On the anti-canonical geometry of weak -Fano threefolds II
[Sur la géométrie anticanonique des variétés faiblement -Fano de dimension trois II]
Annales de l'Institut Fourier, Tome 70 (2020) no. 6, pp. 2473-2542.

Par variété de dimension trois canonique (resp. terminale) faiblement -Fano, nous entendons une variété normale projective avec au plus des singularités canoniques (resp. terminales) sur laquelle le diviseur anticanonique est -Cartier, nef et big. Pour une variété de dimension trois canonique faiblement -Fano V, nous montrons qu’il existe une variété de dimension trois terminale faiblement -Fano X birationnelle à V, de sorte que l’application pluri-anticanonique définie par |-mK X | est birationnelle sur son image pour tous les m52. Comme un résultat intermédiaire, nous montrons que pour n’importe quelle K-fibration de Mori Y d’une variété de dimension trois canonique faiblement -Fano, l’application pluri-anticanonique définie par |-mK Y | est birationnelle sur son image pour tous les m52.

By a canonical (resp. terminal) weak -Fano 3-fold we mean a normal projective one with at worst canonical (resp. terminal) singularities on which the anti-canonical divisor is -Cartier, nef and big. For a canonical weak -Fano 3-fold V, we show that there exists a terminal weak -Fano 3-fold X, being birational to V, such that the m-th anti-canonical map defined by |-mK X | is birational for all m52. As an intermediate result, we show that for any K-Mori fiber space Y of a canonical weak -Fano 3-fold, the m-th anti-canonical map defined by |-mK Y | is birational for all m52.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3367
Classification : 14J45, 14J30, 14E30
Keywords: Fano variety, pluri-anti-canonical map
Mot clés : variétés de Fano, l’application pluri-anticanonique

Chen, Meng 1 ; Jiang, Chen 2

1 School of Mathematical Sciences & Shanghai Centre for Mathematical Sciences Fudan University Shanghai 200433 (China)
2 Shanghai Center for Mathematical Sciences Fudan University, Jiangwan Campus Shanghai 200438 (China)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2020__70_6_2473_0,
     author = {Chen, Meng and Jiang, Chen},
     title = {On the anti-canonical geometry of weak $\protect \mathbb{Q}${-Fano} threefolds {II}},
     journal = {Annales de l'Institut Fourier},
     pages = {2473--2542},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {6},
     year = {2020},
     doi = {10.5802/aif.3367},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3367/}
}
TY  - JOUR
AU  - Chen, Meng
AU  - Jiang, Chen
TI  - On the anti-canonical geometry of weak $\protect \mathbb{Q}$-Fano threefolds II
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 2473
EP  - 2542
VL  - 70
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3367/
DO  - 10.5802/aif.3367
LA  - en
ID  - AIF_2020__70_6_2473_0
ER  - 
%0 Journal Article
%A Chen, Meng
%A Jiang, Chen
%T On the anti-canonical geometry of weak $\protect \mathbb{Q}$-Fano threefolds II
%J Annales de l'Institut Fourier
%D 2020
%P 2473-2542
%V 70
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3367/
%R 10.5802/aif.3367
%G en
%F AIF_2020__70_6_2473_0
Chen, Meng; Jiang, Chen. On the anti-canonical geometry of weak $\protect \mathbb{Q}$-Fano threefolds II. Annales de l'Institut Fourier, Tome 70 (2020) no. 6, pp. 2473-2542. doi : 10.5802/aif.3367. https://aif.centre-mersenne.org/articles/10.5802/aif.3367/

[1] Alexeev, Valery General elephants of Q-Fano 3-folds, Compos. Math., Volume 91 (1994) no. 1, pp. 91-116 | Numdam | MR | Zbl

[2] Birkar, Caucher Anti-pluricanonical systems on Fano varieties, Ann. Math., Volume 190 (2019) no. 2, pp. 345-463 | DOI | MR | Zbl

[3] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; McKernan, James Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl

[4] Brown, Gavin; Suzuki, Kaori Computing certain Fano 3-folds, Japan J. Ind. Appl. Math., Volume 24 (2007) no. 3, pp. 241-250 | DOI | MR | Zbl

[5] Brown, Gavin; Suzuki, Kaori Fano 3-folds with divisible anticanonical class, Manuscr. Math., Volume 123 (2007) no. 1, pp. 37-51 | DOI | MR | Zbl

[6] Cheltsov, Ivan Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal., Volume 18 (2008) no. 4, pp. 1118-1144 | DOI | MR | Zbl

[7] Chen, Jungkai A.; Chen, Meng An optimal boundedness on weak -Fano 3-folds, Adv. Math., Volume 219 (2008) no. 6, pp. 2086-2104 | DOI | MR | Zbl

[8] Chen, Jungkai A.; Chen, Meng Explicit birational geometry of 3-folds of general type, II, J. Differ. Geom., Volume 86 (2010) no. 2, pp. 237-271 | MR | Zbl

[9] Chen, Jungkai A.; Chen, Meng Explicit birational geometry of threefolds of general type, I, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010) no. 3, pp. 365-394 | DOI | Numdam | MR | Zbl

[10] Chen, Meng On anti-pluricanonical systems of -Fano 3-folds, Sci. China, Math., Volume 54 (2011) no. 8, pp. 1547-1560 | DOI | MR | Zbl

[11] Chen, Meng Some birationality criteria on 3-folds with p g >1, Sci. China, Math., Volume 57 (2014) no. 11, pp. 2215-2234 | DOI | MR | Zbl

[12] Chen, Meng; Jiang, Chen On the anti-canonical geometry of -Fano threefolds, J. Differ. Geom., Volume 104 (2016) no. 1, pp. 59-109 | DOI | MR | Zbl

[13] Fujino, Osamu; Gongyo, Yoshinori On images of weak Fano manifolds, Math. Z., Volume 270 (2012) no. 1-2, pp. 531-544 | DOI | MR | Zbl

[14] Iano-Fletcher, A. R. Working with weighted complete intersections, Explicit birational geometry of 3-folds (London Mathematical Society Lecture Note Series), Volume 281, Cambridge University Press, 2000, pp. 101-173 | DOI | MR | Zbl

[15] Jiang, Chen On boundedness of volumes and birationality in birational geometry, Ph. D. Thesis, University of Tokyo (2015)

[16] Kawamata, Yujiro Boundedness of Q-Fano threefolds, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989) (Contemporary Mathematics), Volume 131 (1992), pp. 439-445 | MR | Zbl

[17] Kawamata, Yujiro; Matsuda, Katsumi; Matsuki, Kenji Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl

[18] Kollár, János Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, 1995, x+201 pages | DOI | MR | Zbl

[19] Kollár, János; Miyaoka, Yoichi; Mori, Shigefumi; Takagi, Hiromichi Boundedness of canonical Q-Fano 3-folds, Proc. Japan Acad., Ser. A, Volume 76 (2000) no. 5, pp. 73-77 | MR | Zbl

[20] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl

[21] Maşek, Vladimir Very ampleness of adjoint linear systems on smooth surfaces with boundary, Nagoya Math. J., Volume 153 (1999), pp. 1-29 | DOI | MR | Zbl

[22] Prokhorov, Yuri G. The degree of Fano threefolds with canonical Gorenstein singularities, Mat. Sb., Volume 196 (2005) no. 1, pp. 81-122 | DOI | MR | Zbl

[23] Prokhorov, Yuri G. The degree of -Fano threefolds, Mat. Sb., Volume 198 (2007) no. 11, pp. 153-174 | DOI | MR

[24] Prokhorov, Yuri G. -Fano threefolds of large Fano index, I, Doc. Math., Volume 15 (2010), pp. 843-872 | MR | Zbl

[25] Prokhorov, Yuri G. On Fano threefolds of large Fano index and large degree, Mat. Sb., Volume 204 (2013) no. 3, pp. 43-78 | DOI | MR | Zbl

[26] Prokhorov, Yuri G.; Reid, Miles On -Fano 3-folds of Fano index 2, Minimal models and extremal rays (Kyoto, 2011) (Advanced Studies in Pure Mathematics), Volume 70, Mathematical Society of Japan, 2016, pp. 397-420 | DOI | MR | Zbl

[27] Prokhorov, Yuri G.; Shokurov, Vyacheslav V. Towards the second main theorem on complements, J. Algebr. Geom., Volume 18 (2009) no. 1, pp. 151-199 | DOI | MR | Zbl

[28] Reid, Miles Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society, 1987, pp. 345-414 | DOI | MR | Zbl

[29] Suzuki, Kaori On Fano indices of -Fano 3-folds, Manuscr. Math., Volume 114 (2004) no. 2, pp. 229-246 | DOI | MR | Zbl

Cité par Sources :