We prove that two-step analytic sub-Riemannian structures on a compact analytic manifold equipped with a smooth measure and Lipschitz Carnot groups satisfy measure contraction properties.
On démontre que les structures sous-riemanniennes analytiques compactes de pas munies de mesures lisses et les groupes de Carnot dits Lipschitz vérifient des propriétés de contraction de la mesure.
Revised:
Accepted:
Published online:
Keywords: sub-Riemannian geometry, Measure Contraction Properties
Mot clés : Géométrie sous-riemannienne, propriététés de contraction de la mesure
@article{AIF_2020__70_6_2303_0, author = {Badreddine, Zeinab and Rifford, Ludovic}, title = {Measure contraction properties for two-step analytic {sub-Riemannian} structures and {Lipschitz} {Carnot} groups}, journal = {Annales de l'Institut Fourier}, pages = {2303--2330}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {6}, year = {2020}, doi = {10.5802/aif.3362}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3362/} }
TY - JOUR AU - Badreddine, Zeinab AU - Rifford, Ludovic TI - Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups JO - Annales de l'Institut Fourier PY - 2020 SP - 2303 EP - 2330 VL - 70 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3362/ DO - 10.5802/aif.3362 LA - en ID - AIF_2020__70_6_2303_0 ER -
%0 Journal Article %A Badreddine, Zeinab %A Rifford, Ludovic %T Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups %J Annales de l'Institut Fourier %D 2020 %P 2303-2330 %V 70 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3362/ %R 10.5802/aif.3362 %G en %F AIF_2020__70_6_2303_0
Badreddine, Zeinab; Rifford, Ludovic. Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups. Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2303-2330. doi : 10.5802/aif.3362. https://aif.centre-mersenne.org/articles/10.5802/aif.3362/
[1] Any sub-Riemannian metric has points of smoothness, Dokl. Akad. Nauk SSSR, Volume 424 (2009) no. 3, pp. 295-298 | DOI | MR | Zbl
[2] Some open problems, Geometric control theory and sub-Riemannian geometry (Springer INdAM Series), Volume 5, Springer, 2014, pp. 1-13 | DOI | MR | Zbl
[3] Introduction to Riemannian and sub-Riemannian geometry (2012) (Book in preparation)
[4] Curvature: a variational approach, Memoirs of the American Mathematical Society, 256, American Mathematical Society, 2018 no. 1225, v+142 pages | DOI | MR | Zbl
[5] Optimal transportation under nonholonomic constraints, Trans. Am. Math. Soc., Volume 361 (2009) no. 11, pp. 6019-6047 | DOI | MR | Zbl
[6] Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, Math. Ann., Volume 360 (2014) no. 1-2, pp. 209-253 | DOI | MR | Zbl
[7] Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity, ESAIM, Control Optim. Calc. Var., Volume 4 (1999), pp. 377-403 | DOI | MR | Zbl
[8] Mass transportation in sub-Riemannian structures admitting singular minimizing geodesics, Ph. D. Thesis, Université de Bourgogne (France) (2017)
[9] Mass transportation on sub-Riemannian structures of rank two in dimension four, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 3, pp. 837-860 | DOI | MR | Zbl
[10] Sharp measure contraction property for generalized H-type Carnot groups, Commun. Contemp. Math., Volume 20 (2018) no. 6, 1750081, 24 pages | DOI | MR | Zbl
[11] Semiconcavity results for optimal control problems admitting no singular minimizing controls, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 4, pp. 773-802 | DOI | Numdam | MR | Zbl
[12] Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, 2004, xiv+304 pages | MR | Zbl
[13] Existence and uniqueness of optimal transport maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 6, pp. 1367-1377 | DOI | Numdam | MR | Zbl
[14] -adic and real subanalytic sets, Ann. Math., Volume 128 (1988) no. 1, pp. 79-138 | DOI | MR | Zbl
[15] Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal., Volume 20 (2010) no. 1, pp. 124-159 | DOI | MR | Zbl
[16] Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not. (2009) no. 13, pp. 2347-2373 | DOI | MR | Zbl
[17] Ricci curvature lower bounds on Sasakian manifolds (2015) (https://arxiv.org/abs/1511.09381)
[18] On measure contraction property without Ricci curvature lower bound, Potential Anal., Volume 44 (2016) no. 1, pp. 27-41 | DOI | MR | Zbl
[19] Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 1, pp. 303-321 | DOI | MR | Zbl
[20] Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[21] On the lack of semiconcavity of the subRiemannian distance in a class of Carnot groups, J. Math. Anal. Appl., Volume 444 (2016) no. 2, pp. 1652-1674 | DOI | MR | Zbl
[22] A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, 2002, xx+259 pages | MR | Zbl
[23] On the measure contraction property of metric measure spaces, Comment. Math. Helv., Volume 82 (2007) no. 4, pp. 805-828 | DOI | MR | Zbl
[24] On the curvature and heat flow on Hamiltonian systems, Anal. Geom. Metr. Spaces, Volume 2 (2014) no. 1, pp. 81-114 | DOI | MR | Zbl
[25] Ricci curvatures in Carnot groups, Math. Control Relat. Fields, Volume 3 (2013) no. 4, pp. 467-487 | DOI | MR | Zbl
[26] Sub-Riemannian geometry and optimal transport, SpringerBriefs in Mathematics, Springer, 2014, viii+140 pages | DOI | MR | Zbl
[27] Singulières minimisantes en géométrie sous-Riemannienne, Séminaire Bourbaki. Vol. 2015/2016. Exposés 1104–1119 (Astérisque), Société Mathématique de France, 2017 no. 390, pp. 277-301 (Exp. No. 1113) | MR | Zbl
[28] The curvature of optimal control problems with applications to sub-Riemannian geometry, Ph. D. Thesis, Scuola Internazionale di Studi Avanzati (Italy) (2014)
[29] Measure contraction properties of Carnot groups, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 3, 60, 20 pages | DOI | MR | Zbl
[30] The Sard conjecture on Martinet surfaces, Duke Math. J., Volume 167 (2018) no. 8, pp. 1433-1471 | DOI | MR | Zbl
[31] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl
[32] On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl
[33] Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | MR | Zbl
Cited by Sources: