal = {Annales de l'Institut Fourier},
pages = {2473--2542},
year = {2020},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {70},
number = {6},
doi = {10.5802/aif.3367},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3367/}
}
TY - JOUR
AU - Chen, Meng
AU - Jiang, Chen
TI - On the anti-canonical geometry of weak $\protect \mathbb{Q}$-Fano threefolds II
JO - Annales de l'Institut Fourier
PY - 2020
SP - 2473
EP - 2542
VL - 70
IS - 6
PB - Association des Annales de l’institut Fourier
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3367/
DO - 10.5802/aif.3367
LA - en
ID - AIF_2020__70_6_2473_0
ER -
%0 Journal Article
%A Chen, Meng
%A Jiang, Chen
%T On the anti-canonical geometry of weak $\protect \mathbb{Q}$-Fano threefolds II
%J Annales de l'Institut Fourier
%D 2020
%P 2473-2542
%V 70
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3367/
%R 10.5802/aif.3367
%G en
%F AIF_2020__70_6_2473_0
Chen, Meng; Jiang, Chen. On the anti-canonical geometry of weak $\protect \mathbb{Q}$-Fano threefolds II. Annales de l'Institut Fourier, Tome 70 (2020) no. 6, pp. 2473-2542. doi: 10.5802/aif.3367
[1] General elephants of -Fano 3-folds, Compos. Math., Volume 91 (1994) no. 1, pp. 91-116 | Zbl | Numdam | MR
[2] Anti-pluricanonical systems on Fano varieties, Ann. Math., Volume 190 (2019) no. 2, pp. 345-463 | Zbl | MR | DOI
[3] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | Zbl | MR | DOI
[4] Computing certain Fano 3-folds, Japan J. Ind. Appl. Math., Volume 24 (2007) no. 3, pp. 241-250 | Zbl | DOI | MR
[5] Fano 3-folds with divisible anticanonical class, Manuscr. Math., Volume 123 (2007) no. 1, pp. 37-51 | Zbl | MR | DOI
[6] Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal., Volume 18 (2008) no. 4, pp. 1118-1144 | Zbl | MR | DOI
[7] An optimal boundedness on weak -Fano 3-folds, Adv. Math., Volume 219 (2008) no. 6, pp. 2086-2104 | Zbl | MR | DOI
[8] Explicit birational geometry of 3-folds of general type, II, J. Differ. Geom., Volume 86 (2010) no. 2, pp. 237-271 | Zbl | MR
[9] Explicit birational geometry of threefolds of general type, I, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010) no. 3, pp. 365-394 | Zbl | Numdam | MR | DOI
[10] On anti-pluricanonical systems of -Fano 3-folds, Sci. China, Math., Volume 54 (2011) no. 8, pp. 1547-1560 | Zbl | MR | DOI
[11] Some birationality criteria on 3-folds with , Sci. China, Math., Volume 57 (2014) no. 11, pp. 2215-2234 | Zbl | MR | DOI
[12] On the anti-canonical geometry of -Fano threefolds, J. Differ. Geom., Volume 104 (2016) no. 1, pp. 59-109 | DOI | Zbl | MR
[13] On images of weak Fano manifolds, Math. Z., Volume 270 (2012) no. 1-2, pp. 531-544 | Zbl | MR | DOI
[14] Working with weighted complete intersections, Explicit birational geometry of 3-folds (London Mathematical Society Lecture Note Series), Volume 281, Cambridge University Press, 2000, pp. 101-173 | Zbl | DOI | MR
[15] On boundedness of volumes and birationality in birational geometry, Ph. D. Thesis, University of Tokyo (2015)
[16] Boundedness of -Fano threefolds, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989) (Contemporary Mathematics), Volume 131 (1992), pp. 439-445 | Zbl | MR
[17] Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | Zbl | MR | DOI
[18] Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, 1995, x+201 pages | DOI | MR | Zbl
[19] Boundedness of canonical -Fano 3-folds, Proc. Japan Acad., Ser. A, Volume 76 (2000) no. 5, pp. 73-77 | Zbl | MR
[20] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | Zbl | MR | DOI
[21] Very ampleness of adjoint linear systems on smooth surfaces with boundary, Nagoya Math. J., Volume 153 (1999), pp. 1-29 | Zbl | MR | DOI
[22] The degree of Fano threefolds with canonical Gorenstein singularities, Mat. Sb., Volume 196 (2005) no. 1, pp. 81-122 | Zbl | MR | DOI
[23] The degree of -Fano threefolds, Mat. Sb., Volume 198 (2007) no. 11, pp. 153-174 | DOI | MR
[24] -Fano threefolds of large Fano index, I, Doc. Math., Volume 15 (2010), pp. 843-872 | Zbl | MR
[25] On Fano threefolds of large Fano index and large degree, Mat. Sb., Volume 204 (2013) no. 3, pp. 43-78 | Zbl | MR | DOI
[26] On -Fano 3-folds of Fano index 2, Minimal models and extremal rays (Kyoto, 2011) (Advanced Studies in Pure Mathematics), Volume 70, Mathematical Society of Japan, 2016, pp. 397-420 | Zbl | MR | DOI
[27] Towards the second main theorem on complements, J. Algebr. Geom., Volume 18 (2009) no. 1, pp. 151-199 | Zbl | MR | DOI
[28] Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society, 1987, pp. 345-414 | Zbl | DOI | MR
[29] On Fano indices of -Fano 3-folds, Manuscr. Math., Volume 114 (2004) no. 2, pp. 229-246 | Zbl | MR | DOI
Cité par Sources :



