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ON THE ANTI-CANONICAL GEOMETRY OF WEAK
Q-FANO THREEFOLDS II

by Meng CHEN & Chen JIANG (*)

Abstract. — By a canonical (resp. terminal) weak Q-Fano 3-fold we mean a
normal projective one with at worst canonical (resp. terminal) singularities on
which the anti-canonical divisor is Q-Cartier, nef and big. For a canonical weak
Q-Fano 3-fold V , we show that there exists a terminal weak Q-Fano 3-fold X,
being birational to V , such that the m-th anti-canonical map defined by |−mKX |
is birational for all m > 52. As an intermediate result, we show that for any K-
Mori fiber space Y of a canonical weak Q-Fano 3-fold, the m-th anti-canonical map
defined by |−mKY | is birational for all m > 52.
Résumé. — Par variété de dimension trois canonique (resp. terminale) faible-

ment Q-Fano, nous entendons une variété normale projective avec au plus des
singularités canoniques (resp. terminales) sur laquelle le diviseur anticanonique est
Q-Cartier, nef et big. Pour une variété de dimension trois canonique faiblement
Q-Fano V , nous montrons qu’il existe une variété de dimension trois terminale fai-
blement Q-Fano X birationnelle à V , de sorte que l’application pluri-anticanonique
définie par |−mKX | est birationnelle sur son image pour tous les m > 52. Comme
un résultat intermédiaire, nous montrons que pour n’importe quelle K-fibration de
Mori Y d’une variété de dimension trois canonique faiblement Q-Fano, l’applica-
tion pluri-anticanonique définie par |−mKY | est birationnelle sur son image pour
tous les m > 52.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of
characteristic 0 (for instance, k = C). We adopt the standard notation
in [20] and will freely use them.
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A normal projective variety X is called a weak Q-Fano variety (resp. Q-
Fano variety) if the anti-canonical divisor −KX is nef and big (resp. ample).
A canonical (resp. terminal) weak Q-Fano variety is a weak Q-Fano variety
with at worst canonical (resp. terminal) singularities.
According to Minimal Model Program, weak Q-Fano varieties form a

fundamental class among research objects of birational geometry. There are
a lot of works (for instance, [1, 4, 5, 10, 12, 16, 19, 22, 23, 24, 25, 26, 29])
which study the explicit geometry of canonical or terminal (weak) Q-Fano
3-folds.

Given a canonical weak Q-Fano n-fold X, the m-th anti-canonical map
ϕ−m,X (or simply ϕ−m) is the rational map defined by the linear system
|−mKX |. Since −KX is big, ϕ−m,X is a birational map onto its image when
m is sufficiently large. Therefore it is interesting to find such a practical
number mn, independent of X, which guarantees the stable birationality of
ϕ−mn

. Such a number m3 exists for canonical weak Q-Fano 3-folds due to
the boundedness result proved by Kollár, Miyaoka, Mori, and Takagi [19].
In general, mn exists for canonical weak Q-Fano n-folds due to the recent
work of Birkar [2]. It is still mysterious to the authors whether mn can be
explicitly computed or effectively estimated for n > 4.
In this paper we are interested in the explicit birational geometry of

canonical weak Q-Fano 3-folds, so it is natural to consider the following
problem.

Problem 1.1. — Find the optimal constant c such that ϕ−m is bira-
tional (onto its image) for all m > c and for all canonical weak Q-Fano
3-folds.

The following example suggests that c > 33.

Example 1.2 ([14, List 16.6, No. 95]). — The general weighted hyper-
surface X66 ⊂ P(1, 5, 6, 22, 33) is a Q-factorial terminal Q-Fano 3-fold of
Picard number one. It is clear that ϕ−m is birational for m > 33, but ϕ−32
is non-birational.

In our previous article [12](1) (see also [15] for related results on generic
finiteness), we showed the following theorems.

Theorem 1.3 ([12, Theorem 1.6]). — Let X be a Q-factorial termi-
nal Q-Fano 3-fold of Picard number one. Then ϕ−m,X is birational for all
m > 39.

(1) In [12], a Q-Fano 3-fold means a Q-factorial terminal Q-Fano 3-fold of Picard number
one, and a weak Q-Fano 3-fold means a Q-factorial terminal weak Q-Fano 3-fold.
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Theorem 1.4 ([12, Theorem 1.8, Remark 1.9]). — LetX be a canonical
weak Q-Fano 3-fold. Then ϕ−m,X is birational for all m > 97.

One intuitively feels that the numerical bound “97” obtained in The-
orem 1.4 might be far from optimal. As being indicated in [10, 12], the
birationality problem is closely related to the following problem.

Problem 1.5. — Given a canonical weak Q-Fano 3-fold X, what is the
smallest positive integer δ1 = δ1(X) satisfying dimϕ−δ1(X) > 1?

In our previous paper we have shown the following theorems.

Theorem 1.6 ([12, Theorem 1.4]). — Let X be a Q-factorial terminal
Q-Fano 3-fold of Picard number one. Then there exists an integer n1 6 10
such that dimϕ−n1(X) > 1.

Theorem 1.7 ([12, Theorem 1.7, Remark 1.9]). — Let X be a canonical
weak Q-Fano 3-fold. Then dimϕ−n2(X) > 1 for all n2 > 71.

Note that Theorems 1.3 and 1.6 are very close to be optimal due to
Example 1.2 and the following example.

Example 1.8 ([14, List 16.7, No. 85]). — Consider the general codimen-
sion 2 weighted complete intersection X = X24,30 ⊂ P(1, 8, 9, 10, 12, 15)
which is a Q-factorial terminal Q-Fano 3-fold of Picard number one. Then
dimϕ−9(X) > 1 while dimϕ−8(X) = 1 since P−8 = 2. Clearly δ1(X) = 9.

The aim of this paper is to intensively study Problem 1.5. It turns out
that, modulo birational equivalence, the following theorem considerably
improves Theorems 1.4 and 1.7:

Theorem 1.9. — Let V be a canonical weak Q-Fano 3-fold. Then there
exists a terminal weak Q-Fano 3-fold X birational to V such that

(1) dimϕ−m(X) > 1 for all m > 37;
(2) ϕ−m,X is birational for all m > 52.

According to Minimal model program, Mori fiber spaces are fundamen-
tal classes in birational geometry, so it is also interesting to consider the
relation of a Q-Fano variety and its Mori fiber spaces. As an intermediate
result, we show the following theorem.

Theorem 1.10. — Let V be a canonical weak Q-Fano 3-fold. Then for
any K-Mori fiber space Y of V (see Definition 3.5),

(1) dimϕ−m(Y ) > 1 for all m > 37;
(2) ϕ−m,Y is birational for all m > 52.

TOME 70 (2020), FASCICULE 6
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Note that here −KY is big, but not necessarily nef. But we can still
consider the map ϕ−m,Y defined by |−mKY |.

Remark 1.11. — The birationality of anti-pluricanonical maps of weak
Q-Fano varieties is not necessarily invariant under birational equivalence.
This may account for the dilemma while the notion “birational geometry”
is used to understand the geometry of Q-Fanos.

The main idea in this paper is to show that, after a birational modifica-
tion, a canonical weak Q-Fano 3-fold is birationally equivalent to another
terminal weak Q-Fano 3-fold which takes over one vertex of an interest-
ing triangle (i.e. so-called Fano–Mori triple, see Definition 3.7). Instead of
dealing with the given Q-Fano 3-fold, we treat the Fano–Mori triple which
exhibits richer geometry. More precisely, we prove Theorems 1.9 and 1.10
by showing the following two theorems.

Theorem 1.12 (=Proposition 3.9). — Let V be a canonical weak Q-
Fano 3-fold and Y aK-Mori fiber space of V . Then there exists a Fano–Mori
triple (X,Y, Z) containing Y as the second term.

Theorem 1.13. — Let (X,Y, Z) be a Fano–Mori triple in which X is
a terminal weak Q-Fano 3-fold. Then

(1) dimϕ−m(X) > 1 for all m > 37;
(2) ϕ−m,X is birational for all m > 52.

Remark 1.14. — In Theorem 1.13, we can show moreover that ϕ−51 is
not birational only if −K3

X = 1/330 and X has the Reid basket

{(1, 2), (2, 5), (1, 3), (2, 11)},

that is, X has exactly the same anti-canonical degree and singularities as
X66 in Example 1.2.

The key step is to establish an effective method to tell when the anti-
pluricanonical system of the terminal weak Q-Fano 3-fold in a Fano–Mori
triple is not composed with a pencil, which settles Problem 1.5 in this case.
Then we can use the birationality criterion established in [12] to prove the
effective birationality as stated in the main theorem.
This paper is organized as follows. In Section 2, we recall some basic

knowledge. In Section 3, we introduce the concept of Fano–Mori triples
and their basic properties, in particular, we show that any canonical weak
Q-Fano 3-fold is birational to a Fano–Mori triple containing certain K-
Mori fiber space. In Section 4, we prove an important geometric inequality
for Fano–Mori triples on which there is an anti-pluricanonical pencil. In
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Section 5, we collect some criteria for |−mK| being not composed with a
pencil and for birationality of |−mK|. In Section 6, we apply those criteria
to prove the main theorems and, meanwhile, the structure of weighted
baskets revealed in [9] is effectively used to classify Q-Fano 3-folds with
small invariants.

Notation

For the convenience of readers, we list here the notation that will be
frequently used in this paper. Let X be a terminal weak Q-Fano 3-fold.

ϕ−m the m-th anti-canonical map corresponding
to |−mKX |

P−m(X) = h0(X,OX(−mKX)) the m-th anti-plurigenus of X
∼Q Q-linear equivalence
B = BX = {(bi, ri)} the Reid basket of orbifold points of X
rX = lcm{ri | ri ∈ BX} the Gorenstein index of X, i.e., the

Cartier index of KX

rmax = max{ri | ri ∈ BX} the maximal local index
MX = rX(−K3

X) see Section 5
λ(MX) see Section 5
σ(B) =

∑
i
bi see Subsection 2.3

σ′(B) =
∑

i

b2
i

ri
see Subsection 2.3

B = (B, P̃−1) a weighted basket
−K3(B) the volume of B
P̃−m(B) the m-th anti-plurigenus of B
{B(m)} the canonical sequence of B
B(m) = {nm

b,r × (b, r)} expression of B(m)

εm(B) the number of prime packings from
B(m−1) to B(m)

σ5 =
∑

r>5 n
0
1,r see Subsection 2.3

ε = 2σ5 − n0
1,5 see Subsection 2.3

γ(B) =
∑

i
1
ri
−
∑

i
ri + 24 see (2.3)

2. Preliminaries

Let X be a canonical weak Q-Fano 3-fold. Denote by rX the Gorenstein
index of X (= the Cartier index of KX). For any positive integer m, the
number P−m(X) = h0(X,OX(−mKX)) is called the m-th anti-plurigenus

TOME 70 (2020), FASCICULE 6
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of X. Clearly, since −KX is nef and big, Kawamata–Viehweg vanishing
theorem [17, Theorem 1-2-5] implies that

hi(X,−mKX) = hi(X,KX − (m+ 1)KX) = 0

for all i > 0 and m > 0. Hence χ(OX) = 1.
For two linear systems |A| and |B|, we write |A| � |B| if there exists an

effective divisor F such that

|B| ⊃ |A|+ F.

In particular, if A 6 B as divisors, then |A| � |B|.

2.1. Rational maps defined by Weil divisors

Consider an effective Q-Cartier Weil divisor D on X with h0(X,D) > 2.
We study the rational map defined by |D|, say

X
ΦD
99K Ph

0(D)−1

which is not necessarily well-defined everywhere. By Hironaka’s big theo-
rem, we can take successive blow-ups π : W → X such that:

(i) W is smooth projective;
(ii) the movable part |M | of the linear system | bπ∗(D)c | is base point

free and, consequently, the rational map γ = ΦD ◦π is a morphism;
(iii) the support of the union of π−1

∗ (D) and the exceptional divisors of
π is simple normal crossings.

Let W f−→ Γ s−→ Z be the Stein factorization of γ with Z = γ(W ) ⊂
Ph0(D)−1. We have the following commutative diagram:

W

π

��

γ

  

f // Γ

s

��
X

ΦD

// Z

Case (fnp). — If dim(Γ) > 2, a general member S of |M | is a smooth
projective surface by Bertini’s theorem. In this case, we say that |D| is not
composed with a pencil of surfaces (not composed with a pencil, for short).
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Case (fp). — If dim(Γ) = 1, then Γ ∼= P1 since g(Γ) 6 q(W ) = q(X) =
0. Furthermore, a general fiber S of f is an irreducible smooth projective
surface by Bertini’s theorem. We may write

M =
l∑
i=1

Si ∼ lS

where Si is a smooth fiber of f for each i and l = h0(D)− 1. We can write

|D| = |lS′|+ E,

where |S′| = |π∗S| is an irreducible rational pencil, |lS′| is the movable
part and E the fixed part. In this case, |D| is said to be composed with a
(rational) pencil of surfaces (composed with a pencil, for short).

Definition 2.1. — For another Q-Cartier Weil divisor D′ on X satis-
fying h0(X,D′) > 2, we say that |D| and |D′| are composed with the same
pencil (of surfaces) if |D| and |D′| are composed with pencils and, through
the Stein factorization, they define the same fibration structure W → P1

on some smooth model W .

Definition 2.2. — In the above setting, S is called a generic irreducible
element of |M |. By abuse of notion, we also say that S′ = π∗(S) is a generic
irreducible element of Mov |D| or |D|.

2.2. Reid’s Riemann–Roch formula

A basket B is a collection of pairs of integers (permitting weights), say
{(bi, ri) | i = 1, . . . , s; bi is coprime to ri}. For simplicity, we will alterna-
tively write a basket as a set of pairs with weights, say for example,

B = {(1, 2), (1, 2), (2, 5)} = {2× (1, 2), (2, 5)}.

Assume X to be a terminal weak Q-Fano 3-fold. According to Reid [28],
there is a basket of orbifold points (called Reid basket)

BX =
{

(bi, ri)
∣∣∣∣ i = 1, . . . , s; 0 < bi 6

ri
2 ; bi is coprime to ri

}
associated to X, where a pair (bi, ri) corresponds to an orbifold point Qi of
type 1

ri
(1,−1, bi). Moreover, by Reid’s Riemann–Roch formula, Kawamata–

Viehweg vanishing theorem and Serre duality, one has, for any n > 0,

P−n(X) = −χ(OX((n+ 1)KX))

= 1
12n(n+ 1)(2n+ 1)(−K3

X) + (2n+ 1)− l(−n)

TOME 70 (2020), FASCICULE 6
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where l(−n) = l(n + 1) =
∑
i

∑n
j=1

jbi(ri−jbi)
2ri

and the first sum runs over
all orbifold points in Reid basket.
The above formula can be rewritten as:

(2.1)

P−1 = 1
2

(
−K3

X +
∑
i

b2i
ri

)
− 1

2
∑
i

bi + 3,

P−m − P−(m−1) = m2

2

(
−K3

X +
∑
i

b2i
ri

)
− m

2
∑
i

bi + 2−∆m

where ∆m =
∑
i

(
bim(ri−bim)

2ri
− bim(ri−bim)

2ri

)
for any m > 2.

2.3. Weighted baskets according to Chen–Chen

All contents of this subsection are mainly from Chen–Chen [7, 9]. We list
them as follows:

(i) Let B = {(bi, ri) | i = 1, . . . , s; 0 < bi 6
ri

2 ; bi is coprime to ri} be
a basket. We set σ(B) =

∑
i bi, σ′(B) =

∑
i
b2

i

ri
, and ∆n(B) =∑

i

(
bin(ri−bin)

2ri
− bin(ri−bin)

2ri

)
for any integer n > 1.

(ii) The new (generalized) basket

B′ = {(b1 + b2, r1 + r2), (b3, r3), . . . , (bs, rs)}

is called a packing of B, denoted as B � B′. We call B � B′ a
prime packing if b1r2 − b2r1 = 1. A composition of finite packings
is also called a packing. So the relation “�” is a partial ordering on
the set of baskets.

(iii) Note that for a terminal weak Q-Fano 3-fold X, all the anti-pluri-
genera P−n can be determined by Reid basket BX and P−1(X).
This leads to the notion of “weighted basket”. We call a pair B =
(B, P̃−1) a weighted basket if B is a basket and P̃−1 is a non-
negative integer. We write (B, P̃−1) � (B′, P̃−1) if B � B′.

(iv) Given a weighted basket B = (B, P̃−1), define P̃−1(B) = P̃−1 and
the volume

−K3(B) = 2P̃−1 + σ(B)− σ′(B)− 6.

For all m > 1, we define the “anti-plurigenus” in the following
inductive way:

P̃−(m+1) − P̃−m

= 1
2(m+ 1)2(−K3(B) + σ′(B)) + 2− m+ 1

2 σ −∆m+1(B).
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Note that, if we set B = (BX , P−1(X)) for a given terminal weak
Q-Fano 3-fold X, then one can verify directly that −K3(B) = −K3

X

and P̃−m(B) = P−m(X) for all m > 1.

Proposition 2.3 ([9, Section 3]). — Assume that B = (B, P̃−1) � B′ =
(B′, P̃−1). Then

(1) σ(B) = σ(B′) and σ′(B) > σ′(B′);
(2) for all integer n > 1, ∆n(B) > ∆n(B′);
(3) −K3(B) + σ′(B) = −K3(B′) + σ′(B′);
(4) −K3(B) 6 −K3(B′);
(5) P̃−m(B) 6 P̃−m(B′) for all m > 2.

Next we recall the “canonical” sequence of a basketB. Set S(0) = { 1
n |n >

2}, S(5) = S(0) ∪ { 2
5}, and inductively for all n > 5,

S(n) = S(n−1) ∪
{
b

n

∣∣∣∣ 0 < b <
n

2 , b is coprime to n
}
.

Each set S(n) gives a division of the interval (0, 1
2 ] =

⋃
i[ω

(n)
i+1, ω

(n)
i ] with

ω
(n)
i , ω

(n)
i+1 ∈ S(n). Let ω(n)

i+1 = qi+1
pi+1

and ω(n)
i = qi

pi
with gcd(ql, pl) = 1 for

l = i, i + 1. Then it is easy to see that qipi+1 − piqi+1 = 1 for all n and i
(cf. [9, Claim A]).
Now given a basket B = {(bi, ri) | i = 1, . . . , s}, we define new baskets

B(n)(B), where B(n)( · ) can be regarded as an operator on the set of baskets.
For each (bi, ri) ∈ B, if bi

ri
∈ S(n), then we set B(n)

i = {(bi, ri)}. If bi

ri
6∈ S(n),

then ω
(n)
l+1 <

bi

ri
< ω

(n)
l for some l. We write ω(n)

l = ql

pl
and ω

(n)
l+1 = ql+1

pl+1

respectively. In this situation, we can unpack (bi, ri) to B(n)
i = {(riql −

bipl) × (ql+1, pl+1), (−riql+1 + bipl+1) × (ql, pl)}. Adding up those B(n)
i ,

we get a new basket B(n)(B), which is uniquely defined according to the
construction and B(n)(B) � B for all n. Note that, by the definition, B =
B(n)(B) for sufficiently large n.

Moreover, we have

B(n−1)(B) = B(n−1)(B(n)(B)) � B(n)(B)

for all n > 1 (cf. [9, Claim B]). Therefore we have a chain of baskets

B(0)(B) � B(5)(B) � · · · � B(n)(B) � · · · � B.

The step B(n−1)(B) � B(n)(B) can be achieved by a number of successive
prime packings. Let εn(B) be the number of such prime packings. For any
n > 0, set B(n) = B(n)(B).

The following properties are essential in representing B(n).

TOME 70 (2020), FASCICULE 6
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Lemma 2.4 ([9, Lemma 2.16]). — For the above sequence {B(n)}, the
following statements hold:

(1) ∆j(B(0)) = ∆j(B) for j = 3, 4;
(2) ∆j(B(n−1)) = ∆j(B(n)) for all j < n;
(3) ∆n(B(n−1)) = ∆n(B(n)) + εn(B).

It follows that ∆j(B(n)) = ∆j(B) for all j 6 n and

εn(B) = ∆n(B(n−1))−∆n(B(n)) = ∆n(B(n−1))−∆n(B).

Moreover, given a weighted basket B = (B, P̃−1), we can similarly con-
sider B(n)(B) = (B(n), P̃−1). It follows that

P̃−j(B(n)(B)) = P̃−j(B)

for all j 6 n. Therefore we can realize the canonical sequence of weighted
baskets as an approximation of weighted baskets via anti-plurigenera.
We now recall the relation between weighted baskets and anti-plurigenera

more closely. For a given weighted basket B = (B, P̃−1), we start by com-
puting the non-negative number εn and B(0), B(5) in terms of P̃−m. From
the definition of P̃−m we get

(2.2)

σ(B) = 10− 5P̃−1 + P̃−2,

∆m+1 = (2− 5(m+ 1) + 2(m+ 1)2) + 1
2(m+ 1)(2− 3m)P̃−1

+ 1
2m(m+ 1)P̃−2 + P̃−m − P̃−(m+1).

In particular, we have

∆3 = 5− 6P̃−1 + 4P̃−2 − P̃−3;

∆4 = 14− 14P̃−1 + 6P̃−2 + P̃−3 − P̃−4.

Assume that B(0) = {n0
1,r × (1, r) | r > 2}. By Lemma 2.4, we have

σ(B) = σ(B(0)) =
∑

n0
1,r;

∆3(B) = ∆3(B(0)) = n0
1,2;

∆4(B) = ∆4(B(0)) = 2n0
1,2 + n0

1,3.

Thus we get B(0) as follows:
n0

1,2 = 5− 6P̃−1 + 4P̃−2 − P̃−3;
n0

1,3 = 4− 2P̃−1 − 2P̃−2 + 3P̃−3 − P̃−4;
n0

1,4 = 1 + 3P̃−1 − P̃−2 − 2P̃−3 + P̃−4 − σ5;
n0

1,r = n0
1,r, r > 5,
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where σ5 =
∑
r>5 n

0
1,r. A computation gives

ε5 = 2 + P̃−2 − 2P̃−4 + P̃−5 − σ5.

Therefore we get B(5) = {n5
1,r × (1, r), n5

2,5 × (2, 5) | r > 2} as follows:

n5
1,2 = 3− 6P̃−1 + 3P̃−2 − P̃−3 + 2P̃−4 − P̃−5 + σ5;
n5

2,5 = 2 + P̃−2 − 2P̃−4 + P̃−5 − σ5;
n5

1,3 = 2− 2P̃−1 − 3P̃−2 + 3P̃−3 + P̃−4 − P̃−5 + σ5;
n5

1,4 = 1 + 3P̃−1 − P̃−2 − 2P̃−3 + P̃−4 − σ5;
n5

1,r = n0
1,r, r > 5.

Because B(5) = B(6), we see ε6 = 0 and on the other hand

ε6 = 3P̃−1 + P̃−2 − P̃−3 − P̃−4 − P̃−5 + P̃−6 − ε = 0

where ε = 2σ5 − n0
1,5 > 0.

Going on a similar calculation, we get

ε7 = 1 + P̃−1 + P̃−2 − P̃−5 − P̃−6 + P̃−7 − 2σ5 + 2n0
1,5 + n0

1,6;

ε8 = 2P̃−1 + P̃−2 + P̃−3 − P̃−4 − P̃−5 − P̃−7 + P̃−8

− 3σ5 + 3n0
1,5 + 2n0

1,6 + n0
1,7.

A weighted basket B = (B, P̃−1) is said to be geometric if B = (BX ,
P−1(X)) for some terminal weak Q-Fano 3-fold X. Geometric baskets are
subject to some geometric properties. By [19], we have that (−KX ·c2(X)) >
0. Therefore [28, 10.3] gives the inequality

γ(B) :=
∑
i

1
ri
−
∑
i

ri + 24 > 0.(2.3)

For packings, it is easy to see the following lemma.

Lemma 2.5. — Given a packing of baskets B1 � B2, we have γ(B1) >
γ(B2). In particular, if inequality (2.3) does not hold for B1, then it does
not hold for B2.

Furthermore, −K3(B) = −K3
X > 0 gives the inequality

σ′(B) < 2P−1 + σ(B)− 6.(2.4)

Finally, by [18, Lemma 15.6.2], if P−m > 0 and P−n > 0, then

P−m−n > P−m + P−n − 1.(2.5)
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2.4. Effective results on terminal weak Q-Fano 3-folds

We collect here some known facts about terminal weak Q-Fano 3-folds.

Proposition 2.6. — Let X be a terminal weak Q-Fano 3-folds. Then
(1) P−m > 0 for m > 6 ([7, Theorem 1.1] and [10, Corollary 5.1]);
(2) P−8 > 2 ([7, Theorem 1.1]);
(3) −K3

X > 1/330 ([7, Theorem 1.1]);
(4) rX 6 660 or rX = 840, moreover, if rX = 840, then rmax = 8 ([12,

Proposition 2.4]);
(5) rmax 6 24 by inequality (2.3).

3. Fano–Mori triples

In this section, we introduce the concept of Fano–Mori triples and prove
some basic properties.

Definition 3.1. — We say that a normal projective variety Y admits
a Mori fiber structure if the following conditions hold:

(1) g : Y → T is a surjective morphism onto a normal projective variety
T ;

(2) Y is Q-factorial with at worst terminal singularities;
(3) g∗OY = OT ;
(4) −KY is g-ample;
(5) ρ(Y/T ) = 1;
(6) dimY > dimT .

Example 3.2. — Note that, in dimension 3, there are three kinds of Mori
fiber structures according to the value of dimT :

(1) dimT = 0, Y is a Q-factorial terminal Q-Fano 3-folds with ρ(Y ) =
1;

(2) dimT = 1, Y → T is a del Pezzo fibration, of which a general fiber
is a smooth del Pezzo surface;

(3) dimT = 2, Y → T is a conic bundle, of which a general fiber is a
smooth rational curve.

Definition 3.3 (cf. [3, Definition 3.6.1]). — Let φ : X 99K Y be a
proper birational contraction (i.e., a birational map extracting no divisors)
between normal quasi-projective varieties and D a Q-Cartier divisor on X
such that D′ = φ∗D is also Q-Cartier. We say that φ is a D-non-positive
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contraction if, for some common resolution p : W → X and q : W → Y ,
one may write

p∗D = q∗D′ + E

where E is an effective q-exceptional Q-divisor.

Lemma 3.4. — Let φ : X 99K Y be a birational contraction between
normal projective varieties and D a Q-Cartier divisor on X such that D′ =
φ∗D is also Q-Cartier. If −D is nef, then φ is D-non-positive.

Proof. — Taking a common resolution p : W → V ′ and q : W → Y , one
may write

p∗D = q∗D′ + E

where E is a q-exceptional Q-divisor. Note that −E = q∗D′ − p∗D is
q-nef since −D is nef, hence E > 0 by Negativity Lemma (see [20, Corol-
lary 3.39(1)]). �

Note that the definition of D-non-positive contraction is independent of
the choice of common resolutions. The most standard example of a D-non-
positive contraction might be a composition of steps of D-MMP.

Definition 3.5. — Let V be a normal projective variety with at worst
canonical singularities and V ′ be a terminalization of V . Then we say Y is
a K-Mori fiber space of V if the following conditions are satisfied:

(1) Y has a Mori fiber structure Y → T ;
(2) there is a birational contraction σ : V ′ 99K Y ;
(3) σ is a KV ′ -non-positive birational contraction.

Note that if −KV is nef (or equivalently, −KV ′ is nef), then condition (3)
automatically holds by Lemma 3.4.

Remark 3.6. — Note that the definition of K-Mori fiber spaces is inde-
pendent of the choice of the terminalization. By [3], if KV is not pseudo-
effective, then K-Mori fiber spaces of V always exist by running K-MMP
on V ′.

The following is the key object that we are interested in.

Definition 3.7. — We say that (X,Y, Z) is a Fano–Mori triple if there
is a commutative diagram

X

p
  

φ // Y

q
��

Z
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satisfying the following conditions:
(1) X is a Q-factorial terminal weak Q-Fano 3-fold;
(2) Y has a Mori fiber structure Y → T ;
(3) Z is a Q-factorial canonical weak Q-Fano 3-fold;
(4) φ : X 99K Y is a birational contraction;
(5) q : Y 99K Z is a birational contraction which is isomorphic in

codimension one;
(6) p : X → Z is a terminalization of Z, or equivalently, KX = p∗(KZ).

Remark 3.8. — For a Fano–Mori triple (X,Y, Z), if ρ(Y ) = 1 (or equiva-
lently, dimT = 0), then X,Y, Z are isomorphic to each other, and they are
Q-factorial terminal Q-Fano 3-folds with ρ = 1. In fact, in this case, since
ρ(Y ) = 1 and Y admits a Mori fiber structure, Y is a Q-factorial termi-
nal Q-Fano 3-fold of Picard number one. Since Y and Z are isomorphic in
codimension one, it turns out that ρ(Z) = 1 and Y ∼= Z. In particular, Z
is terminal and hence X ∼= Z.

By Remark 3.8, the concept of Fano–Mori triples can be viewed as a
natural generalization of the concept of Q-factorial terminal Q-Fano 3-folds
with ρ = 1. Moreover, the following proposition suggests that Fano–Mori
triples appear naturally in the study of birational geometry of canonical
weak Q-Fano 3-folds.

Proposition 3.9. — Let V be a canonical weak Q-Fano 3-fold and Y
a K-Mori fiber space of V . Then there exists a Fano–Mori triple (X,Y, Z)
containing Y as the second term.

Proof. — Let V be a canonical weak Q-Fano 3-fold and Y a K-Mori
fiber space of V . After replacing V by its terminalization, we may assume
that V is Q-factorial and terminal and there exists a birational contraction
σ : V 99K Y .
Note that −KV is semi-ample by Basepoint-free Theorem (see [20, The-

orem 3.3]), we may choose an effective Q-divisor B ∼Q −KV such that
(V,B) is terminal and Supp(B) does not contain any exceptional divisor
on V over Y . Take BY = σ∗B. Then KY + BY ∼Q 0. Taking a common
resolution f : W → V and g : W → Y . Then f∗(KV +B)− g∗(KY +BY )
is g-exceptional. By Negativity Lemma (see [20, Corollary 3.39(1)]), we
see that f∗(KV + B) = g∗(KY + BY ). Hence (Y,BY ) is canonical by the
construction of (V,B).

Noting that −KY = σ∗(−KV ) is big, we may write −KY ∼Q AY + EY
where AY is an ample Q-divisor and EY is an effective Q-divisor. Now take
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t > 0 to be sufficiently small such that (Y,BY + tEY ) is klt. Then the pair
(Y, (1− t)BY + tEY ) is also klt and

−(KY + (1− t)BY + tEY ) ∼Q tAY

is ample. By [3, Corollary 1.3.2], Y is a Mori dream space, which means
that we can run MMP for any divisor on Y .

Running the (−K)-MMP on Y , we end up with a minimal model Z
which is Q-factorial such that −KZ is nef and big. Since −KV is semi-
ample, the stable base locus of −KY does not contain any divisors, hence
the (−K)-MMP on Y does not contract any divisor, which means that the
birational contraction q : Y 99K Z is an isomorphism in codimension one.
Moreover, take BZ = q∗BY , then (Z,BZ) is canonical also by Negativity
Lemma since (Y,BY ) is canonical and KY +BY ∼Q 0, which implies that
Z is also canonical. In summery, Z is a Q-factorial canonical weak Q-Fano
3-fold.

Finally, we take p : X → Z to be a terminalization of Z, then X is
a Q-factorial terminal weak Q-Fano 3-fold. Clearly the induced map φ =
q−1 ◦ p : X 99K Y is a birational contraction. �

Proposition 3.10. — Let (X,Y, Z) be a Fano–Mori triple. Then
(1) φ : X 99K Y is KX -non-positive, in particular, Y is a K-Mori fiber

space of X;
(2) q : Y 99K Z is (−KY )-non-positive;
(3) for any integer m > 0,

h0(X,−mKX) = h0(Y,−mKY ) = h0(Z,−mKZ).

In particular, ϕ−m,X , ϕ−m,Y , and ϕ−m,Z factor through each other
by the birational maps φ, p, and q, and therefore share the same
birational properties.

Proof. — Since −KX is nef, by Lemma 3.4, φ is KX -non-positive, which
proves statement (1).
Since q is an isomorphism in codimension one, q−1 : Z 99K Y is also a

birational contraction. Since −KZ is nef, again by Lemma 3.4, q−1 is KZ-
non-positive. Since q is an isomorphism in codimension one, it is easy to
check by definition that q : Y 99K Z is (−KY )-non-positive, which proves
statement (2).
For statement (3), fix an integer m > 0. Since φ is KX -non-positive and

q is (−KY )-non-positive, we have

h0(X,−mKX) 6 h0(Y,−mKY ) = h0(Z,−mKZ).
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On the other hand, since KX = p∗(KZ), we have

h0(X,−mKX) = h0(Z,−mKZ).

We complete the proof. �

Lemma 3.11. — Let V be a canonical weak Q-Fano 3-fold and Y a K-
Mori fiber space of V . Let Y → T be the Mori fiber structure, then T is of
Fano type, that is, there exists an effective Q-divisor BT such that (T,BT )
is klt and −(KT +BT ) is ample. In particular, if (X,Y, Z) is a Fano–Mori
triple and Y → T be the Mori fiber structure, then T is of Fano type.

Proof. — In the proof of Proposition 3.9, we have seen that the pair
(Y, (1− t)BY + tEY ) is klt and

−(KY + (1− t)BY + tEY ) ∼Q tAY

is ample. Hence Y is of Fano type. Then we may apply [27, Lemma 2.8]
or [13, Corollary 3.3] to conclude that T is of Fano type as well.

The last statement follows from Proposition 3.10(1). �

4. A geometric inequality

In our previous paper, we used the following proposition to get a number
m1 > 0 so that |−m1K| is not composed with a pencil.

Proposition 4.1 ([12, Proof of Corollary 4.2]). — Let X be a canon-
ical weak Q-Fano 3-fold and m > 0 an integer. Assume that |−mKX | is
composed with a pencil. Keep the notation in Subsection 2.1. Then

P−m − 1
m

6
−K3

X

(π∗(KX)2 · S) .

Proposition 4.1 is, however, too weak for applications. The main goal
of this section is to present an alternative inequality (see Proposition 4.5)
which turns out to be the key ingredient of this paper.

To start up we recall the setting. Let (X,Y, Z) be a Fano–Mori triple
and assume that |−mKX | is composed with a pencil for an integer m >

0. By the notation in Subsection 2.1, we may take W to be a common
log resolution of X and Y , and f : W → P1 is the induced fibration by
|−mKX |. A general fiber of f is denoted by S. We have the following
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commutative diagram:

W

π

~~

η

  

f // P1

X

p
  

φ // Y

q
~~

g // T

Z

Lemma 4.2. — Let (X,Y, Z) be a Fano–Mori triple and m > 0 an
integer. Assume that |−mKX | is composed with a pencil. Keep the notation
in Subsection 2.1. Assume that there exists an effective η-exceptional Q-
divisor F on W such that, (−π∗(KX)|S · F |S) > 0 for a general S, then

P−m − 1
m

6 2rX(π∗(KX)2 · S).

Proof. — Since −π∗(KX)|S is nef, there exists a component F0 of F such
that (−π∗(KX)|S · F0|S) > 0, which means that

(−π∗Z(KZ)|S · F0|S) = (−π∗(KX)|S · F0|S) > 0

where we denote by πZ the composition p ◦π : W → Z. In particular, F0|S
is not contracted by πZ . Hence there exists a curve CZ ⊂ Z such that

CZ ⊂ πZ(F0 ∩ S) ⊂ πZ(F0).

On the other hand, since Y and Z are isomorphic in codimension one and
F0 is η-exceptional, F0 is also πZ-exceptional. This implies that πZ(F0) is
a subvariety of codimension at least 2. Hence CZ = πZ(F0). In particular,
CZ is independent of S, and for any general S, CZ = πZ(F0∩S). Moreover,

(−KZ · CZ) = 1
n

(π∗Z(−KZ) · F0 · S) > 0

by the projection formula, where π∗(F0|S) = nCZ as 1-cycles. Hence
(−KZ · CZ) > 1

rX
since rXKZ is Cartier.

By assumption, we have

−π∗(mKX) ∼ (P−m − 1)S +Dm

where Dm is an effective Q-divisor. Set w = P−m−1
m . Then

− 1
w
π∗(KX)− S ∼Q D(4.1)

for some effective Q-divisor D. Write

KW = π∗(KX) + Eπ,
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where Eπ > 0 is π-exceptional. Pick two general fibers S1 and S2 of f and
consider the pair

(W,−Eπ + 2D + S1 + S2),

which can be assumed to have simple normal crossing support modulo a
further birational modification of W . Note that

−(KW − Eπ + 2D + S1 + S2) ∼Q −
(

1− 2
w

)
π∗(KX)

∼Q −
(

1− 2
w

)
π∗Z(KZ)

is πZ-nef and πZ∗(−Eπ + 2D + S1 + S2) > 0 since Eπ is πZ-exceptional.
Denote by G the support of the effective part of b−Eπ + 2Dc + S1 + S2.
By Connectedness Lemma (see [20, Theorem 5.48]),

G ∩ π−1
Z (z)

is connected for any point z ∈ Z.
We claim that there exists a prime divisor F1 on W such that 2D > F1

and πZ(F1 ∩S) contains CZ for a general S. Consider a point z ∈ CZ ⊂ Z,
then S ∩ π−1

Z (z) 6= ∅ for a general S since CZ = πZ(F0 ∩ S) ⊂ πZ(S). In
particular, S1∩π−1

Z (z) 6= ∅ and S2∩π−1
Z (z) 6= ∅, which are two disconnected

sets in G ∩ π−1
Z (z). Since G ∩ π−1

Z (z) is connected, there exists a curve
Bz ⊂ G ∩ π−1

Z (z) such that Bz ∩ S1 ∩ π−1
Z (z) 6= ∅ and Bz 6⊂ S1 ∩ π−1

Z (z).
Moving z in CZ , Bz deforms to a prime divisor F1 ⊂ G, to be more precise,
there exists a prime divisor F1 ⊂ G such that Bz ⊂ F1∩π−1

Z (z) for infinitely
many z ∈ CZ . Hence

z ∈ πZ(Bz ∩ S1 ∩ π−1
Z (z)) ⊂ πZ(F1 ∩ S1 ∩ π−1

Z (z)) ⊂ πZ(F1 ∩ S1)

for infinitely many z ∈ CZ . This means that CZ ⊂ πZ(F1 ∩ S1). By the
construction of F1, F1 ⊂ G and it is clear that F1 is different from S1
and S2, hence coeffF1(−Eπ + 2D) > 1 and in particular, 2D > F1. By the
generality of S1, CZ ⊂ πZ(F1 ∩ S) for general S.

By equation (4.1),

2
w

(π∗(KX)2 · S) =
(
− π∗(KX)|S · (2S + 2D)|S

)
=
(
π∗(−KX)|S · 2D|S

)
>
(
π∗(−KX)|S · F1|S

)
=
(
π∗Z(−KZ)|S · F1|S

)
=
(
−KZ · πZ∗(F1|S)

)
>
(
−KZ · CZ

)
>

1
rX

.
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In other words, we have
P−m − 1

m
= w 6 2rX(π∗(KX)2 · S). �

Lemma 4.3. — Let (X,Y, Z) be a Fano–Mori triple and m > 0 an
integer. Assume that |−mKX | is composed with a pencil. Keep the notation
in Subsection 2.1. Assume that f : W → P1 factors through Y . Then

P−m − 1
m

6 max{−K3
X , 2rX(π∗(KX)2 · S)}.

Proof. — Let SY be a general fiber of Y → P1. Write

π∗(KX) = η∗(KY ) + E

where E is an effective η-exceptional Q-divisor by Proposition 3.10(1).
Restricting to a general fiber S of f , we have

π∗(KX)|S = η∗(KY )|S + E|S = η∗S(KSY
) + E|S ,(4.2)

where ηS : S → SY is the restriction of η on S.
If E|S = 0, then

(π∗(KX)2 · S) = (π∗(KX)|S)2 = η∗S(KSY
)2

is an integer since SY is smooth. Since −π∗(KX)|S is nef and big,
(π∗(KX)2 · S) > 1 and, by Proposition 4.1,

P−m − 1
m

6 −K3
X .

Now we may assume that E|S 6= 0. Since E is exceptional over Y and
S is general, E|S is an effective Q-divisor on S exceptional over SY . By
Hodge Index Theorem, (E|S)2 < 0. By (4.2),(

π∗(KX)|S · E|S
)

=
(
η∗S(KSY

) · E|S
)

+ (E|S)2 = (E|S)2 < 0.

Hence we may apply Lemma 4.2 to get
P−m − 1

m
6 2rX(π∗(KX)2 · S).

So we have completed the proof. �

Lemma 4.4. — Let S be a smooth del Pezzo surface and D a non-zero
integral effective divisor on S such that −KS − aD is Q-linearly equivalent
to an effective Q-divisor for some positive rational number a. Then a 6 3.

Proof. — By assumption, there is an effective Q-divisor B such that

aD +B ∼Q −KS .
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Since (S,D+ 1
aB) is not klt, the log canonical threshold lct(S; aD+B) 6 1

a .
Recall that the global log-canonical threshold is defined as:

lct(S) = inf{lct(S;L) |L ∼Q −KS , L is an effective Q-divisor}.

Clearly we have lct(S) 6 1
a . On the other hand, lct(S) > 1

3 by [6, Theo-
rem 1.7], which implies that a 6 3. �

Proposition 4.5. — Let (X,Y, Z) be a Fano–Mori triple such that
ρ(Y ) > 1 and m > 0 an integer. Assume that |−mKX | is composed with a
pencil. Keep the same notation as in Subsection 2.1. Then

P−m − 1
m

6 max{3,−K3
X , 2rX(π∗(KX)2 · S)}.

Proof. — Note that we have

−π∗(mKX) ∼ (P−m − 1)S +Dm,

where Dm is an effective Q-divisor (the fixed part). Pushing forward to Y ,
one has

−mKY = −η∗π∗(mKX) ∼ (P−m − 1)η∗S + η∗Dm.(4.3)

Consider the Mori fiber structure g : Y → T . Since ρ(Y ) > 1, dimT > 0.
We argue by discussing the value of dimT .

If dimT = 1, then T ' P1 since g(T ) 6 q(Y ) = q(X) = 0. Take SY to
be a general fiber of g. If η∗S|SY

= 0, then |η∗S| coincides with the pencil
|SY |, and hence f factors through g. By Lemma 4.3 we have

P−m − 1
m

6 max{−K3
X , 2rX(π∗(KX)2 · S)}.

If η∗S|SY
6= 0, then η∗S|SY

= D is an effective non-zero integral divisor on
SY and by equation (4.3),

−mKSY
= −mKY |SY

∼ (P−m − 1)η∗S|SY
+ η∗Dm|SY

> (P−m − 1)D,

which means that P−m−1
m 6 3 by Lemma 4.4 since SY is a smooth del Pezzo

surface.
Now we consider the case when dimT = 2. Note that for a general fiber

C ' P1 of g, (η∗S · C) is a non-negative integer. If (η∗S · C) > 1 for a
general fiber C of g, then by equation (4.3) intersecting with C,

2m = −m(KY · C) > (P−m − 1)(η∗S · C) > P−m − 1,

which means that
P−m − 1

m
6 2.

Hence we may assume that (η∗S · C) = 0 for a general fiber C of g. By
Cone Theorem (see [20, Theorem 3.7]), there exists a Q-divisor H on T
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such that η∗S ∼Q g∗H. In particular, (η∗S)2 ≡ (H2)C as 1-cycles. Note
that, if we fix a general S, then we may just take H = g(η∗S). Since |η∗S| is
a movable linear system, H is nef and H2 > 0. Moreover, H is semi-ample
by Basepoint-free Theorem and Lemma 3.11.
First we consider the case H2 = 0. In this case |nH| defines a contraction

T → Λ to a curve Λ (after taking Stein factorization) for a sufficiently large
n. Moreover, it is easy to see that the induced morphismW → Y → T → Λ
contracts S, which means that this map coincides with f : W → P1. Hence
f : W → P1 factors through Y and we may apply Lemma 4.3 to get

P−m − 1
m

6 max{−K3
X , 2rXπ∗(KX)2 · S}.

Next we consider the case H2 > 0. We have the following claim.

Claim 4.6. — For any η-exceptional prime divisor E0 on W ,

(E0 · η∗η∗S · S) = 0.

Proof. — By projection formula, we have

(E0 · η∗η∗S · S) = (E0|S · η∗η∗S) = (η∗(E0|S) · η∗S).

We may assume that η∗(E0|S) 6= 0 for a general S since, otherwise, there
is nothing to prove. Then there is a curve G ⊂ η(E0 ∩ S) ⊂ η(E0). Note
that E0 is an η-exceptional prime divisor, we have G = η(E0 ∩S) = η(E0).
In particular, G does not depend on S and G = η(E0 ∩ S) ⊂ η∗S for
general S. Recall that η∗S ∼Q g∗H, which means that the intersection of
two general η∗S lies in fibers of g, hence G lies in a fiber of g. In particular,
since Supp(η∗(E0|S)) = G,

(η∗(E0|S) · η∗S) = (η∗(E0|S) · g∗H) = 0.

We have proved the claim. �

Write

π∗(KX) = η∗(KY ) + E

where E > 0 is an η-exceptional Q-divisor. By Claim 4.6,

(−π∗(KX) · η∗η∗S · S) = (−η∗(KY ) · η∗η∗S · S)
= (−KY · η∗S · η∗S)

= (−KY · (H2)C) = 2(H2) > 0.

On the other hand, we may write

η∗η∗S = S + F
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where F > 0 is an η-exceptional effective Q-divisor on W , and we have

0 < (−π∗(KX) ·η∗η∗S ·S) = (−π∗(KX) · (S+F ) ·S) = (−π∗(KX)|S ·F |S).

Hence we may apply Lemma 4.2 to get
P−m − 1

m
6 2rX(π∗(KX)2 · S).

Combining the above cases, we complete the proof. �

5. Criteria for birationality

Based on Section 4, firstly we give criteria for |−mK| being not com-
posed with pencils (Propositions 5.2 and 5.4) and then recall criteria for
birationality of |−mK| established in our previous paper [12] (Theorems 5.7
and 5.9).
We always assume that X is a terminal weak Q-Fano 3-fold.
SetMX = rX(−K3

X), which is a positive integer. For any positive integer
N , define the following functions

θ(MX , N) = min{MX/N,max{3,MX/rX , 2N}},
θ(MX) = max

N∈Z>0
θ(MX , N),

and

λ(MX) =


MX , if MX 6 3;

max

3,MX/rX , 2
⌊√

MX/2
⌋
,

MX⌈√
MX/2

⌉
 if MX > 4.

We have the following relation between λ(MX) and θ(MX).

Lemma 5.1. — λ(MX) > θ(MX).

Proof. — It suffices to show that λ(MX) > θ(MX , N) holds for any
positive integer N .
If MX 6 3, then

λ(MX) = MX >MX/N > θ(MX , N).

If MX > 4 and N >
⌈√

MX/2
⌉
, then

λ(MX) > MX⌈√
MX/2

⌉ >MX/N > θ(MX , N).
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If MX > 4 and N 6
⌊√

MX/2
⌋
, then

λ(MX) = max

3,MX/rX , 2
⌊√

MX/2
⌋
,

MX⌈√
MX/2

⌉


> max
{

3,MX/rX , 2
⌊√

MX/2
⌋}

> max{3,MX/rX , 2N}
> θ(MX , N). �

Proposition 5.2. — Let (X,Y, Z) be a Fano–Mori triple with ρ(Y ) > 1
and m > 0 an integer. If

P−m > λ(MX)m+ 1,

then |−mKX | is not composed with a pencil.

Proof. — First the assumption implies that P−m > 2. Hence ϕ−m,X is
non-trivial. Assume that |−mKX | is composed with a pencil. Keep the
notation in Subsection 2.1. Take N0 = rX(π∗(KX)2 ·S), which is a positive
integer (cf. [10, Lemma 2.2]). Then, by Propositions 4.1 and 4.5,

P−m − 1
m

6
MX

N0

and
P−m − 1

m
6 max{3,MX/rX , 2N0}.

That is,
P−m − 1

m
6 min{MX/N0,max{3,MX/rX , 2N0}}

= θ(MX , N0) 6 λ(MX),

a contradiction. �

In practice, we need to know the lower bound of P−m which is fairly
computable by virtue of Reid’s Riemann–Roch formula. Let us recall the
following proposition from [12], which we will use to estimate the anti-
plurigenus.

Proposition 5.3 (cf. [12, Proof of Proposition 4.3]). — Let X be a
terminal weak Q-Fano 3-fold and t > 0 a real number. Then, for any
integer n > t and n > rmaxt/3, one has

P−n >
1
12n(n+ 1)(2n+ 1)(−K3

X) + 1− 2n
t
.
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Proof. — From [12, Proof of Proposition 4.3 (p. 90)], one has

l(−n) 6 2(t+ 1)n
t

provided that n > t and n > rmaxt/3. It follows from Reid’s Riemann–Roch
formula that

P−n = 1
12n(n+ 1)(2n+ 1)(−K3

X) + 2n+ 1− l(−n)

>
1
12n(n+ 1)(2n+ 1)(−K3

X) + 1− 2n
t
. �

Proposition 5.4. — Let (X,Y, Z) be a Fano–Mori triple such that
ρ(Y ) > 1. Let t > 0 be a real number andm an integer. Ifm > t,m > rmaxt

3 ,
and

m > −3
4 +

√
12

t · (−K3
X) + 6λ(MX)

−K3
X

+ 1
16 ,

then |−mKX | is not composed with a pencil.

Proof. — Under the assumptions, one has

1
12(m+ 1)(2m+ 1) > 2

t · (−K3
X) + λ(MX)

−K3
X

,

and, by Proposition 5.3,

P−m > λ(MX)m+ 1.

Hence |−mKX | is not composed with a pencil by Proposition 5.2. �

To apply Proposition 5.4, we always use the following lemma to estimate
the value of λ(MX)/(−K3

X).

Lemma 5.5. — The following inequalities hold:

(1) λ(MX)
−K3

X

6 max
{

1, 3
−K3

X

,

√
2rX
−K3

X

}
;

(2) λ(MX) 6MX and λ(MX)/(−K3
X) 6 rX .
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Proof. — If MX 6 3, then it is clear. We may assume that MX > 4.
Note that 2

⌊√
MX/2

⌋
6
√

2MX and MX⌈√
MX/2

⌉ 6 √2MX . Hence

λ(MX)
−K3

X

= 1
−K3

X

max

3,MX/rX , 2
⌊√

MX/2
⌋
,

MX⌈√
MX/2

⌉


6 max
{

3
−K3

X

, 1,
√

2MX

−K3
X

}
= max

{
3
−K3

X

, 1,
√

2rX
−K3

X

}
,

which implies (1).
Similarly, since 2

⌊√
MX/2

⌋
6MX and MX⌈√

MX/2
⌉ 6MX , it is clear that

λ(MX) 6MX which implies (2). �

As the last part of this section, we recall the established birationality
criterion in [12] along with a newly developed criterion.

Assumption 5.6. — Let X be a terminal weak Q-Fano 3-fold and
m0 > 0 an integer with P−m0 > 2. Let m1 > m0 be another integer
with P−m1 > 2 such that |−m1KX | and |−m0KX | are not composed
with the same pencil. Pick a generic irreducible element S of |M−m0 | =
Mov|bπ∗(−m0KX)c|. Define the real number

µ0 = inf{t ∈ Q+ | tπ∗(−KX)− S ∼Q effective Q-divisor},

and in practice we may choose a suitable rational number µ′0 > µ0 such
that

µ′0π
∗(−KX)− S ∼Q effective Q-divisor.

Let ν0 be an integer such that h0(−ν0KX) > 0. Set

a(m0) =
{

6, if m0 > 2;
1, if m0 = 1,

and the positive integer N0 = rX(π∗(KX)2 · S).

Theorem 5.7 ([12, Theorem 5.11]). — Let X be a terminal weak Q-
Fano 3-fold and keep Assumption 5.6. Then ϕ−m,X is birational if one of
the following holds:

(1) m > max{m0 +m1 + a(m0), b3µ0c+ 3m1};
(2) m > max{m0 +m1 + a(m0),

⌊ 5
3µ0 + 5

3m1
⌋
, bµ0c+m1 + 2rmax};

(3) m > max{m0 +m1 + a(m0), bµ0c+m1 + 2ν0rmax}.
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Remark 5.8 (cf. [12, Remark 5.3]). — Most of the time in practice, we will
take m0 to be the minimal positive integer with P−m0 > 2. By definition
one can always choose µ′0 = m0 and have µ0 6 m0. If |−m0KX | is com-
posed with a pencil, then we can choose µ′0 = m0

P−m0−1 and µ0 6
m0

P−m0−1 .
Moreover, if for some integer k, |−kKX | and |−m0KX | are composed with
the same pencil, then we can choose µ′0 = k

P−k−1 and µ0 6 k
P−k−1 .

When both rX and rmax are small, we feel that the following new criterion
is very helpful.

Theorem 5.9. — Let X be a terminal weak Q-Fano 3-fold and keep
Assumption 5.6. Then ϕ−m,X is birational if

m > max
{
m0 + a(m0), dµ′0e+ 4ν0rmax − 1,

⌊
µ′0 +

√
8rX/N0

⌋}
.

Lemma 5.10 (see [21, Proposition 4] or [11, Lemma 2.6]). — Let S be a
smooth projective surface. Let L be a nef and big Q-divisor on S satisfying
the following conditions:

(1) L2 > 8;
(2) (L ·CP ) > 4 for all irreducible curves CP passing through any very

general point P ∈ S.
Then the linear system |KS + dLe | separates two distinct points in very
general positions. Consequently, |KS + dLe | gives a birational map.

Proof of Theorem 5.9. — By [12, Lemma 5.2], the birationality of ϕ−m,X
is equivalent to the birationality of ΦΛm

defined by the linear system Λm =
|KW + d(m+ 1)π∗(−KX)e | on W .
By [12, Proposition 5.8], Λm can distinguish different generic irreducible

elements of |M−m0 | since m > m0 + a(m0). Hence the usual birationality
principle (see, for instance, [8, 2.7]) reduces the birationality of ΦΛm

to that
of ΦΛm

|S for a generic irreducible element S of |M−m0 |.
Now we will show that ΦΛm

|S is birational under the assumption of the
theorem.
By the definition of µ′0, we have

µ′0π
∗(−KX) ∼Q S + E

for an effective Q-divisor E. Re-modify the resolution π in Subsection 2.1
so that E has simple normal crossing support.
For the given integer m > 0, we have

|KY + d(m+ 1)π∗(−KX)− Ee | � |KY + d(m+ 1)π∗(−KX)e |.(5.1)
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Since by assumption m > µ′0, the Q-divisor

(m+ 1)π∗(−KX)− E − S ≡ (m+ 1− µ′0)π∗(−KX)

is nef and big and thus

H1(Y,KY + d(m+ 1)π∗(−KX)− Ee − S) = 0

by Kawamata–Viehweg vanishing theorem. Hence we have the surjective
map

H0(Y,KY + d(m+ 1)π∗(−KX)− Ee) −→ H0(S,KS + Lm)(5.2)

where

Lm := (d(m+ 1)π∗(−KX)− Ee − S)|S > dLme(5.3)

and Lm := ((m+ 1)π∗(−KX)−E − S)|S which is a nef and big Q-divisor
on S.
By relations (5.1)–(5.3), to show that ΦΛm

|S is birational, it suffices to
show that |KS + dLme | gives a birational map. Note that

L2
m = (m+ 1− µ′0)2(π∗(KX)|S)2 = (m+ 1− µ′0)2N0

rX
> 8

sincem >
⌊
µ′0 +

√
8rX/N0

⌋
. Now consider an irreducible curve CP passing

through a very general point P ∈ S. Recall that −ν0KX ∼ D for some
effective Weil divisor D. Take q : Y → X to be the resolution of isolated
singularities and we may assume thatW dominates Y by p : W → Y . Then
we write

q∗D = DY +
∑ ai

ri
Ei.

Here DY is the strict transform of D on Y and Ei is the exceptional divisor
over an isolated singular point of index ri for some ri ∈ BX and ai is a
positive integer. Then

π∗D = p∗DY +
∑ ai

ri
p∗Ei.

Since P is a very general point, (p∗DY ·CP ) and (p∗Ei·CP ) are non-negative
integers, and at least one of them is positive since (π∗D · CP ) > 0 by the
fact that D is nef and big. Hence (π∗D · CP ) > 1

rmax
. Consequently,

(Lm · CP ) = (m+ 1− µ′0)(π∗(−KX) · CP ) > m+ 1− µ′0
ν0rmax

> 4.

Hence, by Lemma 5.10, |KS + dLme | gives a birational map and so does
ϕ−m,X . �
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Finally we explain the strategy to assert the birationality. Given a cer-
tain set of terminal weak Q-Fano 3-folds, or a set of geometric weighted
baskets, we can find a number m0 > 0 such that P−m0 > 2. Then we can
find another number m1 > 0, by using either the explicit computation of
Reid’s Riemann–Roch formula or Proposition 5.4, so that |−m1K| is not
composed with a pencil. Meanwhile we have the estimate of µ0 according
to Remark 5.8. With all the information, we may apply either Theorem 5.7
or 5.9 to obtain the anti-pluricanonical birationality except the fact that to
classify weighted baskets with pre-assigned invariants might be a tedious
work.

6. Proof of the main theorems

In this section, we prove the main theorems.

6.1. Proof of Theorems 1.9 and 1.10

Let V be a canonical weak Q-Fano 3-fold and Y a K-Mori fiber space of
V (by Remark 3.6, such Y always exists). By Theorem 1.12, V is birational
to a Fano–Mori triple (X,Y, Z).

By Theorem 1.13, the terminal weak Q-Fano 3-fold X in the Fano–Mori
triple (X,Y, Z) satisfies the properties we require in the Theorem 1.9.

By Proposition 3.10(3), ϕ−m,X and ϕ−m,Y share the same birational
properties. Hence Theorem 1.10 also follows from Theorem 1.13. �

6.2. Proof of Theorem 1.13

Let (X,Y, Z) be a Fano–Mori triple.
If ρ(Y ) = 1, then by Remark 3.8, X ∼= Y ∼= Z is a Q-factorial terminal

Q-Fano 3-fold of Picard number one. Then statement (1) follows from The-
orem 1.6 and Proposition 2.6(1). Statement (2) follows from Theorem 1.3.

From now on we may assume that ρ(Y ) > 1. Consider the terminal weak
Q-Fano 3-fold X. If P−2 = 0 or rX = 840, then the theorem follows from
Theorem 6.4 or 6.6. Hence we may assume that P−2 > 0 and rX 6 660 by
Proposition 2.6.
For statement (1), if −K3

X > 1/30, it follows from Lemma 6.9; if −K3
X <

1/30, it follows from Theorem 6.12(1).
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For statement (2), if−K3
X > 0.21, it follows from Theorem 6.7; if P−1 = 0

and −K3
X < 0.21, it follows from Theorem 6.8; if P−1 > 0 and 1/30 6

−K3
X < 0.21, it follows from Theorem 6.11; if P−1 > 0 and −K3

X < 1/30,
it follows from Theorem 6.12.
In summary, the theorem is proved.
Finally, we remark that from the proof of statement (2), ϕ−51 is not

birational only if when −K3
X = 1/330 and X has Reid basket {(1, 2), (2, 5),

(1, 3), (2, 11)}, which appears in the proof of Theorem 6.12. �

6.3. The case P−8 = 2 and two lemmas

Theorem 6.1. — Let (X,Y,Z) be a Fano–Mori triple such that ρ(Y )>1.
Assume that P−8 = 2. Then ϕ−m is birational for all m > 51.

Proof. — Note that P−2 6 1 since P−8 > 4P−2 − 3.
If P−2 = 0, then By [7, Theorem 3.5], any geometric basket of a terminal

weak Q-Fano 3-fold with P−1 = P−2 = 0 and P−8 = 2 is among the
following list:

Table 6.1

BX −K3 MX λ(MX) n1 m0 rmax n2
{2× (1, 2), 3× (2, 5), (1, 3), (1, 4)} 1/60 1 1 20 8 5 46
{5× (1, 2), 2× (1, 3), (2, 7), (1, 4)} 1/84 1 1 22 8 7 50
{5× (1, 2), 2× (1, 3), (3, 11)} 1/66 1 1 20 8 11 50
{5× (1, 2), (1, 3), (3, 10), (1, 4)} 1/60 1 1 20 8 10 48

In Table 6.1, for each basket BX , we can compute MX and λ(MX),
then find n1 such that P−n1 > λ(MX)n1 + 1 where P−n1 is computed by
Reid’s Riemann–Roch formula. Hence, by Proposition 5.2, dimϕ−n1(X) >
1. Again by Reid’s Riemann–Roch formula, we may find m0 such that
P−m0 > 2. Then, by Proposition 5.7(2), take m1 = n1 and µ0 6 m0, we
get the integer n2 such that ϕ−m is birational for all m > n2.
We consider the case P−2 = 1 from now on. We follow the argument

of [7, Proof of Theorem 3.10] to classify all possible geometric baskets with
P−2 = 1 and P−8 = 2. Note that in this case P−1 6 1 and P−4 = 1.
If P−1 = 0, then by [7, Proof of Theorem 3.10, Case 1], we have P−3 = 0

and σ5 = 1. Since we know the values of P−n for 1 6 n 6 4 and σ5,
B(0) = {9 × (1, 2), (1, 3), (1, s)} for some s > 5. If s > 7, then P−8 >
P̃−8(B(0)) > 4, a contradiction. If s < 7, then −K3(B(0)) 6 0. It is easy
to see that BX is dominated by either B′ = {8 × (1, 2), (2, 5), (1, 6)} or
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{7×(1, 2), (3, 7), (1, 5)}. Note that for both cases, we have P−8 > P̃−8(B′) >
3, a contradiction.

If P−1 = 1, then P−3 = P−4 = 1 and

1 6 P−5 6 P−6 6 P−7 6 2.

We have (n0
1,2, n

0
1,3, n

0
1,4) = (2, 2, 2−σ5). Hence σ5 6 2. On the other hand,

ε6 = 0 gives ε = P−6 − P−5 + 2 > 2, which implies that σ5 > 0.
If (σ5, P−5) = (2, 2), then ε5 = 1, P−6 = 2, and ε = 2, which implies that

n0
1,5 = 2. Hence B(5) = {(1, 2), (2, 5), (1, 3), 2× (1, 5)}. But all the packings

have −K3 < 0, which is absurd.
If (σ5, P−5) = (2, 1), then ε5 = 0 and

n0
1,5 = 2σ5 − ε = 2− P−6 + P−5 > 0.

Hence B(5) = {2 × (1, 2), 2 × (1, 3), (1, 5), (1, s)} for some s > 5. If s 6 7,
then all the further packings have −K3 < 0, which is absurd. Hence s > 8
and BX = B(5). Note that in this case s = 8, 9, 10 by γ > 0. It is easy to
check that P−8 = 3, a contradiction.

If (σ5, P−5) = (1, 2), then ε5 = 2. Hence B(5) = {2× (2, 5), (1, 4), (1, s)}
for some s > 5. Then γ > 0 implies that s 6 10. If s 6 6, then all the further
packings have −K3 < 0, which is absurd. Hence s > 7 and BX = B(5). It
is easy to check that P−8 > 4, a contradiction.

If (σ5, P−5) = (1, 1), then ε = P−6−P−5 + 2 implies that P−6 = 1−n0
1,5,

which means that P−6 = 1 and n0
1,5 = 0. Hence B(5) = {(1, 2), (2, 5), (1, 3),

(1, 4), (1, s)} for some s > 6. Note that s = 6, 7 is impossible since all further
packings have −K3 < 0. Hence we have 8 6 s 6 11 by γ > 0. Also we
have ε7 = P−7 − 1 and ε8 = 1−P−7, which means that ε7 = ε8 = 0. Hence
BX = B(8) = B(5) = {(1, 2), (2, 5), (1, 3), (1, 4), (1, s)} for 8 6 s 6 11. Note
that s = 8 is absurd since in this case −K3 < 0.
In summary, all possible geometric baskets with P−2 = 1 and P−8 = 2

are
BX = {(1, 2), (2, 5), (1, 3), (1, 4), (1, s)}

for 9 6 s 6 11.
If BX = {(1, 2), (2, 5), (1, 3), (1, 4), (1, 9)}, then −K3

X = 1/180, MX =
λ(MX) = 1. Then P−30 = 33 > 30λ(MX) + 1 where P−30 is computed by
Reid’s Riemann–Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1
for allm > 30 since P−1 > 0. Recall that P−8 = 2. Takem0 = 8 and ν0 = 1.
Note that P−19 = 11 by Reid’s Riemann–Roch formula. If |−19KX | and
|−8KX | are not composed with the same pencil, then we may take µ0 6 8
and m1 = 19, and by Proposition 5.7(3), ϕ−m is birational for m > 45. If
|−19KX | and |−8KX | are composed with the same pencil, then we may take
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µ0 6 19
P−19−1 = 19

10 by Remark 5.8 andm1 = 30, then by Proposition 5.7(3),
ϕ−m is birational for m > 49.

If BX = {(1, 2), (2, 5), (1, 3), (1, 4), (1, 10)}, then −K3
X = 1/60, MX =

λ(MX) = 1. Then P−19 = 22 > 19λ(MX) + 1 where P−19 is computed by
Reid’s Riemann–Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1
for all m > 19 since P−1 > 0. Recall that P−8 = 2. Then by Proposi-
tion 5.7(3), take m1 = 19, µ0 6 m0 = 8, and ν0 = 1, we get the integer n2
such that ϕ−m is birational for all m > 47.
If BX = {(1, 2), (2, 5), (1, 3), (1, 4), (1, 11)}, then −K3

X = 17/660. Recall
that P−8 = 2. We may take m0 = 8 and ν0 = 1. Note that P−21 = 43.
If |−21KX | and |−8KX | are not composed with the same pencil, then
we may take µ0 6 8 and m1 = 21, and by Proposition 5.7(3), ϕ−m is
birational for m > 51. Hence we may assume that |−21KX | and |−8KX |
are composed with the same pencil, and we may take µ0 6 µ′0 = 21

P−21−1 = 1
2

by Remark 5.8. If |−26KX | is not composed with a pencil, then we may
take m1 = 26 and by Proposition 5.7(3), ϕ−m is birational for m > 48. If
|−26KX | is composed with a pencil, by Proposition 4.5 and keep the same
notation as in Subsection 2.1, one has

3 < 80
26 = P−26 − 1

26 6 max{3,−K3
X , 2N0},

where N0 = rX(π∗(KX)2 · S). This implies that N0 > 2, and by Proposi-
tion 5.9, ϕ−m is birational for m > 51.
Combining all above discussions, the proof is completed. �

Lemma 6.2. — Let (X,Y, Z) be a Fano–Mori triple such that ρ(Y ) > 1.
Assume that rX 6 165. Then dimϕ−m(X) > 1 for all m > 37;

Proof. — Note that in this case −K3
X > 1/165. By Lemma 5.5,

λ(MX)
−K3

X

6 rX 6 165.

Take t = 37/8, then

−3
4 +

√
12

t(−K3
X) + 6λ(MX)

−K3
X

+ 1
16 < 37.

By Proposition 5.4, |−mKX | is not composed with a pencil form > 37. �

Lemma 6.3. — Let (X,Y, Z) be a Fano–Mori triple such that ρ(Y ) > 1.
Assume that one of the following conditions holds:

(1) rX 6 69 and rmax 6 12; or
(2) P−1 > 0, rX 6 287, and rmax 6 12.
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Then ϕ−m,X is birational for all m > 51.

Proof. — Recall that P−8 > 2 by Proposition 2.6. If P−8 = 2, then we
are done by Theorem 6.1. Hence we may assume that P−8 > 3.

(1). — Note that in this case −K3
X > 1/69. By Lemma 5.5,

λ(MX)
−K3

X

6 rX 6 69.

Take t = 23/4, then

−3
4 +

√
12

t(−K3
X) + 6λ(MX)

−K3
X

+ 1
16 < 23.

By Proposition 5.4, |−mKX | is not composed with a pencil for m > 23.
If |−8KX | is not composed with a pencil, then we may take µ0 6 8

and m1 = 8, and by Proposition 5.7(2), ϕ−m is birational for m > 40. If
|−8KX | is composed with a pencil, then we may take µ0 6 8

P−8−1 6 4 by
Remark 5.8 and m1 = 23, then by Proposition 5.7(2), ϕ−m is birational
for m > 51.

(2). — In this case, we may take ν0 = 1 and m0 = 8. If |−8KX | is not
composed with a pencil, then we may take µ0 6 8 and m1 = 8, and by
Proposition 5.7(3), ϕ−m is birational for m > 40. If |−8KX | is composed
with a pencil, then we may take µ′0 = 8

P−8−1 6 4 by Remark 5.8 and
N0 > 1, and by Proposition 5.9, ϕ−m is birational for m > 51. �

6.4. The case P−2 = 0

Theorem 6.4. — Let (X,Y,Z) be a Fano–Mori triple such that ρ(Y )>1.
Assume that P−2 = 0. Then

(1) dimϕ−m(X) > 1 for all m > 37;
(2) ϕ−m,X is birational for all m > 51.

Proof. — Since P−2 = 0, P−1 = 0. If rX 6 69 and rmax 6 12, then we
are done by Lemmas 6.2 and 6.3(1). By [7, Theorem 3.5], any geometric
basket of a terminal weak Q-Fano 3-fold with P−1 = P−2 = 0 and with
either rX > 69 or rmax > 12 is among the following list:
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Table 6.2

BX −K3 MX λ(MX) n1 m0 rmax n2
{5× (1, 2), 2× (1, 3), (2, 7), (1, 4)} 1/84 1 1 22 8 7 50
{3× (1, 2), (5, 14), 2× (1, 3)} 1/21 2 2 16 6 14 50
{(1, 2), (3, 7), (2, 5), 4× (1, 3)} 17/210 17 17/3 20 5 7 41
{2× (1, 2), (2, 5), (3, 8), 3× (1, 3)} 3/40 9 4 18 5 8 39
{2× (1, 2), (5, 13), 3× (1, 3)} 1/13 6 3 15 5 13 46

In Table 6.2, for each basket BX , we can compute MX and λ(MX), then
find n1 such that P−n > λ(MX)n + 1 for n1 6 n 6 n1 + 5 where P−n
is computed by Reid’s Riemann–Roch formula. Hence by Proposition 5.2,
dimϕ−n(X) > 1 for all n1 6 n 6 n1 + 5. Since P−m > 0 for all m > 6 by
Proposition 2.6, this implies that dimϕ−m(X) > 1 for all m > n1. Again
by Reid’s Riemann–Roch formula, we may find m0 such that P−m0 > 2.
Then, by Proposition 5.7(2), takem1 = n1 and µ0 6 m0, we get the integer
n2 such that ϕ−m is birational for all m > n2. �

6.5. The case rX = 840

Lemma 6.5. — Let X be a terminal weak Q-Fano 3-fold with rX = 840.
Then

(1) P−1 > 1;
(2) −K3

X >
47
840 ;

(3) P−2 > 2 unless BX is in Table 6.3.

Table 6.3

No. BX

1 {(1, 2), (1, 3), (2, 5), (1, 7), (1, 8)}
2 {(1, 2), (1, 3), (1, 5), (2, 7), (1, 8)}
3 {(1, 3), (1, 5), (1, 7), (3, 8)}
4 {(1, 3), (1, 5), (3, 7), (1, 8)}
5 {(1, 3), (2, 5), (2, 7), (1, 8)}

Proof. — By [12, Proof of Proposition 2.4 (p. 67)], we know that the set
of local indices {ri} of X is either {2, 3, 5, 7, 8} or {3, 5, 7, 8}, that is, BX =
{(1, 2), (1, 3), (a, 5), (b, 7), (c, 8)} or {(1, 3), (a, 5), (b, 7), (c, 8)} for some a ∈
{1, 2}, b ∈ {1, 2, 3}, c ∈ {1, 3}. To unify the notation, we write BX =
{k × (1, 2), (1, 3), (a, 5), (b, 7), (c, 8)}, where k ∈ {0, 1}.
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By inequality (2.4),

2P−1 > σ′(BX)− σ(BX) + 6

= −k2 −
2
3 −

a(5− a)
5 − b(7− b)

7 − c(8− c)
8 + 6

> −1
2 −

2
3 −

6
5 −

12
7 −

15
8 + 6 > 0.

Hence P−1 > 1, which proves statement (1).
If P−1 > 2, then

−K3
X = 2P−1 − σ′(BX) + σ(BX)− 6

> 4 + k

2 + 2
3 + a(5− a)

5 + b(7− b)
7 + c(8− c)

8 − 6

>
2
3 + 4

5 + 6
7 + 7

8 − 2 > 1.

If P−1 = 1, then by equality (2.2),

k + 1 + a+ b+ c = σ(BX) = 10− 5P−1 + P−2 > 6.

When k = 1, then at least one of a, b, c is greater than 1. In particular, if
a > 2, then

−K3
X = 2P−1 − σ′(BX) + σ(BX)− 6

> 2 + k

2 + 2
3 + a(5− a)

5 + b(7− b)
7 + c(8− c)

8 − 6

>
1
2 + 2

3 + 6
5 + 6

7 + 7
8 − 4 = 83

840 .

Similarly we see −K3 > 227
840 when b > 2 or c = 3. When k = 0, we see

−K3
X >

47
840 in the similar way if b = 3 or c = 3. The remaining cases

are (a, b, c) = (1, 2, 1), (2, 1, 1), (2, 2, 1) and we get either −K3
X = 143

840 or
−K3

X < 0 (impossible cases). This asserts statement (2).
Finally, we consider the case P−2 < 2 which forces P−1 = P−2 = 1. By

equality (2.2),

k + 1 + a+ b+ c = σ(BX) = 10− 5P−1 + P−2 = 6.

Hence BX can only be in Table 6.3. �

Theorem 6.6. — Let (X,Y,Z) be a Fano–Mori triple such that ρ(Y )>1.
Assume that rX = 840. Then

(1) dimϕ−m(X) > 1 for all m > 32;
(2) ϕ−m,X is birational for all m > 50.
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Proof. — Recall that in this case rmax = 8. By Lemma 6.5, P−1 > 1 and
−K3

X > 47/840.
By Lemma 5.5,

λ(MX)
−K3

X

6 max
{

1, 3
47/840 ,

√
2× 840
47/840

}
< 174.

Take t = 12, then

−3
4 +

√
12

t(−K3
X) + 6λ(MX)

−K3
X

+ 1
16 < 32.

By Proposition 5.4, |−mKX | is not composed with a pencil for m > 32.
For statement (2), first we consider the case P−2 > 2. In this case, we

may take µ0 6 m0 = 2, m1 = 32, and ν0 = 1. Then by Proposition 5.7(3),
ϕ−m is birational for m > 50.
Then we consider the case P−2 < 2, that is, P−1 = P−2 = 1. In this case

we are dealing with baskets listed in Table 6.3. In the following Table 6.4,
for each basket BX in Table 6.3, we can compute MX and λ(MX), then
find n1 such that P−n1 > λ(MX)n1 + 1 where P−n1 is computed by Reid’s
Riemann–Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1 for all
m > n1 since P−1 > 0. Again by Reid’s Riemann–Roch formula, we may
find m0 such that P−m0 > 2. Then by Proposition 5.7(3), take m1 = n1,
µ0 6 m0, and ν0 = 1, we get the integer n2 such that ϕ−m is birational for
all m > n2.

Table 6.4

No. BX −K3 MX λ(MX) n1 m0 rmax n2
1 {(1, 2), (1, 3), (2, 5), (1, 7), (1, 8)} 83/840 83 12 27 5 8 48
2 {(1, 2), (1, 3), (1, 5), (2, 7), (1, 8)} 227/840 227 227/11 21 3 8 40
3 {(1, 3), (1, 5), (1, 7), (3, 8)} 167/840 167 18 23 3 8 42
4 {(1, 3), (1, 5), (3, 7), (1, 8)} 47/840 47 47/5 31 5 8 52
5 {(1, 3), (2, 5), (2, 7), (1, 8)} 143/840 143 16 23 3 8 42

Note that, for case No. 4, we need further discussion. We know P−5 = 2
and P−11 = 16. Take m0 = 5 and ν0 = 1. If |−11KX | and |−5KX | are not
composed with the same pencil, then we may takem1 = 11 and µ0 6 5, and
by Proposition 5.7(3), ϕ−m is birational for all m > 32; if |−11KX | and
|−5KX | are composed with the same pencil, then we may take m1 = 31
and µ0 6 11

15 by Remark 5.8, and by Proposition 5.7(3), ϕ−m is birational
for all m > 47.
Combining all above cases, the proof is completed. �
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6.6. The case −K3
X > 0.21

Theorem 6.7. — Let (X,Y,Z) be a Fano–Mori triple such that ρ(Y )>1.
Assume that rX 6 660. Assume that one of the following holds

(1) rmax 6 13 and −K3
X > 0.12; or

(2) rmax > 14 and −K3
X > 0.21.

Then ϕ−m,X is birational for all m > 51.

Proof.
(1). — If rmax 6 13 and −K3

X > 0.12, recall that rX 6 660 by assump-
tion. By Lemma 5.5,

λ(MX)
−K3

X

6 max
{

1, 3
0.12 ,

√
2× 660

0.12

}
< 105.

Take t = 75/13, then

−3
4 +

√
12

t(−K3
X) + 6λ(MX)

−K3
X

+ 1
16 < 25.

By Proposition 5.4, |−mKX | is not composed with a pencil for m > 25.
Now by Proposition 5.3, taking t = 30/13 and using the fact that

(−KX)3 > 0.12, rX 6 660, and rmax 6 13, we have P−10 > 16. We may
takem0 = 8 since P−8 > 2. If |−8KX | and |−10KX | are not composed with
the same pencil, take m1 = 10 and µ0 6 8; if |−8KX | and |−10KX | are
composed with the same pencil, take m1 = 25 and µ0 6 10

15 by Remark 5.8.
Then by Proposition 5.7(2), ϕ−m is birational for m > 51.

(2). — If rmax > 14 and−K3
X > 0.21, then by [12, Proof of Theorem 1.8,

Case II (p. 105)], rX 6 240. By Lemma 5.5,

λ(MX)
−K3

X

6 max
{

1, 3
0.21 ,

√
2× 240

0.21

}
< 48.

Note that rmax 6 24. Take t = 17/8, then

−3
4 +

√
12

t(−K3
X) + 6λ(MX)

−K3
X

+ 1
16 < 17.

By Proposition 5.4, |−mKX | is not composed with a pencil for m > 17.
Now by Proposition 5.3, taking t = 1 and using the fact that (−KX)3 >

0.21, rX 6 240, and rmax 6 24, we have P−8 > 7. Again by Proposition 5.3,
taking t = 11/8, we have P−11 > 39. We may take m0 = 8. If |−8KX |
is not composed with a pencil, take m1 = 8 and µ0 6 8; if |−8KX | is
composed with a pencil, but |−8KX | and |−11KX | are not composed with
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the same pencil, take m1 = 11 and µ0 6 8
6 by Remark 5.8; if |−8KX |

and |−11KX | are composed with the same pencil, take m1 = 17 and µ0 6
11
38 by Remark 5.8. Then by Proposition 5.7(1), ϕ−m,X is birational for
m > 51. �

6.7. The case P−1 = 0, P−2 > 0 and −K3
X < 0.21

We mainly apply Chen–Chen’s method to classify all possible baskets.

Theorem 6.8. — Let (X,Y,Z) be a Fano–Mori triple such that ρ(Y )>1.
Assume that P−1 = 0, P−2 > 0, and −K3

X < 0.21. Then ϕ−m,X is bira-
tional for all m > 51.

Proof. — By [7, Inequality (4.1)],

0.21 > −K3
X >

1
12(−1− P−1 − P−2 + P−4),

which means that

P−4 6 P−2 + 3.(6.1)

Since P−1 = 0, the basket B(0) has datum
n0

1,2 = 5 + 4P−2 − P−3;
n0

1,3 = 4− 2P−2 + 3P−3 − P−4;
n0

1,4 = 1− P−2 − 2P−3 + P−4 − σ5.

By Lemma 2.5, B(0) satisfies inequality (2.3) and thus

0 6 γ(B(0)) =
∑
r>2

(
1
r
− r
)
n0

1,r + 24

6
∑

r=2,3,4

(
1
r
− r
)
n0

1,r −
24
5 σ5 + 24

= 25
12 + 37

12P−2 + P−3 −
13
12P−4 −

21
20σ5.

Hence, by n0
1,3 > 0 and n0

1,4 > 0, we have
25
12 + 37

12P−2 + P−3 −
13
12P−4 −

21
20σ5 > 0;(6.2)

4− 2P−2 + 3P−3 − P−4 > 0;(6.3)
1− P−2 − 2P−3 + P−4 − σ5 > 0.(6.4)
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Considering the inequality “(6.2) + (6.3) + 2× (6.4)”:
97
12 −

11
12P−2 −

1
12P−4 −

61
20σ5 > 0,(6.5)

we obtain σ5 6 2.
Case 1: σ5 = 0. — In this case, B(0) = {n0

1,2× (1, 2), n0
1,3× (1, 3), n0

1,4×
(1, 4)}. By [12, Proof of Theorem 3.12, Subcase II-1], P−3 > 1. By inequal-
ities (6.4) and (6.1),

1 + P−4 > P−2 + 2P−3 > P−4 − 3 + 2P−3,

which means that P−3 6 2. By inequality (6.3) and the fact that P−4 >
2P−2 − 1,

10 > 2P−2 + P−4 > 4P−2 − 1,
which means that P−2 6 2.
Subcase 1(i): P−2 = 2. — In this subcase, inequalities (6.3) and (6.4)

imply that 3P−3 > P−4 > 2P−3 + 1. Combining with the fact that 1 6
P−3 6 2 and inequality (6.1), (P−3, P−4) can only be (1, 3) or (2, 5). Hence
we may compute corresponding values of (n0

1,2, n
0
1,3, n

0
1,4), which is (12, 0, 0)

or (11, 1, 0).
Hence we may get all possible baskets BX as packings of corresponding

B(0) with γ > 0, which are listed in Table 6.5. In Table 6.5, for each basket
BX , if rX 6 69 and rmax 6 12, then we apply Lemma 6.3(1) (such baskets
are marked with X in the last column), otherwise we can compute MX

and λ(MX), then find n1 such that P−n1 > λ(MX)n1 + 1 where P−n1

is computed by Reid’s Riemann–Roch formula. Hence by Proposition 5.2,
dimϕ−n1(X) > 1. By assumption, P−2 = 2, we may take m0 = 2. Then by
Proposition 5.7(1), take m1 = n1 and µ0 6 m0, we get the integer n2 such
that ϕ−m is birational for all m > n2.

Table 6.5

BX −K3 MX λ(MX) n1 m0 rmax n2
{12× (1, 2)} 0
{11× (1, 2), (1, 3)} X
{10× (1, 2), (2, 5)} X
{9× (1, 2), (3, 7)} X
{8× (1, 2), (4, 9)} X
{7× (1, 2), (5, 11)} X
{6× (1, 2), (6, 13)} 3/13 6 3 9 2 13 33
{5× (1, 2), (7, 15)} 7/30 7 7/2 9 2 15 33
{4× (1, 2), (8, 17)} 4/17 8 4 10 2 17 36
{3× (1, 2), (9, 19)} 9/38 9 4 10 2 19 36
{2× (1, 2), (10, 21)} 5/21 10 4 10 2 21 36
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Subcase 1(ii): P−2 = 1. — In this subcase, inequalities (6.3) and (6.4)
imply that 3P−3 + 2 > P−4 > 2P−3. Combining with the fact that 1 6
P−3 6 2 and inequality (6.1), (P−3, P−4) can only take the following values:
(1, 2), (1, 3), (1, 4), (2, 4). Hence we may compute corresponding values of
B(0) with γ(B(0)) > 0 and list those possible B(0) in the following table.

Table 6.6

B(0)

{8× (1, 2), 3× (1, 3)}
{8× (1, 2), 2× (1, 3), (1, 4)}
{8× (1, 2), (1, 3), 2× (1, 4)}
{7× (1, 2), 4× (1, 3)}

Hence we may get all possible baskets BX as packings of corresponding
B(0) with γ > 0, which are listed in Table 6.7. In Table 6.7, for each basket
BX , if rX 6 69 and rmax 6 12, then we apply Lemma 6.3(1) (such baskets
are marked with X in the last column), otherwise we can compute MX

and λ(MX), then find n1 such that P−n1 > λ(MX)n1 + 1 where P−n1

is computed by Reid’s Riemann–Roch formula. Hence by Proposition 5.2,
dimϕ−n1(X) > 1. Again by Reid’s Riemann–Roch formula, we may find
m0 such that P−m0 > 2. Then by Proposition 5.7(2), take m1 = n1 and
µ0 6 m0, we get the integer n2 such that ϕ−m is birational for all m >
n2. (For the values of n2 with the mark “∗”, we apply Proposition 5.7(1)
instead).

Table 6.7

BX −K3 MX λ(MX) n1 m0 rmax n2
{8× (1, 2), 3× (1, 3)} 0
{7× (1, 2), (2, 5), 2× (1, 3)} X
{6× (1, 2), (3, 7), 2× (1, 3)} X
{5× (1, 2), (4, 9), 2× (1, 3)} X
{4× (1, 2), (5, 11), 2× (1, 3)} X
{3× (1, 2), (6, 13), 2× (1, 3)} 5/78 5 3 16 4 13 46
{2× (1, 2), (7, 15), 2× (1, 3)} 1/15 2 2 13 4 15 47
{(1, 2), (8, 17), 2× (1, 3)} 7/102 7 7/2 17 4 17 55?
{7× (1, 2), (3, 8), (1, 3)} X
{7× (1, 2), (4, 11)} X
{6× (1, 2), 2× (2, 5), (1, 3)} X
{5× (1, 2), (3, 7), (2, 5), (1, 3)} 17/210 17 17/3 20 4 7 40
{4× (1, 2), (4, 9), (2, 5), (1, 3)} 4/45 8 4 16 4 9 38
{3× (1, 2), (5, 11), (2, 5), (1, 3)} 31/330 31 31/4 22 4 11 48
{2× (1, 2), (6, 13), (2, 5), (1, 3)} 19/195 38 8 22 4 13 52?
{(1, 2), (7, 15), (2, 5), (1, 3)} 1/10 3 3 13 4 15 47
{5× (1, 2), (5, 12), (1, 3)} X

Continued on next page
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Table 6.7 – continued from previous page
BX −K3 MX λ(MX) n1 m0 rmax n2
{6× (1, 2), (2, 5), (3, 8)} X
{5× (1, 2), (3, 7), (3, 8)} X
{4× (1, 2), (4, 9), (3, 8)} 7/72 7 7/2 14 4 9 36
{3× (1, 2), (5, 11), (3, 8)} 9/88 9 4 15 4 11 41
{2× (1, 2), (6, 13), (3, 8)} 11/104 11 4 15 4 13 45
{4× (1, 2), 2× (3, 7), (1, 3)} X
{3× (1, 2), (4, 9), (3, 7), (1, 3)} 13/126 13 13/3 16 4 9 38
{2× (1, 2), (5, 11), (3, 7), (1, 3)} 25/231 50 10 23 4 11 49
{(1, 2), (6, 13), (3, 7), (1, 3)} 61/546 61 61/6 23 4 13 53?
{3× (1, 2), (7, 16), (1, 3)} 5/48 5 3 13 4 16 49
{2× (1, 2), 2× (4, 9), (1, 3)} X
{(1, 2), (5, 11), (4, 9), (1, 3)} 23/198 23 6 18 4 11 44
{6× (1, 2), (5, 13)} 1/13 2 2 12 4 13 42
{5× (1, 2), 3× (2, 5)} X
{4× (1, 2), (3, 7), 2× (2, 5)} 4/35 8 4 14 4 7 32
{3× (1, 2), (4, 9), 2× (2, 5)} 11/90 11 4 14 4 9 36
{2× (1, 2), (5, 11), 2× (2, 5)} 7/55 14 14/3 15 4 11 41
{4× (1, 2), (5, 12), (2, 5)} X
{4× (1, 2), (7, 17)} 2/17 4 3 12 4 17 48∗
{3× (1, 2), 2× (3, 7), (2, 5)} 9/70 9 4 14 4 7 32
{2× (1, 2), (4, 9), (3, 7), (2, 5)} 43/315 86 86/7 23 4 9 45
{2× (1, 2), (7, 16), (2, 5)} 11/80 11 4 13 4 16 49
{2× (1, 2), (4, 9), (5, 12)} X
{3× (1, 2), (3, 7), (5, 12)} 11/84 11 4 13 4 12 41
{3× (1, 2), (8, 19)} 5/38 5 3 12 4 19 48∗
{2× (1, 2), 3× (3, 7)} X
{8× (1, 2), 2× (1, 3), (1, 4)} X
{7× (1, 2), (2, 5), (1, 3), (1, 4)} X
{7× (1, 2), (3, 8), (1, 4)} X
{6× (1, 2), (3, 7), (1, 3), (1, 4)} 11/84 11 4 13 4 7 31
{5× (1, 2), (4, 9), (1, 3), (1, 4)} X
{4× (1, 2), (5, 11), (1, 3), (1, 4)} 19/132 19 6 16 4 11 42
{3× (1, 2), (6, 13), (1, 3), (1, 4)} 23/156 23 6 15 4 13 45
{8× (1, 2), (1, 3), (2, 7)} X
{7× (1, 2), (2, 5), (2, 7)} 9/70 9 4 13 4 7 31
{6× (1, 2), (3, 7), (2, 7)} X
{5× (1, 2), (4, 9), (2, 7)} 19/126 19 6 15 4 9 37
{4× (1, 2), (5, 11), (2, 7)} 12/77 24 6 15 4 11 41
{6× (1, 2), 2× (2, 5), (1, 4)} X
{5× (1, 2), (3, 7), (2, 5), (1, 4)} 23/140 23 6 15 4 7 33
{5× (1, 2), (5, 12), (1, 4)} X
{4× (1, 2), (4, 9), (2, 5), (1, 4)} 31/180 31 31/4 16 4 9 38
{3× (1, 2), (5, 11), (2, 5), (1, 4)} 39/220 39 8 16 4 11 42
{4× (1, 2), 2× (3, 7), (1, 4)} X
{3× (1, 2), (4, 9), (3, 7), (1, 4)} 47/252 47 47/5 17 4 9 39
{8× (1, 2), (3, 10)} X
{8× (1, 2), (1, 3), 2× (1, 4)} X
{7× (1, 2), (2, 5), 2× (1, 4)} X
{6× (1, 2), (3, 7), 2× (1, 4)} X
{5× (1, 2), (4, 9), 2× (1, 4)} X
{8× (1, 2), (2, 7), (1, 4)} X
{8× (1, 2), (3, 11)} X
{7× (1, 2), 4× (1, 3)} X
{6× (1, 2), (2, 5), 3× (1, 3)} X

Continued on next page
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Table 6.7 – continued from previous page
BX −K3 MX λ(MX) n1 m0 rmax n2
{5× (1, 2), (3, 7), 3× (1, 3)} X
{4× (1, 2), (4, 9), 3× (1, 3)} X
{3× (1, 2), (5, 11), 3× (1, 3)} X
{2× (1, 2), (6, 13), 3× (1, 3)} 3/13 18 6 12 3 13 41
{6× (1, 2), (3, 8), 2× (1, 3)} X
{6× (1, 2), (4, 11), (1, 3)} X
{6× (1, 2), (5, 14)} 3/14 3 3 9 3 14 36∗
{5× (1, 2), 2× (2, 5), 2× (1, 3)} X
{4× (1, 2), (3, 7), (2, 5), 2× (1, 3)} 26/105 52 10 15 3 7 32
{3× (1, 2), (4, 9), (2, 5), 2× (1, 3)} 23/90 23 6 12 3 9 33
{3× (1, 2), (4, 9), (3, 8), (1, 3)} 19/72 19 6 12 3 9 33
{4× (1, 2), (5, 12), 2× (1, 3)} X
{4× (1, 2), (3, 7), (3, 8), (1, 3)} 43/168 43 43/5 14 3 8 33
{4× (1, 2), (3, 7), (4, 11)} 20/77 40 8 13 3 11 38
{3× (1, 2), 2× (3, 7), 2× (1, 3)} X
{5× (1, 2), (2, 5), (3, 8), (1, 3)} 29/120 29 29/4 13 3 8 32
{5× (1, 2), (5, 13), (1, 3)} 19/78 19 6 12 3 13 41
{5× (1, 2), (2, 5), (4, 11)} 27/110 27 27/4 13 3 11 38
{5× (1, 2), 2× (3, 8)} X
{4× (1, 2), 3× (2, 5), (1, 3)} X
{3× (1, 2), (3, 7), 2× (2, 5), (1, 3)} 59/210 59 10 14 3 7 31
{3× (1, 2), (5, 12), (2, 5), (1, 3)} X
{4× (1, 2), 2× (2, 5), (3, 8)} X
{4× (1, 2), (2, 5), (5, 13)} 18/65 36 8 13 3 13 42
{4× (1, 2), (7, 18)} 5/18 5 3 8 3 18 33∗
{3× (1, 2), 4× (2, 5)} X

Note that there are 3 cases where the values in the n2 column are marked
with “?”, of which n2 = 55, 52, 53 respectively. We shall discuss them in
more details to prove our statement.
If BX = {(1, 2), (8, 17), 2× (1, 3)}, we know that dimϕ−m(X) > 1 for all

m > 17 from the list. Note that P−10 = 13. Take m0 = 4. If |−10KX | and
|−4KX | are not composed with the same pencil, then we may takem1 = 10
and µ0 6 4, and by Proposition 5.7(1), ϕ−m is birational for all m > 42;
if |−10KX | and |−4KX | are composed with the same pencil, then we may
take m1 = 17 and µ0 6 10

12 by Remark 5.8, and by Proposition 5.7(2), ϕ−m
is birational for all m > 51.
If BX = {2× (1, 2), (6, 13), (2, 5), (1, 3)}, we know that dimϕ−m(X) > 1

for all m > 22 from the list. Note that P−8 = 10. Take m0 = 4. If |−8KX |
and |−4KX | are not composed with the same pencil, then we may take
m1 = 8 and µ0 6 4, and by Proposition 5.7(1), ϕ−m,X is birational for all
m > 36; if |−8KX | and |−4KX | are composed with the same pencil, then we
may take m1 = 22 and µ0 6 8

9 by Remark 5.8, and by Proposition 5.7(2),
ϕ−m is birational for all m > 48.
If BX = {(1, 2), (6, 13), (3, 7), (1, 3)}, we know that dimϕ−m(X) > 1 for

all m > 23 from the list. Note that P−8 = 11. Take m0 = 4. If |−8KX | and
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|−4KX | are not composed with the same pencil, then we may take m1 = 8
and µ0 6 4, and by Proposition 5.7(1), ϕ−m,X is birational for all m > 36;
if |−8KX | and |−4KX | are composed with the same pencil, then we may
take m1 = 23 and µ0 6 8

10 by Remark 5.8, and by Proposition 5.7(2), ϕ−m
is birational for all m > 49.
Case 2: σ5 = 2. — In this case, by [12, Proof of Theorem 3.12, Subcase

II-2], we have (P−2, P−3, P−4) = (1, 0, 2) and

BX = B(0) = {9× (1, 2), 2× (1, 5)}.

We may apply Lemma 6.3(1).
Case 3: σ5 = 1. — In this case, all possible baskets BX are classified

in [12, Proof of Theorem 3.12, Subcase II-3] under the strict inequality
γ(B(0)) > 0. The output is however the same even under the weaker con-
dition γ(B(0)) > 0, which is concluded after checking the original proof
word by word. So we simply list all possible baskets in Table 6.8. In Ta-
ble 6.8, for each basket BX , if rX 6 69 and rmax 6 12, then we may
directly apply Lemma 6.3(1) (such baskets are marked with X in the last
column); if the condition 0 < −K3

X < 0.21 is not satisfied, we mark it
with × in the last column (such baskets are irrelevant to the proof); oth-
erwise we can compute MX and λ(MX), then we may find n1 such that
P−n1 > λ(MX)n1 + 1 where P−n1 is computed by Reid’s Riemann–Roch
formula. Hence by Proposition 5.2, dimϕ−n1(X) > 1. Again by Reid’s
Riemann–Roch formula, we may find m0 such that P−m0 > 2. Then by
Proposition 5.7(2), take m1 = n1 and µ0 6 m0, we get the integer n2 such
that ϕ−m is birational for all m > n2.

Table 6.8

BX −K3 MX λ(MX) n1 m0 rmax n2
{11× (1, 2), (1, 3), (1, 5)} X
{12× (1, 2), (1, 5)} X
{12× (1, 2), (1, 6)} X
{9× (1, 2), 2× (1, 3), (1, 5)} X
{10× (1, 2), (1, 4), (1, 5)} X
{10× (1, 2), (2, 9)} X
{10× (1, 2), (1, 3), (1, 6)} X
{10× (1, 2), (1, 3), (1, 5)} X
{9× (1, 2), (2, 5), (1, 5)} X
{8× (1, 2), (3, 7), (1, 5)} 18/35 ×
{11× (1, 2), (1, 5)} X
{11× (1, 2), (1, 6)} X
{11× (1, 2), (1, 7)} X
{7× (1, 2), 3× (1, 3), (1, 5)} X
{6× (1, 2), (2, 5), 2× (1, 3), (1, 5)} X

Continued on next page
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Table 6.8 – continued from previous page
BX −K3 MX λ(MX) n1 m0 rmax n2
{8× (1, 2), (1, 3), (1, 4), (1, 5)} X
{8× (1, 2), (2, 7), (1, 5)} 8/35 ×
{8× (1, 2), (1, 3), (2, 9)} X
{7× (1, 2), (2, 5), (1, 4), (1, 5)} X
{8× (1, 2), 2× (1, 3), (1, 6)} X
{7× (1, 2), (2, 5), (1, 3), (1, 6)} X
{8× (1, 2), 2× (1, 3), (1, 5)} X
{7× (1, 2), (2, 5), (1, 3), (1, 5)} X
{6× (1, 2), 2× (2, 5), (1, 5)} X
{6× (1, 2), (3, 7), (1, 3), (1, 5)} 19/105 38 8 16 4 7 34
{5× (1, 2), (4, 9), (1, 3), (1, 5)} 17/90 17 17/3 13 4 9 35
{7× (1, 2), (3, 8), (1, 5)} X
{5× (1, 2), (3, 7), (2, 5), (1, 5)} 3/14 ×
{9× (1, 2), (1, 4), (1, 6)} X
{9× (1, 2), (1, 4), (1, 5)} X
{9× (1, 2), (2, 9)} X
{9× (1, 2), (1, 3), (1, 7)} X
{8× (1, 2), (2, 5), (1, 7)} 2/35 4 3 18 6 7 40
{8× (1, 2), (2, 5), (1, 6)} X
{7× (1, 2), (3, 7), (1, 6)} X
{6× (1, 2), (4, 9), (1, 6)} X
{7× (1, 2), (3, 7), (1, 5)} 1/70 1 1 20 6 7 43
{6× (1, 2), (4, 9), (1, 5)} 1/45 2 2 23 6 9 48
{5× (1, 2), (5, 11), (1, 5)} 3/110 3 3 25 6 11 53?
{4× (1, 2), (6, 13), (1, 5)} 2/65 4 3 24 6 13 56?

Note that there are 2 cases with “?” marked in the n2 column of Table 6.8,
for which we discuss them in more details as follows.
If BX = {5× (1, 2), (5, 11), (1, 5)}, we know that dimϕ−m(X) > 1 for all

m > 25 from the list. Note that P−15 = 18. Take m0 = 6. If |−15KX | and
|−6KX | are not composed with the same pencil, then we may takem1 = 15
and µ0 6 6, and by Proposition 5.7(2), ϕ−m is birational for all m > 43;
if |−15KX | and |−6KX | are composed with the same pencil, then we may
take m1 = 25 and µ0 6 15

17 by Remark 5.8, and by Proposition 5.7(2), ϕ−m
is birational for all m > 47.
If BX = {4× (1, 2), (6, 13), (1, 5)}, we know that dimϕ−m(X) > 1 for all

m > 24 from the list. Note that P−14 = 16. Take m0 = 6. If |−14KX | and
|−6KX | are not composed with the same pencil, then we may takem1 = 14
and µ0 6 6, and by Proposition 5.7(2), ϕ−m is birational for all m > 46;
if |−14KX | and |−6KX | are composed with the same pencil, then we may
take m1 = 24 and µ0 6 14

15 by Remark 5.8, and by Proposition 5.7(2), ϕ−m
is birational for all m > 50.
Combining all above cases, we complete the proof. �
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6.8. The case P−1 > 0 and 1/30 6 −K3
X < 0.21

Lemma 6.9. — Let (X,Y, Z) be a Fano–Mori triple such that ρ(Y ) > 1.
Assume that −K3

X > 1/30 and rX 6 660. Then
(1) P−18 > 21;
(2) dimϕ−m(X) > 1 for all m > 35.

Proof.
(1). — By Proposition 5.3, take t = 18/8 and use the fact −K3

X > 1/30,
we have P−18 > 20.

(2). — By Lemma 5.5,

λ(MX)
−K3

X

6 max
{

1, 3
1/30 ,

√
2× 660

1/30

}
< 199.

Take t = 35/8, then

−3
4 +

√
12

t(−K3
X) + 6λ(MX)

−K3
X

+ 1
16 < 35.

By Proposition 5.4, |−mKX | is not composed with a pencil form > 35. �

Lemma 6.10. — Let (X,Y, Z) be a Fano–Mori triple such that ρ(Y )> 1.
Assume that P−1 > 0 and 1/30 6 −K3

X < 0.21. Assume that one of the
following conditions holds:

(1) 11 6 rmax 6 13 and −K3
X < 0.12; or

(2) rmax > 14.
Then ϕ−m,X is birational for all m > 51.

Proof. — We will use Chen–Chen’s method to classify all possible bas-
kets.

Consider BX = {(bi, ri)}, we may always assume that r1 = rmax.
By equality (2.1),

(6.6)

2P−1 = −K3
X + 6−

∑
i

bi(ri − bi)
ri

6 −K3
X + 6− b1(r1 − b1)

r1

6 −K3
X + 6− r1 − 1

r1
< 6.

Hence P−1 6 2.
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Case 1: P−1 = 2. — By [7, Inequality (4.1)],

0.21 > −K3
X >

1
12(−1− P−1 − P−2 + P−4),

which means that

P−4 6 P−2 + 5.(6.7)

By inequality (6.6),
b1(r1 − b1)

r1
6 2−K3

X ,

which implies that b1 6 2. If b1 = 1, then (1, r1) ∈ BX , which means that
(1, r1) ∈ B(0). If b1 = 2, then r1 is an odd number, we may write r1 = 2s+1
for some s > 5, and (2, r1) ∈ BX implies that {(1, s), (1, s+ 1)} ⊂ B(0).
Recall that B(0) = {n0

1,r × (1, r)}, we have∑
r

n0
1,r × (r − 1)

r
= 2−K3(B(0)) 6 2−K3

X < 2.21.(6.8)

Note that either n0
1,r1
> 1, or n0

1,s > 1 and n0
1,s+1 > 1 where r1 = 2s + 1.

Also we have

σ(B(0)) = σ(BX) = 10− 5P−1 + P−2 = P−2 > 2P−1 − 1 = 3.

If σ > 4, then∑
r

n0
1,r × (r − 1)

r
>

{
3× 1

2 + 10
11 > 2.21, or

2× 1
2 + 4

5 + 5
6 > 2.21,

a contradiction. Hence σ = 3. By easy computation, we know that B(0)

satisfying inequality (6.8) is one of the following:

Table 6.9

B(0)

{2× (1, 2), (1, r1)}
{(1, 2), (1, 3), (1, r1)}
{(1, 2), (1, 4), (1, r1)}
{(1, 2), (1, s), (1, s+ 1)}, r1 = 2s+ 1

Note that the first case is absurd since it admits no packing and
−K3(B(0)) < 0. From Table 6.9, we may get all possible packings with
γ > 0 and rmax = r1 > 11, which are listed in Table 6.10. In Table 6.10, for
each basket BX , if rX 6 287 and rmax 6 12, then we apply Lemma 6.3(2)
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(such baskets are marked with X in the last column); if −K3
X does not sat-

isfy the assumption in the lemma, we mark it with the symbol “×” in the
last column; otherwise we can compute MX and λ(MX), then find n1 such
that P−n1 > λ(MX)n1 + 1 where P−n1 is computed by Reid’s Riemann–
Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1 for all m > n1
since P−1 > 0. By assumption, P−1 = 2, we may take m0 = ν0 = 1. Then
by Proposition 5.7(1), take m1 = n1 and µ0 6 m0, we get the integer n2
such that ϕ−m is birational for all m > n2. (For the value of n2 with a “∗”
marked, we have applied Proposition 5.7(3)).

Table 6.10

BX −K3 MX λ(MX) n1 m0 rmax n2
{(1, 2), (1, 3), (1, 11)} X
{(1, 2), (1, 3), (1, 12)} X
{(1, 2), (1, 3), (1, 13)} 7/78 7 7/2 14 1 13 41∗
{(1, 2), (1, 3), (1, 14)} 2/21 4 3 13 1 14 42
{(1, 2), (1, 3), (1, 15)} 1/10 3 3 13 1 15 42
{(1, 2), (1, 3), (1, 16)} 5/48 5 3 13 1 16 42
{(1, 2), (1, 3), (1, 17)} 11/102 11 4 15 1 17 48
{(1, 2), (1, 3), (1, 18)} 1/9 2 2 10 1 18 33
{(1, 2), (1, 3), (1, 19)} 13/114 13 13/3 15 1 19 48
{(2, 5), (1, 11)} X
{(2, 5), (1, 12)} X
{(2, 5), (1, 13)} 8/65 ×
{(2, 5), (1, 14)} 9/70 9 4 13 1 14 42
{(2, 5), (1, 15)} 2/15 2 2 9 1 15 30
{(2, 5), (1, 16)} 11/80 11 4 13 1 16 42
{(2, 5), (1, 17)} 12/85 12 4 13 1 17 42
{(2, 5), (1, 18)} 13/90 13 13/3 13 1 18 42
{(2, 5), (1, 19)} 14/95 14 14/3 14 1 19 45
{(1, 2), (1, 4), (1, 11)} X
{(1, 2), (1, 4), (1, 12)} X
{(1, 2), (1, 4), (1, 13)} 9/52 ×
{(1, 2), (1, 4), (1, 14)} 5/28 5 3 10 1 14 33
{(1, 2), (1, 4), (1, 15)} 11/60 11 4 11 1 15 36
{(1, 2), (1, 4), (1, 16)} 3/16 3 3 10 1 16 33
{(1, 2), (1, 4), (1, 17)} 13/68 13 13/3 12 1 17 39
{(1, 2), (1, 4), (1, 18)} 7/36 7 7/2 10 1 18 33
{(1, 2), (2, 11)} X
{(1, 2), (2, 13)} 5/26 ×
{(1, 2), (2, 15)} 7/30 ×
{(1, 2), (2, 17)} 9/34 ×
{(1, 2), (2, 19)} 11/38 ×
{(1, 2), (2, 21)} 13/42 ×

Case 2: P−1 = 1. — By [7, Inequality (4.1)],

0.21 > −K3
X >

1
12(−1− P−1 − P−2 + P−4),
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which means that

P−4 6 P−2 + 4.(6.9)

The basket B(0) has datum
n0

1,2 = −1 + 4P−2 − P−3;
n0

1,3 = 2− 2P−2 + 3P−3 − P−4;
n0

1,4 = 4− P−2 − 2P−3 + P−4 − σ5.

By n0
1,4 > 0 and inequality (6.9), we get P−3 6 4 and P−3 = 4 only if

P−4 = P−2 + 4 and σ5 = 0. By n0
1,3 > 0 and P−4 > 2P−2 − 1, we have

P−2 6 3. Recall that we also have n0
1,2 > 0 and P−3 > P−2 since P−1 = 1.

Hence the possible values of (P−2, P−3) are (3, 4), (2, 4), (3, 3), (2, 3), (1, 3),
(2, 2), (1, 2), (1, 1).

Subcase 2(i): (P−2, P−3) = (3, 4). — In this case, P−4 = 7 and σ5 = 0.
Hence

B(0) = {7× (1, 2), (1, 3)},
and we may get all possible packings with γ > 0 and rmax > 11, which are
the following:

{3× (1, 2), (5, 11)}, −K3 = 5/22;

{2× (1, 2), (6, 13)}, −K3 = 3/13;

{(1, 2), (7, 15)}, −K3 = 7/30;

{(8, 17)}, −K3 = 4/17.

Since −K3 > 0.21, none of the baskets satisfy the assumption of the lemma.
Subcase 2(ii): (P−2, P−3) = (2, 4). — In this case, P−4 = 6 and σ5 = 0.

Hence
B(0) = {3× (1, 2), 4× (1, 3)},

and we may get all possible packings with γ > 0 and rmax > 11, which are
the following:

{2× (1, 2), (5, 14)}, −K3 = 3/14;

{(1, 2), (5, 13), (1, 3)}, −K3 = 19/78;

{(2, 5), (5, 13)}, −K3 = 18/65;

{(5, 12), 2× (1, 3)}, −K3 = 1/4;

{(7, 18)}, −K3 = 5/18.

It is clear that, for each above basket, −K3 > 0.21, which does not satisfy
the assumption of the lemma.
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Subcase 2(iii): (P−2, P−3) = (3, 3). — In this case,
n0

1,2 = 8;
n0

1,3 = 5− P−4;
n0

1,4 = −5 + P−4 − σ5.

Hence P−4 = 5 and σ5 = 0, and B(0) = {8 × (1, 2)}. It is clear that
BX = B(0), contradicting to assumption of the local index.
Subcase 2(iv): (P−2, P−3) = (2, 3). — In this case,

n0
1,2 = 4;
n0

1,3 = 7− P−4;
n0

1,4 = −4 + P−4 − σ5.

By inequality (6.9), P−4 6 6. Hence (P−4, σ5) = (6, 0), (6, 1), (6, 2), (5, 0),
(5, 1), (4, 0). Hence the corresponding B(0) is in the following list:

Table 6.11

B(0)

{4× (1, 2), (1, 3), 2× (1, 4)}
{4× (1, 2), (1, 3), (1, 4), (1, s)}, s > 5
{4× (1, 2), (1, 3), (1, s1), (1, s2)}, 5 6 s1 6 s2
{4× (1, 2), 2× (1, 3), (1, 4)}
{4× (1, 2), 2× (1, 3), (1, s)}, s > 5
{4× (1, 2), 3× (1, 3)}

Hence all possible packings BX of B(0) with γ > 0 and rmax > 11 are
dominated by one of the baskets B′ listed in Table 6.12.

Table 6.12

No. B′

1 {(5, 11), 2× (1, 4)}
2 {4× (1, 2), (3, 11)}
3 {(5, 11), (1, 4), (1, s)}, 5 6 s 6 9
4 {4× (1, 2), (1, 3), (1, 4), (1, 11)}
5 {(5, 11), (1, s1), (1, s2)}, 5 6 s1 6 s2 6 7
6 {4× (1, 2), (1, 3), (2, r1)}, r1 = 11, 13, 15
7 {(5, 11), (1, 3), (1, 4)}
8 {(1, 2), (5, 12), (1, 4)}
9 {4× (1, 2), 2× (1, 3), (1, r1)}, r1 = 11, 12
10 {(5, 11), (1, 3), (1, 5)}
11 {(5, 11), (1, 3), (1, s)}, 6 6 s 6 10
12 {(1, 2), (5, 12), (1, s)}, 5 6 s 6 10
13 {(7, 17)}
14 {(5, 11), 2× (1, 3)}
15 {(1, 2), (5, 12), (1, 3)}
16 {3× (1, 2), (4, 11)}
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In Table 6.12, for cases No. 1, 3–6, 9, 11–12, one has −K3(B′) > 0.21 by
direct calculation. Hence BX can not be dominated by these baskets. For
cases No. 2, 8, and 10, they are minimal and all satisfy −K3 > 0.12, which
must be excluded. For case No. 7, B′ has only one possible packing and
both have −K3 > 0.12 and rmax = 11. Hence case No. 7 must be excluded.
Hence all possible BX appear as packings of B′ in No. 13–16, which are
the followings:

{(7, 17)},
{(5, 11), 2× (1, 3)},
{(1, 2), (5, 12), (1, 3)},
{2× (1, 2), (5, 13)},
{3× (1, 2), (4, 11)}.

If BX = {(7, 17)}, then −K3
X = 2/17, MX = λ(MX) = 2. Note that

P−9 > 9λ(MX) + 1 where P−9 is computed by Reid’s Riemann–Roch for-
mula. Hence by Proposition 5.2, dimϕ−m(X) > 1 for all m > 9 since
P−1 > 0. By assumption, P−2 = 2, we may take m0 = 2. Then by Propo-
sition 5.7(1), take m1 = 9, µ0 6 2, we get that ϕ−m is birational for all
m > 33.
If BX = {2× (1, 2), (5, 13)}, then −K3

X = 1/13,MX = λ(MX) = 2. Note
that P−10 > 10λ(MX) + 1 where P−10 is computed by Reid’s Riemann–
Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1 for all m > 10
since P−1 > 0. By assumption, P−2 = 2, we may take m0 = 2. Then by
Proposition 5.7(1), take m1 = 10, µ0 6 2, we get that ϕ−m is birational
for all m > 36.
For the remaining 3 baskets, we may apply Lemma 6.3(2) since

rmax 6 12.

Subcase 2(v): (P−2, P−3) = (1, 3). — In this case,


n0

1,2 = 0;
n0

1,3 = 9− P−4;
n0

1,4 = −3 + P−4 − σ5.

By inequality (6.9), P−4 6 5. Hence (P−4, σ5) = (5, 0), (5, 1), (5, 2), (4, 0),
(4, 1), (3, 0). Hence the corresponding B(0) is in the following list:
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Table 6.13

No. B(0)

1 {4× (1, 3), 2× (1, 4)}
2 {4× (1, 3), (1, 4), (1, s)}, s > 5
3 {4× (1, 3), (1, s1), (1, s2)}, 5 6 s1 6 s2
4 {5× (1, 3), (1, 4)}
5 {5× (1, 3), (1, s)}, s > 5
6 {6× (1, 3)}

Clearly cases No. 5 and 6 are absurd since they admit no packings with
rmax > 11.
For case No. 2, BX with γ > 0 and rmax > 11 is dominated by B′ =

{(1, 3), (4, 13), (1, s)} for some 5 6 s 6 8. But then −K3
X > −K3(B′) >

0.21, a contradiction.
For case No. 3, BX with γ > 0 and rmax > 11 is BX = {4×(1, 3), (2, r1)}

for r1 = 11, 13. But then −K3
X > 0.21, a contradiction.

For cases No. 1 and 4, we may get all possible packings with γ > 0
and rmax > 11, which are listed in Table 6.14. In Table 6.14, for each
basket BX , if rX 6 287 and rmax 6 12, then we apply Lemma 6.3(2)
(such baskets are marked with X in the last column); if −K3

X does not
satisfy the assumption in the lemma, we mark it with × in the last column;
otherwise we can compute MX and λ(MX), then find n1 such that P−n1 >

λ(MX)n1 + 1 where P−n1 is computed by Reid’s Riemann–Roch formula.
Hence by Proposition 5.2, dimϕ−m(X) > 1 for all m > n1 since P−1 > 0.
By assumption, P−3 = 3, we may takem0 = 3. Then by Proposition 5.7(1),
take m1 = n1, µ0 6 m0, and ν0 = 1, we get the integer n2 such that ϕ−m
is birational for all m > n2. (For the value of n2 with a ∗ mark, we apply
Proposition 5.7(3)).

Table 6.14

BX −K3 MX λ(MX) n1 m0 rmax n2

{(5, 16), (1, 4)} 3/16 3 3 9 3 16 36
{(1, 3), (5, 17)} 10/51 10 4 10 3 17 39
{(1, 3), (4, 13), (1, 4)} 29/156 ×
{(4, 13), (2, 7)} 18/91 ×
{3× (1, 3), (3, 11)} X
{2× (1, 3), (4, 13)} 4/39 4 3 12 3 13 41∗
{(1, 3), (5, 16)} 5/48 5 3 12 3 16 45
{(6, 19)} 2/19 2 2 10 3 19 39
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Subcase 2(vi): (P−2, P−3) = (2, 2). — In this case,
n0

1,2 = 5;
n0

1,3 = 4− P−4;
n0

1,4 = −2 + P−4 − σ5.

Hence (P−4, σ5) = (4, 0), (4, 1), (4, 2), (3, 0), (3, 1), (2, 0). Hence the corre-
sponding B(0) is in the following list:

Table 6.15

No. B(0)

1 {5× (1, 2), 2× (1, 4)}
2 {5× (1, 2), (1, 4), (1, s)}, s > 5
3 {5× (1, 2), (1, s1), (1, s2)}, 5 6 s1 6 s2
4 {5× (1, 2), (1, 3), (1, 4)}
5 {5× (1, 2), (1, 3), (1, s)}, s > 5
6 {5× (1, 2), 2× (1, 3)}

Clearly No.1 is absurd since there is no further packing.
Case No. 6 is also absurd since all its packing has

−K3 6 −K3({(7, 16)}) < 0.

Similarly, case No. 4 is also absurd since all its packing has −K3 < 0.
For case No. 2, the only possible baskets are BX = B(0) = {5 × (1, 2),

(1, 4), (1, s)} for s = 11, 12 and we may apply Lemma 6.3(2).
For case No. 3, possible BX with γ > 0 and rmax > 11 are

{5× (1, 2), (1, 5), (1, 11)},
{5× (1, 2), (2, 11)},
{5× (1, 2), (2, 13)},
{5× (1, 2), (2, 15)}.

For the first two cases, we may apply Lemma 6.3(2). The last two cases
are absurd since −K3

X does not satisfy the assumption in the lemma.
For case No. 5, we may get all possible packings with γ > 0 and rmax >

11, which are listed in Table 6.16. In Table 6.16, for each basket BX , if rX 6
287 and rmax 6 12, then we apply Lemma 6.3(2) (such baskets are marked
with X in the last column); if −K3

X does not satisfy the assumption in the
lemma, we mark it with × in the last column; otherwise we can compute
MX and λ(MX), then find n1 such that P−n1 > λ(MX)n1 + 1 where P−n1

is computed by Reid’s Riemann–Roch formula. Hence by Proposition 5.2,
dimϕ−m(X) > 1 for all m > n1 since P−1 > 0. By assumption, P−2 = 2,
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we may take m0 = 2. Then by Proposition 5.7(3), take m1 = n1, µ0 6 m0,
and ν0 = 1, we get the integer n2 such that ϕ−m is birational for allm > n2.

Table 6.16

BX −K3 MX λ(MX) n1 m0 rmax n2

{5× (1, 2), (1, 3), (1, 11)} X
{4× (1, 2), (2, 5), (1, 11)} X
{3× (1, 2), (3, 7), (1, 11)} X
{2× (1, 2), (4, 9), (1, 11)} X
{(1, 2), (5, 11), (1, 11)} X
{(6, 13), (1, 11)} 20/143 ×
{5× (1, 2), (1, 3), (1, 12)} X
{4× (1, 2), (2, 5), (1, 12)} X
{3× (1, 2), (3, 7), (1, 12)} X
{2× (1, 2), (4, 9), (1, 12)} X
{5× (1, 2), (1, 3), (1, 13)} 7/78 7 7/2 15 2 13 43
{4× (1, 2), (2, 5), (1, 13)} 8/65 ×
{(1, 2), (5, 11), (1, 5)} X
{(1, 2), (5, 11), (1, 6)} X
{(1, 2), (5, 11), (1, 7)} X
{(1, 2), (5, 11), (1, 8)} X
{(1, 2), (5, 11), (1, 9)} X
{(1, 2), (5, 11), (1, 10)} X
{(6, 13), (1, 5)} 2/65 ×
{(6, 13), (1, 6)} 5/78 5 3 15 2 13 43
{(6, 13), (1, 7)} 8/91 8 4 16 2 13 44
{(6, 13), (1, 8)} 11/104 11 4 2 13 43
{(6, 13), (1, 9)} 14/117 14 14/3 15 2 13 43
{(6, 13), (1, 10)} 17/130 ×

Subcase 2(vii): (P−2, P−3) = (1, 2). — In this case,


n0

1,2 = 1;
n0

1,3 = 6− P−4;
n0

1,4 = −1 + P−4 − σ5.

By inequality (6.9) and P−4 > P−3, 2 6 P−4 6 5. Hence (P−4, σ5) = (5, 0),
(5, 1), (5, 2), (5, 3), (5, 4), (4, 0), (4, 1), (4, 2), (4, 3), (3, 0), (3, 1), (3, 2),
(2, 0), (2, 1). Hence the corresponding B(0) is in the following list:
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Table 6.17

No. B(0)

1 {(1, 2), (1, 3), 4× (1, 4)}
2 {(1, 2), (1, 3), 3× (1, 4), (1, s)}, s > 5
3 {(1, 2), (1, 3), 2× (1, 4), (1, s1), (1, s2)}, 5 6 s1 6 s2
4 {(1, 2), (1, 3), (1, 4), (1, s1), (1, s2), (1, s3)}, 5 6 s1 6 s2 6 s3
5 {(1, 2), (1, 3), (1, s1), (1, s2), (1, s3), (1, s4)}, 5 6 s1 6 s2 6 s3
6 {(1, 2), 2× (1, 3), 3× (1, 4)}
7 {(1, 2), 2× (1, 3), 2× (1, 4), (1, s)}, s > 5
8 {(1, 2), 2× (1, 3), (1, 4), (1, s1), (1, s2)}, 5 6 s1 6 s2
9 {(1, 2), 2× (1, 3), (1, s1), (1, s2), (1, s3)}, 5 6 s1 6 s2 6 s3
10 {(1, 2), 3× (1, 3), 2× (1, 4)}
11 {(1, 2), 3× (1, 3), (1, 4), (1, s)}, s > 5
12 {(1, 2), 3× (1, 3), (1, s1), (1, s2)}, 5 6 s1 6 s2
13 {(1, 2), 4× (1, 3), (1, 4)}
14 {(1, 2), 4× (1, 3), (1, s)}, s > 5

For cases No. 2–5 and 9, it is easy to compute that

−K3
X > −K3(B(0)) > 0.21,

which is absurd.
For case No. 7, all possible packings BX with γ > 0 and rmax > 11 are

{(1, 2), (1, 3), (3, 11), (1, s)} or {(2, 5), (3, 11), (1, s)} for some 5 6 s 6 9.
But in this case, rmax = 11 and −K3 > 0.12, which is absurd.
For case No. 10, all possible packings BX with rmax > 11 are the follow-

ing:

{(4, 11), 2× (1, 4)},
{(1, 2), (5, 17)},
{(1, 2), (4, 13), (1, 4)},
{(1, 2), 2× (1, 3), (3, 11)},
{(2, 5), (1, 3), (3, 11)},
{(3, 8), (3, 11)}.

The second and third baskets have −K3 < 1/30, which is absurd. For other
baskets we may apply Lemma 6.3(2).
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For case No. 12, all possible packings BX with γ > 0 and rmax > 11 are
the following:

{(4, 11), (1, s1), (1, s2)}, 5 6 s1 6 s2 6 8;
{(1, 2), 3× (1, 3), (2, r1)}, r1 = 11, 13;
{(2, 5), 2× (1, 3), (2, r1)}, r1 = 11, 13;
{(3, 8), (1, 3), (2, r1)}, r1 = 11, 13;
{(4, 11), (2, r1)}, r1 = 11, 13.

Since rmax 6 13 and −K3 > 0.12, all above baskets should be excluded.
For case No. 13, all packings dominate either Bmin = {(5, 14), (1, 4)}

or Bmin = {(1, 2), (5, 16)}. But then −K3
X 6 −K3(Bmin) < 0, which is

absurd.
Finally, for cases No. 1, 6, 8, 11, 14, we may get all possible packings

with γ > 0 and rmax > 11, which are listed in Table 6.18. In Table 6.18, for
each basket BX , if rX 6 287 and rmax 6 12, then we apply Lemma 6.3(2)
(such baskets are marked with X in the last column); if −K3

X does not
satisfy the assumption in the lemma, we mark it with × in the last column;
otherwise we can compute MX and λ(MX), then find n1 such that P−n1 >

λ(MX)n1 + 1 where P−n1 is computed by Reid’s Riemann–Roch formula.
Hence by Proposition 5.2, dimϕ−m(X) > 1 for all m > n1 since P−1 > 0.
By assumption, P−3 = 2, we may takem0 = 3. Then by Proposition 5.7(1),
take m1 = n1, µ0 6 m0, and ν0 = 1, we get the integer n2 such that ϕ−m
is birational for all m > n2. (For the value of n2 with a ∗ mark, we apply
Proposition 5.7(3)).

Table 6.18

BX −K3 MX λ(MX) n1 m0 rmax n2
{(1, 2), (3, 11), 2× (1, 4)} X
{(1, 2), (4, 15), (1, 4)} 11/60 11 4 11 3 15 42
{(1, 2), (5, 19)} 7/38 7 7/2 10 3 19 39
{(1, 2), (5, 18)} 1/9 2 2 10 3 18 39
{(1, 2), (1, 3), (4, 15)} 1/10 3 3 12 3 15 45
{(2, 5), (4, 15)} 2/15 2 2 9 3 15 36
{(1, 2), (1, 3), (3, 11), (1, 4)} X
{(2, 5), (3, 11), (1, 4)} X
{(1, 2), (3, 11), (2, 7)} X
{(1, 2), (3, 11), 2× (1, 5)} X
{(1, 2), 2× (1, 3), (3, 14)} 4/21 8 4 11 3 14 42
{(1, 2), (3, 11), (1, 5), (1, 6)} 52/165 ×
{(1, 2), 2× (1, 3), (1, 4), (2, 11)} X
{(2, 5), (1, 3), (1, 4), (2, 11)} 167/660 ×
{(3, 8), (1, 4), (2, 11)} X

Continued on next page
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Table 6.18 – continued from previous page
BX −K3 MX λ(MX) n1 m0 rmax n2
{(1, 2), (1, 3), (2, 7), (2, 11)} 107/462 ×
{(1, 2), (3, 11), (2, 11)} X
{(2, 5), (2, 7), (2, 11)} 102/385 ×
{(1, 2), 2× (1, 3), (1, 4), (2, 13)} 43/156 ×
{(1, 2), (1, 3), (2, 7), (2, 13)} 157/546 ×
{(4, 11), (1, 4), (1, 5)} X
{(4, 11), (2, 9)} X
{(1, 2), (4, 13), (1, 5)} 9/130 9 4 18 3 13 47∗
{(4, 11), (1, 4), (1, 6)} X
{(1, 2), (4, 13), (1, 6)} 4/39 8 4 15 3 13 44∗
{(4, 11), (1, 4), (1, 7)} 47/308 ×
{(1, 2), (4, 13), (1, 7)} 23/182 ×
{(4, 11), (1, 4), (1, 8)} X
{(1, 2), (4, 13), (1, 8)} 15/104 ×
{(4, 11), (1, 4), (1, 9)} 73/396 ×
{(1, 2), (4, 13), (1, 9)} 37/234 ×
{(5, 14), (1, 5)} 1/70 ×
{(4, 11), (1, 3), (1, 5)} X
{(5, 14), (1, 6)} 1/21 2 2 14 3 14 45∗
{(4, 11), (1, 3), (1, 6)} X
{(5, 14), (1, 7)} 1/14 1 1 8 3 14 33
{(4, 11), (1, 3), (1, 7)} X
{(5, 14), (1, 8)} 5/56 5 3 14 3 14 45∗
{(4, 11), (1, 3), (1, 8)} X
{(5, 14), (1, 9)} 13/126 13 13/3 16 3 14 47∗
{(4, 11), (1, 3), (1, 9)} X
{(5, 14), (1, 10)} 4/35 8 4 14 3 14 45∗
{(4, 11), (1, 3), (1, 10)} 37/330 37 8 20 3 11 45∗
{(1, 2), 4× (1, 3), (1, 11)} X
{(2, 5), 3× (1, 3), (1, 11)} X

Subcase 2(viii): (P−2, P−3) = (1, 1). — In this case,
n0

1,2 = 2;
n0

1,3 = 3− P−4;
n0

1,4 = 1 + P−4 − σ5.

Hence (P−4, σ5) = (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (2, 0), (2, 1), (2, 2),
(2, 3), (1, 0), (1, 1), (1, 2). Hence the corresponding B(0) is in the following
list:

Table 6.19

B(0)

{2× (1, 2), 4× (1, 4)}
{2× (1, 2), 3× (1, 4), (1, s)}, s > 5
{2× (1, 2), 2× (1, 4), (1, s1), (1, s2)}, 5 6 s1 6 s2
{2× (1, 2), (1, 4), (1, s1), (1, s2), (1, s3)}, 5 6 s1 6 s2 6 s3
{2× (1, 2), (1, s1), (1, s2), (1, s3), (1, s4)}, 5 6 s1 6 s2 6 s3

Continued on next page
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Table 6.19 – continued from previous page
B(0)

{2× (1, 2), (1, 3), 3× (1, 4)}
{2× (1, 2), (1, 3), 2× (1, 4), (1, s)}, s > 5
{2× (1, 2), (1, 3), (1, 4), (1, s1), (1, s2)}, 5 6 s1 6 s2
{2× (1, 2), (1, 3), (1, s1), (1, s2), (1, s3)}, 5 6 s1 6 s2 6 s3
{2× (1, 2), 2× (1, 3), 2× (1, 4)}
{2× (1, 2), 2× (1, 3), (1, 4), (1, s)}, s > 5
{2× (1, 2), 2× (1, 3), (1, s1), (1, s2)}, 5 6 s1 6 s2

Hence we may get all possible packings with γ > 0 and rmax > 11, which
are listed in Table 6.20. In Table 6.20, for each basket BX , if rX 6 287
and rmax 6 12, then we apply Lemma 6.3(2) (such baskets are marked
with X in the last column); if −K3

X does not satisfy the assumption in
the lemma, we mark it with × in the last column; otherwise we can com-
pute MX and λ(MX), then find n1 such that P−n1 > λ(MX)n1 + 1 where
P−n1 is computed by Reid’s Riemann–Roch formula. Hence by Proposi-
tion 5.2, dimϕ−m(X) > 1 for all m > n1 since P−1 > 0. Again by Reid’s
Riemann–Roch formula, we may take m0 such that P−m0 > 2. Then by
Proposition 5.7(3), take m1 = n1, µ0 6 m0, and ν0 = 1, we get the integer
n2 such that ϕ−m is birational for all m > n2. (For the value of n2 with a
∗ mark, we apply Proposition 5.7(1)).

Table 6.20

BX −K3 MX λ(MX) n1 m0 rmax n2
{2× (1, 2), (1, 4), (3, 13)} 3/52 3 3 17 4 13 47
{2× (1, 2), (4, 17)} 1/17 2 2 13 4 17 51
{2× (1, 2), (1, 4), (3, 14)} 3/28 3 3 12 4 14 44
{2× (1, 2), (3, 13), (1, 5)} 7/65 14 14/3 16 4 13 46
{2× (1, 2), (3, 13), (1, 6)} 11/78 ×
{2× (1, 2), 2× (1, 4), (2, 11)} X
{2× (1, 2), (3, 13), (1, 7)} 15/91 ×
{2× (1, 2), (3, 13), (1, 8)} 19/104 ×
{2× (1, 2), 2× (1, 4), (2, 13)} 5/26 ×
{2× (1, 2), (3, 14), (1, 5)} 11/70 11 4 12 4 14 44
{2× (1, 2), (4, 19)} 3/19 6 3 10 4 19 42∗
{2× (1, 2), (3, 14), (1, 6)} 4/21 8 4 11 4 14 43
{2× (1, 2), (1, 4), (1, 5), (2, 11)} X
{2× (1, 2), (2, 9), (2, 11)} X
{2× (1, 2), (1, 4), (3, 16)} 3/16 3 3 10 4 16 42∗
{2× (1, 2), (3, 14), (1, 7)} 3/14 ×
{2× (1, 2), (1, 4), (2, 11), (1, 6)} X
{2× (1, 2), (1, 4), (3, 17)} 15/68 ×
{2× (1, 2), (1, 5), (3, 16)} 19/80 ×
{2× (1, 2), (4, 21)} 5/21 ×

Continued on next page
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Table 6.20 – continued from previous page
BX −K3 MX λ(MX) n1 m0 rmax n2
{2× (1, 2), (3, 11), (1, 4)} X
{2× (1, 2), (4, 15)} < 0 ×
{2× (1, 2), (3, 11), (1, 5)} X
{2× (1, 2), (1, 3), (3, 13)} < 0 ×
{(1, 2), (2, 5), (3, 13)} 1/130 ×
{(3, 7), (3, 13)} 2/91 ×
{2× (1, 2), (3, 11), (1, 6)} X
{2× (1, 2), (3, 11), (1, 7)} X
{2× (1, 2), (3, 11), (1, 8)} X
{2× (1, 2), (3, 11), (1, 9)} X
{2× (1, 2), (3, 11), (1, 10)} X
{2× (1, 2), (1, 3), (3, 14)} 1/42 ×
{(1, 2), (2, 5), (3, 14)} 2/35 4 3 17 4 14 49
{(3, 7), (3, 14)} 1/14 1 1 9 4 14 39∗
{2× (1, 2), (1, 3), (1, 4), (2, 11)} X
{2× (1, 2), (2, 7), (2, 11)} X
{(1, 2), (2, 5), (1, 4), (2, 11)} X
{(3, 7), (1, 4), (2, 11)} 31/308 31 31/4 21 4 11 47
{2× (1, 2), (1, 3), (1, 4), (2, 13)} 17/156 17 17/3 17 4 13 47
{2× (1, 2), (2, 7), (2, 13)} 11/91 ×
{(1, 2), (2, 5), (1, 4), (2, 13)} 37/260 ×
{(3, 7), (1, 4), (2, 13)} 57/364 ×
{2× (1, 2), (1, 3), (1, 5), (2, 11)} 17/165 34 8 21 2 11 47
{(1, 2), (2, 5), (1, 5), (2, 11)} X
{(3, 7), (1, 5), (2, 11)} 58/385 ×
{2× (1, 2), (1, 3), (3, 16)} 5/48 5 3 13 4 16 49
{(1, 2), (2, 5), (3, 16)} 11/80 11 4 13 4 16 49
{(3, 7), (3, 16)} 17/112 17 3 15 4 16 51
{2× (1, 2), (1, 3), (2, 11), (1, 6)} X
{(1, 2), (2, 5), (2, 11), (1, 6)} 28/165 ×
{(3, 7), (2, 11), (1, 6)} 85/462 ×
{2× (1, 2), (1, 3), (3, 17)} 7/51 14 14/3 14 4 17 52?
{(1, 2), (2, 5), (3, 17)} 29/170 29 29/4 16 4 17 54?
{(3, 7), (3, 17)} 22/119 22 6 14 4 17 52?
{2× (1, 2), (1, 3), (2, 11), (1, 7)} 37/231 ×
{2× (1, 2), (1, 3), (1, 5), (2, 13)} 31/195 ×
{2× (1, 2), (1, 3), (3, 11)} X
{(1, 2), (2, 5), (3, 11)} X
{(3, 7), (3, 11)} X
{2× (1, 2), 2× (1, 3), (1, 4), (1, 11)} X
{(1, 2), (2, 5), (1, 3), (1, 4), (1, 11)} 17/660 ×
{2× (1, 2), 2× (1, 3), (1, 4), (1, 12)} X
{2× (1, 2), 2× (1, 3), (2, 11)} X
{(1, 2), (2, 5), (1, 3), (2, 11)} 1/330 ×
{(3, 7), (1, 3), (2, 11)} X
{(1, 2), (3, 8), (2, 11)} X
{2× (2, 5), (2, 11)} X
{2× (1, 2), 2× (1, 3), (2, 13)} 1/39 ×
{(1, 2), (2, 5), (1, 3), (2, 13)} 23/390 23 6 24 5 13 55?
{(3, 7), (1, 3), (2, 13)} 20/273 20 6 22 5 13 53
{(1, 2), (3, 8), (2, 13)} 7/104 7 7/2 17 5 13 48
{2× (2, 5), (2, 13)} 6/65 6 3 14 5 13 45
{2× (1, 2), 2× (1, 3), (2, 15)} 1/15 2 2 14 6 15 50
{(1, 2), (2, 5), (1, 3), (2, 15)} 1/10 3 3 14 5 15 49
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There are 4 cases with “?” marked in the n2 column of Table 6.20, where
the values of n2 are larger than what we expect. So we discuss them in
details in the following.
If BX is among {2 × (1, 2), (1, 3), (3, 17)}, {(1, 2), (2, 5), (3, 17)}, and

{(3, 7), (3, 17)}, we know that dimϕ−m(X) > 1 for all m > 16 from the
list. Note that P−7 > 11. Take m0 = 4. If |−7KX | and |−4KX | are not
composed with the same pencil, then we may take m1 = 7 and µ0 6 4,
and by Proposition 5.7(1), ϕ−m is birational for all m > 33; if |−7KX | and
|−4KX | are composed with the same pencil, then we may take m1 = 16
and µ0 6 7

10 by Remark 5.8, and by Proposition 5.7(3), ϕ−m is birational
for all m > 50.
If BX = {(1, 2), (2, 5), (1, 3), (2, 13)}, we know that dimϕ−m(X) > 1 for

allm > 24 from the list. Note that P−10 > 13. Takem0 = 5. If |−10KX | and
|−5KX | are not composed with the same pencil, then we may takem1 = 10
and µ0 6 5, and by Proposition 5.7(3), ϕ−m is birational for all m > 41;
if |−10KX | and |−5KX | are composed with the same pencil, then we may
take m1 = 24 and µ0 6 10

12 by Remark 5.8, and by Proposition 5.7(3), ϕ−m
is birational for all m > 50.
Combining all above cases, the proof is completed. �

Theorem 6.11. — Let (X,Y, Z) be a Fano–Mori triple such that
ρ(Y ) > 1. Assume that P−1 > 0 and 1/30 6 −K3

X < 0.21. Then ϕ−m
is birational for all m > 51.

Proof. — If rX = 840, then we are done by Theorem 6.6(2). Hence we
may always assume that rX 6 660. Since P−1 > 0, we may always take
ν0 = 1.
We discuss by the value of rmax.
Case 1: rmax 6 8. — Recall that P−8 > 2 by Proposition 2.6. We may

take m0 = 8. Note that by Lemma 6.9(1), P−18 > 21. If |−18KX | and
|−8KX | are not composed with the same pencil, we may take m1 = 18 and
µ0 6 8. By Proposition 5.7(3), ϕ−m is birational for allm > 42. If |−18KX |
and |−8KX | are composed with the same pencil, we may take m0 = 35 by
Lemma 6.9(2) and µ0 6 18

20 by Remark 5.8. By Proposition 5.7(3), ϕ−m is
birational for all m > 51.

Case 2: rmax = 9. — In this case, by inequality (2.3), arguing as [12,
Proof of Proposition 2.4], one can show that either rX 6 504 = 9 × 8 ×
7 or rX = 630, moreover, in the latter case, the set of local indices is
either {2, 5, 7, 9} or {2, 2, 5, 7, 9}. (We leave this to interested readers as an
exercise!)
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If rX 6 504, then by Lemma 5.5,

λ(MX)
−K3

X

6 max
{

1, 3
1/30 ,

√
2× 504

1/30

}
< 174.

Take t = 11, then

−3
4 +

√
12

t(−K3
X) + 6λ(MX)

−K3
X

+ 1
16 < 33.

By Proposition 5.4, |−mKX | is not composed with a pencil for m > 33.
Recall that P−8 > 2 by Proposition 2.6. We may take m0 = 8. Note that by
Lemma 6.9(1), P−18 > 21. If |−18KX | and |−8KX | are not composed with
the same pencil, we may take m1 = 18 and µ0 6 8. By Proposition 5.7(3),
ϕ−m is birational for all m > 44. If |−18KX | and |−8KX | are composed
with the same pencil, we may take m1 = 33 by Lemma 6.9(2) and µ0 6 18

20
by Remark 5.8. By Proposition 5.7(3), ϕ−m is birational for all m > 51.

Now we consider the case rX = 630. In this case, BX is either {(1, 2),
(a, 5), (b, 7), (c, 9)} or {2 × (1, 2), (a, 5), (b, 7), (c, 9)} for some a ∈ {1, 2},
b ∈ {1, 2, 3}, and c ∈ {1, 2, 4}. Note that by Theorem 6.7(1), we may
assume that 1/30 6 −K3

X < 0.12.
First we consider BX = {(1, 2), (a, 5), (b, 7), (c, 9)}. If P−1 > 2, then by

the equality (2.1),

−K3
X = 2P−1 + 1

2 + a(5− a)
5 + b(7− b)

7 + c(9− c)
9 − 6

>
1
2 + 4

5 + 6
7 + 8

9 − 2 > 1,

a contradiction. Hence P−1 = 1 and

−K3
X = 1

2 + a(5− a)
5 + b(7− b)

7 + c(9− c)
9 − 4.

It is easy to check that 1/30 6 −K3
X < 0.12 if and only if (a, b, c) = (2, 1, 2),

that is, BX = {(1, 2), (2, 5), (1, 7), (2, 9)}, −K3
X = 71/630, MX = 71, and

λ(MX) = 71/5. Note that P−25 > 25λ(MX)+1 where P−25 is computed by
Reid’s Riemann–Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1
for all m > 25 since P−1 > 0. Again by Reid’s Riemann–Roch formula, we
may takem0 = 4 since P−4 = 2. Then by Proposition 5.7(3), takem1 = 25,
µ0 6 4, and ν0 = 1, we get that ϕ−m is birational for all m > 47.
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Then we consider BX = {2× (1, 2), (a, 5), (b, 7), (c, 9)}. If P−1 > 2, then
by the equality (2.1),

−K3
X = 2P−1 + 2× 1

2 + a(5− a)
5 + b(7− b)

7 + c(9− c)
9 − 6

> 2× 1
2 + 4

5 + 6
7 + 8

9 − 2 > 1,

a contradiction. Hence P−1 = 1 and

−K3
X = 1 + a(5− a)

5 + b(7− b)
7 + c(9− c)

9 − 4.

It is easy to check that 1/30 6 −K3
X < 0.12 if and only if (a, b, c) =

(1, 2, 1), that is, BX = {2 × (1, 2), (1, 5), (2, 7), (1, 9)}, −K3
X = 37/315,

MX = 74, and λ(MX) = 12. Note that P−25 > 25λ(MX) + 1 where
P−25 is computed by Reid’s Riemann–Roch formula. Hence by Proposi-
tion 5.2, dimϕ−m(X) > 1 for all m > 25 since P−1 > 0. Again by Reid’s
Riemann–Roch formula, we may take m0 = 4 since P−4 = 2. Then by
Proposition 5.7(3), take m1 = 25, µ0 6 4, and ν0 = 1, we get that ϕ−m is
birational for all m > 47.

Case 3: rmax = 10. — In this case, by inequality (2.3), arguing as [12,
Proof of Proposition 2.4], one can show that either rX 6 210 = 10×7×3 or
rX = 420, moreover, in the latter case, the set of local indices is {3, 4, 7, 10}.
(We leave this again as an exercise.)
If rX 6 210, then we may apply Lemma 6.3(2). Hence we only consider

the case rX = 420. Note that by Theorem 6.7(1), we may assume that
1/30 6 −K3

X < 0.12.
In this case, BX is {(1, 3), (1, 4), (a, 7), (b, 10)} for some a ∈ {1, 2, 3},

b ∈ {1, 3}. If P−1 > 2, then by the equality (2.1),

−K3
X = 2P−1 + 2

3 + 3
4 + a(7− a)

7 + b(10− b)
10 − 6

>
2
3 + 3

4 + 6
7 + 9

10 − 2 > 1,

a contradiction. Hence P−1 = 1 and

−K3
X = 2

3 + 3
4 + a(7− a)

7 + b(10− b)
10 − 4.

One can directly check that 1/30 6 −K3
X < 0.12 could never happen.

Case 4: rmax > 11. — This case is proved by Lemma 6.10 and Theo-
rem 6.7.
Combining all above discussions, the proof is completed. �
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6.9. The case P−2 > 0 and −K3
X < 1/30

Theorem 6.12. — Let (X,Y, Z) be a Fano–Mori triple such that
ρ(Y ) > 1. Assume that P−2 > 0 and −K3

X < 1/30. Then
(1) dimϕ−m(X) > 1 for all m > 37;
(2) ϕ−m is birational for all m > 52.

Proof. — We follow the argument of [7, Proof of Theorem 4.4] to classify
all possible geometric baskets with −K3 < 1/30.
If P−1 = 0, by [7, Proof of Theorem 4.4, Case I], since P−2 > 0 and

−K3 < 1/30, all possible geometric baskets are dominated by {7 × (1, 2),
(3, 7), (1, 5)}, which we already treated as the last four cases in Table 6.8
in the proof of Theorem 6.8.

Now we consider P−1 > 1. By [7, Proof of Theorem 4.4, Case IV], if
P−1 > 3, then −K3

X > 1/2, a contradiction. Hence P−1 = 1 or 2.
Case 1: P−1 = 1. — By [7, Proof of Theorem 4.4, Subcase II-1, Subcase

II-2]), one has −K3
X > 1/12 when P−2 > 3. Hence we have P−2 6 2.

Subcase 1(i): P−2 = 2. — Note that by [7, Proof of Theorem 4.4, Sub-
case II-3], either

B(0) = {5× (1, 2), (1, 3), (1, s)}
for some s > 7, or BX is dominated by {3× (1, 2), (3, 7), (1, 5)}.

In the former case, if s > 8, then

−K3(BX) > −K3(B(0)) > 1
24 ,

which is absurd. So s = 7, and one-step packing has −K3 > 1/30, hence
BX = B(0) = {5 × (1, 2), (1, 3), (1, 7)}. In the latter case, all packings of
{3 × (1, 2), (3, 7), (1, 5)} has −K3 < 1/30. Hence we may get all possible
packings, which are listed in Table 6.21.

Table 6.21

BX −K3 MX λ(MX) n1 m0 rmax n2

{5× (1, 2), (1, 3), (1, 7)} 1/42 X
{3× (1, 2), (3, 7), (1, 5)} 1/70 X
{2× (1, 2), (4, 9), (1, 5)} 1/45 X
{(1, 2), (5, 11), (1, 5)} 3/110 X
{(6, 13), (1, 5)} 2/65 2 2 17 2 13 45

In Table 6.21, for each basket BX , if rX 6 165 and rmax 6 12, then we
apply Lemmas 6.2 and 6.3(2) (such baskets are marked with X in the last
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column), otherwise we can compute MX and λ(MX), then find n1 such
that P−n1 > λ(MX)n1 + 1 where P−n1 is computed by Reid’s Riemann–
Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1 for all m > n1
since P−1 > 0. By assumption, P−2 = 2, we may take m0 = 2. Then by
Proposition 5.7(3), take m1 = n1, µ0 6 m0, and ν0 = 1, we get the integer
n2 such that ϕ−m is birational for all m > n2.

Subcase 1(ii): P−2 = 1. — By [7, Proof of Theorem 4.4, Subcase II-4],
since −K3

X < 1/30, (P−3, P−4) can only take the values (2, 3), (2, 2), (1, 2)
and (1, 1).

If (P−3, P−4) = (2, 3), then BX is dominated by

{(1, 2), 2× (1, 3), (2, 7), (1, 4)}

by [7, Proof of Theorem 4.4, Case II-4b]. Hence we may get all possible
packings with 0 < −K3(BX) < 1/30, which are listed in Table 6.22. In
Table 6.22, for each basket BX , if rX 6 165 and rmax 6 12, then we
apply Lemmas 6.2 and 6.3(2) (such baskets are marked with X in the last
column), otherwise we can compute MX and λ(MX), then find n1 such
that P−n1 > λ(MX)n1 + 1 where P−n1 is computed by Reid’s Riemann–
Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1 for all m > n1
since P−1 > 0. By assumption, P−3 = 2, we may take m0 = 3. Then by
Proposition 5.7(3), take m1 = n1, µ0 6 m0, and ν0 = 1, we get the integer
n2 such that ϕ−m is birational for all m > n2. (For the values of n2 with a
∗ mark, we apply Proposition 5.7(1)).

Table 6.22

BX −K3 MX λ(MX) n1 m0 rmax n2

{(1, 2), 2× (1, 3), (2, 7), (1, 4)} 1/84 X
{(1, 2), (1, 3), (3, 10), (1, 4)} 1/60 X
{(1, 2), (4, 13), (1, 4)} 1/52 1 1 13 3 13 42
{(1, 2), 2× (1, 3), (3, 11)} 1/66 X
{(1, 2), (1, 3), 2× (2, 7)} 1/42 X
{(1, 2), (3, 10), (2, 7)} 1/35 X
{(1, 2), (5, 17)} 1/34 1 1 11 3 17 42∗

If (P−3, P−4) = (2, 2), then by [7, Proof of Theorem 4.4, Case II-4d],
either

B(0) = {(1, 2), 4× (1, 3), (1, s)}
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for some s > 7, or BX is dominated by {(3, 8), 2 × (1, 3), (1, 5)}. In the
former case, if s > 8, then

−K3(BX) > −K3(B(0)) > 1
24 ,

which is absurd. So s = 7, and since its one-step packing has −K3 >

1/30, BX = B(0) = {(1, 2), 4× (1, 3), (1, 7)}. Hence we may get all possible
packings with 0 < −K3(BX) < 1/30, which are listed in Table 6.23. In
Table 6.23, for each basket BX , if rX 6 165 and rmax 6 12, then we
apply Lemmas 6.2 and 6.3(2) (such baskets are marked with X in the last
column), otherwise we can compute MX and λ(MX), then find n1 such
that P−n1 > λ(MX)n1 + 1 where P−n1 is computed by Reid’s Riemann–
Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1 for all m > n1
since P−1 > 0. By assumption, P−3 = 2, we may take m0 = 3. Then by
Proposition 5.7(3), take m1 = n1, µ0 6 m0, and ν0 = 1, we get the integer
n2 such that ϕ−m is birational for all m > n2.

Table 6.23

BX −K3 MX λ(MX) n1 m0 rmax n2

{(1, 2), 4× (1, 3), (1, 7)} 1/42 X
{(3, 8), 2× (1, 3), (1, 5)} 1/120 X
{(4, 11), (1, 3), (1, 5)} 2/165 X
{(5, 14), (1, 5)} 1/70 1 1 16 3 14 47

If (P−3, P−4) = (1, 2), then by [7, Proof of Theorem 4.4, Case II-4e],
1 6 σ5 6 3.
If σ5 > 2, then B(0) is either

B(0) = {2× (1, 2), (1, 3), (1, 4), (1, s1), (1, s2)}

for some s2 > s1 > 5 or

B(0) = {2× (1, 2), (1, 3), (1, s1), (1, s2), (1, s3)}

for some s3 > s2 > s1 > 5. For the former case, if s2 > 6, then

−K3(BX) > −K3(B(0)) > 1
20 ,

hence s1 = s2 = 5 and

B(0) = {2× (1, 2), (1, 3), (1, 4), 2× (1, 5)}.

For the latter one, we always have

−K3(BX) > −K3(B(0)) > 1
15 .
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If σ5 = 1, then by [7, Proof of Theorem 4.4, Case II-4e], either

B(0) = {2× (1, 2), (1, 3), 2× (1, 4), (1, s)}

for some s > 7, or BX is dominated by one of the following baskets:

{2× (1, 2), (2, 7), (1, 4), (1, 6)},
{(3, 7), 2× (1, 4), (1, 5)},
{(1, 2), (2, 5), (1, 4), (2, 9)}.

In the former case, if s > 8, then

−K3(BX) > −K3(B(0)) > 1
24 ,

which is absurd. So s = 7, and since its one-step packing has −K3 >

1/30, BX = B(0) = {2 × (1, 2), (1, 3), 2 × (1, 4), (1, 7)}. Hence we may
get all possible packings with 0 < −K3(BX) < 1/30, which are listed in
Table 6.24. In Table 6.24, for each basket BX , if rX 6 165 and rmax 6 12,
then we apply Lemmas 6.2 and 6.3(2) (such baskets are marked with X
in the last column), otherwise we can compute MX and λ(MX), then find
n1 such that P−n1 > λ(MX)n1 + 1 where P−n1 is computed by Reid’s
Riemann–Roch formula. Hence by Proposition 5.2, dimϕ−m(X) > 1 for
all m > n1 since P−1 > 0. By assumption, P−4 = 2, we may take m0 = 4.
Then by Proposition 5.7(3), take m1 = n1, µ0 6 m0, and ν0 = 1, we get
the integer n2 such that ϕ−m is birational for all m > n2.

Table 6.24

BX −K3 MX λ(MX) n1 m0 rmax n2
{2× (1, 2), (1, 3), (1, 4), 2× (1, 5)} 1/60 X
{2× (1, 2), (2, 7), 2× (1, 5)} 1/35 X
{2× (1, 2), (1, 3), (2, 9), (1, 5)} 1/45 X
{2× (1, 2), (1, 3), (3, 14)} 1/42 1 1 14 4 14 46
{2× (1, 2), (1, 3), 2× (1, 4), (1, 7)} 1/42 X
{2× (1, 2), (2, 7), (1, 4), (1, 6))} 1/84 X
{2× (1, 2), (3, 11), (1, 6))} 1/66 X
{(3, 7), 2× (1, 4), (1, 5)} 1/70 X
{(1, 2), (2, 5), (1, 4), (2, 9)} 1/180 1 1 26 4 9 48
{(3, 7), (1, 4), (2, 9)} 5/252 5 3 28 4 9 50
{(3, 7), (3, 13)} 2/91 2 2 21 4 13 51
{(1, 2), (2, 5), (3, 13)} 1/130 1 1 22 4 13 52?

Note that there is one case with “?” mark in the n2 value column of
Table 6.24 where we get bigger n2 value than we expect. So we discuss it in
details. If BX = {(1, 2), (2, 5), (3, 13)}, we know that dimϕ−m(X) > 1 for
all m > 22 from the list. Note that P−12 = 7. Take m0 = 4. If |−12KX | and
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|−4KX | are not composed with the same pencil, then we may takem1 = 12
and µ0 6 4, and by Proposition 5.7(3), ϕ−m is birational for all m > 42;
if |−12KX | and |−4KX | are composed with the same pencil, then we may
take m1 = 22 and µ0 6 2 by Remark 5.8, and by Proposition 5.7(3), ϕ−m
is birational for all m > 50.
If (P−3, P−4) = (1, 1), then by [7, Proof of Theorem 4.4, Case II-4f], any

BX satisfying −K3(BX) < 1/30 and γ(BX) > 0 is either dominated by
one of the following baskets:

Table 6.25

B

{2× (1, 2), (1, 3), (2, 7), (1, 11)}
{(1, 2), (2, 5), (1, 3), (1, 4), (1, s)}, s = 9, 10, 11
{(3, 7), (1, 3), (1, 4), (1, 8)}
{(1, 2), (2, 5), (2, 7), (1, 8)}
{2× (2, 5), (1, 4), (1, s)}, s = 7, 8
{(1, 2), (2, 5), (1, 3), (1, 5), (1, 7)}
{(3, 7), (1, 3), (1, 5), (1, 6)}
{(1, 2), (3, 8), (1, 5), (1, 6)}
{(1, 2), (2, 5), (1, 3), (2, 11)}

or its initial basket

B(0) = {2× (1, 2), 2× (1, 3), (1, s1), (1, s2)}

for some s2 > s1 > 5 and s1 + s2 > 13. Note that in the latter case, by
−K3(B(0)) < 1/30, the possible values of (s1, s2) are (5, 8), (5, 9), (6, 7).
Hence we may get all possible packings with 0 < −K3(BX) < 1/30

with γ > 0, which are listed in Table 6.26. In Table 6.26, for each basket
BX , if rX 6 165 and rmax 6 12, then we apply Lemmas 6.2 and 6.3(2)
(such baskets are marked with X in the last column), otherwise we can
compute MX and λ(MX), then find n1 such that P−n1 > λ(MX)n1 +
1 where P−n1 is computed by Reid’s Riemann–Roch formula. Hence by
Proposition 5.2, dimϕ−m(X) > 1 for all m > n1 since P−1 > 0. Again by
Reid’s Riemann–Roch formula, we may find m0 such that P−m0 > 2. Then
by Proposition 5.7(3), take m1 = n1, µ0 6 m0, and ν0 = 1, we get the
integer n2 such that ϕ−m is birational for all m > n2.

Table 6.26

BX −K3 MX λ(MX) n1 m0 rmax n2
{2× (1, 2), (1, 3), (2, 7), (1, 11)} 1/231 ?
{2× (1, 2), (3, 10), (1, 11)} 1/110 ?

Continued on next page
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Table 6.26 – continued from previous page
BX −K3 MX λ(MX) n1 m0 rmax n2
{(1, 2), (2, 5), (1, 3), (1, 4), (1, 9)} 1/180 1 1 30 8 9 56?
{(1, 2), (2, 5), (2, 7), (1, 9)} 11/630 11 4 36 7 9 61?
{(3, 7), (2, 7), (1, 9)} 2/63 X
{(3, 7), (1, 3), (1, 4), (1, 9)} 5/252 5 3 29 7 9 54?
{(1, 2), (3, 8), (1, 4), (1, 9)} 1/72 X
{(1, 2), (2, 5), (1, 3), (1, 4), (1, 10)} 1/60 X
{(3, 7), (1, 3), (1, 4), (1, 10)} 13/420 13 13/3 29 7 10 56?
{(1, 2), (3, 8), (1, 4), (1, 10)} 1/40 X
{(1, 2), (2, 5), (2, 7), (1, 10)} 1/35 X
{(1, 2), (2, 5), (1, 3), (1, 4), (1, 11)} 17/660 17 17/3 36 8 11 66?
{(3, 7), (1, 3), (1, 4), (1, 8)} 1/168 1 1 28 7 8 51
{(1, 2), (2, 5), (2, 7), (1, 8)} 1/280 1 1 36 7 8 59?
{(3, 7), (2, 7), (1, 8)} 1/56 X
{2× (2, 5), (1, 4), (1, 7)} 1/140 X
{2× (2, 5), (1, 4), (1, 8)} 1/40 X
{(1, 2), (2, 5), (1, 3), (1, 5), (1, 7)} 1/42 5 3 26 5 7 45
{(1, 2), (3, 8), (1, 5), (1, 7)} 9/280 9 4 26 5 8 47
{(3, 7), (1, 3), (1, 5), (1, 6)} 1/70 3 3 34 5 7 53?
{(3, 7), (1, 3), (2, 11)} 4/231 4 3 31 5 11 58?
{(1, 2), (3, 8), (1, 5), (1, 6)} 1/120 X
{(1, 2), (3, 8), (2, 11)} 1/88 X
{(1, 2), (2, 5), (1, 3), (2, 11)} 1/330 1 1 37 5 11 64?
{2× (1, 2), 2× (1, 3), (1, 5), (1, 8)} 1/120 X
{2× (1, 2), 2× (1, 3), (1, 5), (1, 9)} 1/45 X
{2× (1, 2), 2× (1, 3), (1, 6), (1, 7)} 1/42 X
{2× (1, 2), 2× (1, 3), (2, 13)} 1/39 2 2 20 6 13 52?

There are 12 cases with “?” marked in the n2 column of Table 6.26. The
first two baskets are non-geometric since they have P−1 = 1 but P−5 = 0.
For the rest 10 baskets with “?” marked, we discuss them in more details
as followings.
If BX = {(1, 2), (2, 5), (1, 3), (1, 4), (1, 9)}, then P−8 = 2 and we dealt it

in Theorem 6.1.
If BX = {(1, 2), (2, 5), (2, 7), (1, 9)}, we know that dimϕ−m(X) > 1 for

all m > 36 from the list. Note that P−18 = 22. Take m0 = 7. If |−18KX |
and |−7KX | are not composed with the same pencil, then we may take
m1 = 18 and µ0 6 7, and by Proposition 5.7(3), ϕ−m,X is birational for all
m > 43. Hence we may assume that |−18KX | and |−7KX | are composed
with the same pencil, then we may take µ0 6 µ′0 = 18

21 by Remark 5.8. We
go on studying this situation by considering |−31KX |. We have P−31 = 96.
If |−31KX | is not composed with a pencil, then we may take m1 = 31
and by Proposition 5.7(3), ϕ−m is birational for m > 49; if |−31KX | is
composed with a pencil, then by Proposition 4.5, keep the same notation
as in Subsection 2.1,

3 < 96
31 = P−31 − 1

31 6 max{3,−K3
X , 2N0} 6 2N0,
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where N0 = rX(π∗(KX)2 · S). This implies that N0 > 2, and by Proposi-
tion 5.9, ϕ−m,X is birational for m > 51.

If BX = {(3, 7), (1, 3), (1, 4), (1, 9)}, we know that dimϕ−m(X) > 1 for
allm > 29 from the list. Note that P−17 = 20. Takem0 = 7. If |−17KX | and
|−7KX | are not composed with the same pencil, then we may takem1 = 17
and µ0 6 7, and by Proposition 5.7(3), ϕ−m is birational for all m > 42;
if |−17KX | and |−7KX | are composed with the same pencil, then we may
take m1 = 29 and µ0 6 17

19 by Remark 5.8, and by Proposition 5.7(3), ϕ−m
is birational for all m > 47.
If BX = {(3, 7), (1, 3), (1, 4), (1, 10)}, we know that dimϕ−m(X) > 1 for

allm > 29 from the list. Note that P−14 = 17. Takem0 = 7. If |−14KX | and
|−7KX | are not composed with the same pencil, then we may takem1 = 14
and µ0 6 7, and by Proposition 5.7(3), ϕ−m is birational for all m > 41;
if |−14KX | and |−7KX | are composed with the same pencil, then we may
take m1 = 29 and µ0 6 14

16 by Remark 5.8, and by Proposition 5.7(3), ϕ−m
is birational for all m > 49.
If BX = {(1, 2), (2, 5), (1, 3), (1, 4), (1, 11)}, then P−8 = 2 and we dealt it

in Theorem 6.1.
If BX = {(1, 2), (2, 5), (2, 7), (1, 8)}, takem0 = 7. Note that P−22 = 12. If

|−22KX | and |−7KX | are not composed with the same pencil, then we may
take m1 = 22 and µ0 6 7, and by Proposition 5.7(3), ϕ−m is birational for
all m > 45; if |−22KX | and |−7KX | are composed with the same pencil,
then we may take µ′0 = 22

P−22−1 = 2 by Remark 5.8, and by Proposition 5.9,
ϕ−m is birational for all m > 49.

If BX = {(3, 7), (1, 3), (1, 5), (1, 6)}, take m0 = 5. Then we may take
µ′0 6 m0 = 5 by Remark 5.8, and by Proposition 5.9, ϕ−m is birational for
all m > 45.
If BX = {(3, 7), (1, 3), (2, 11)}, take m0 = 5. Then we may take µ′0 6

m0 = 5 by Remark 5.8, and by Proposition 5.9, ϕ−m is birational for all
m > 48.
If BX = {(1, 2), (2, 5), (1, 3), (2, 11)}, take m0 = 5. Note that P−24 = 16.

If |−24KX | and |−5KX | are not composed with the same pencil, then
we may take m1 = 24 and µ0 6 5, and by Proposition 5.7(3), ϕ−m is
birational for all m > 51; if |−24KX | and |−5KX | are composed with the
same pencil, then we may take µ′0 = 24

P−24−1 = 24
15 by Remark 5.8, and by

Proposition 5.9, ϕ−m is birational for all m > 52. Note that this is in fact
the only case that ϕ−51 might not be birational.
If BX = {2×(1, 2), 2×(1, 3), (2, 13)}, we know that dimϕ−m(X) > 1 for

all m > 20 from the list. Note that P−13 = 14. Take m0 = 6. If |−13KX |
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and |−6KX | are not composed with the same pencil, then we may take
m1 = 13 and µ0 6 6, and by Proposition 5.7(3), ϕ−m is birational for all
m > 45; if |−13KX | and |−6KX | are composed with the same pencil, then
we may takem1 = 20 and µ0 6 1 by Remark 5.8, and by Proposition 5.7(3),
ϕ−m is birational for all m > 47.
Case 2: P−1 = 2. — In this case, by [7, Proof of Theorem 4.4, Case III],

B(0) = {(1, 2), (1, 3), (1, s)}

for some s > 7. Note that only

BX = B(0) = {(1, 2), (1, 3), (1, 7)}

satisfies −K3(BX) < 1/30. In this case, we may apply Lemmas 6.2 and
6.3(2).
Combining all above discussions, the proof is completed. �
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