Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups
Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2303-2330.

We prove that two-step analytic sub-Riemannian structures on a compact analytic manifold equipped with a smooth measure and Lipschitz Carnot groups satisfy measure contraction properties.

On démontre que les structures sous-riemanniennes analytiques compactes de pas 2 munies de mesures lisses et les groupes de Carnot dits Lipschitz vérifient des propriétés de contraction de la mesure.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3362
Classification: 53C23, 22E25, 58C15, 58J60
Keywords: sub-Riemannian geometry, Measure Contraction Properties
Badreddine, Zeinab 1; Rifford, Ludovic 2

1 CNRS, IMJ-PRG, Sorbonne Université case 247 4 place Jussieu 75252 Paris (France)
2 Université Côte d’Azur, CNRS, Inria Labo. J.-A. Dieudonné, UMR CNRS 7351 Parc Valrose 06108 Nice Cedex 2 (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_6_2303_0,
     author = {Badreddine, Zeinab and Rifford, Ludovic},
     title = {Measure contraction properties for two-step analytic {sub-Riemannian} structures and {Lipschitz} {Carnot} groups},
     journal = {Annales de l'Institut Fourier},
     pages = {2303--2330},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {6},
     year = {2020},
     doi = {10.5802/aif.3362},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3362/}
}
TY  - JOUR
AU  - Badreddine, Zeinab
AU  - Rifford, Ludovic
TI  - Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 2303
EP  - 2330
VL  - 70
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3362/
DO  - 10.5802/aif.3362
LA  - en
ID  - AIF_2020__70_6_2303_0
ER  - 
%0 Journal Article
%A Badreddine, Zeinab
%A Rifford, Ludovic
%T Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups
%J Annales de l'Institut Fourier
%D 2020
%P 2303-2330
%V 70
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3362/
%R 10.5802/aif.3362
%G en
%F AIF_2020__70_6_2303_0
Badreddine, Zeinab; Rifford, Ludovic. Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups. Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2303-2330. doi : 10.5802/aif.3362. https://aif.centre-mersenne.org/articles/10.5802/aif.3362/

[1] Agrachev, Andrei Any sub-Riemannian metric has points of smoothness, Dokl. Akad. Nauk SSSR, Volume 424 (2009) no. 3, pp. 295-298 | DOI | MR | Zbl

[2] Agrachev, Andrei Some open problems, Geometric control theory and sub-Riemannian geometry (Springer INdAM Series), Volume 5, Springer, 2014, pp. 1-13 | DOI | MR | Zbl

[3] Agrachev, Andrei; Barilari, Davide; Boscain, Ugo Introduction to Riemannian and sub-Riemannian geometry (2012) (Book in preparation)

[4] Agrachev, Andrei; Barilari, Davide; Rizzi, Luca Curvature: a variational approach, Memoirs of the American Mathematical Society, 256, American Mathematical Society, 2018 no. 1225, v+142 pages | DOI | MR | Zbl

[5] Agrachev, Andrei; Lee, Paul W. Y. Optimal transportation under nonholonomic constraints, Trans. Am. Math. Soc., Volume 361 (2009) no. 11, pp. 6019-6047 | DOI | MR | Zbl

[6] Agrachev, Andrei; Lee, Paul W. Y. Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, Math. Ann., Volume 360 (2014) no. 1-2, pp. 209-253 | DOI | MR | Zbl

[7] Agrachev, Andrei; Sarychev, Andrei V. Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity, ESAIM, Control Optim. Calc. Var., Volume 4 (1999), pp. 377-403 | DOI | MR | Zbl

[8] Badreddine, Z. Mass transportation in sub-Riemannian structures admitting singular minimizing geodesics, Ph. D. Thesis, Université de Bourgogne (France) (2017)

[9] Badreddine, Z. Mass transportation on sub-Riemannian structures of rank two in dimension four, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 3, pp. 837-860 | DOI | MR | Zbl

[10] Barilari, Davide; Rizzi, Luca Sharp measure contraction property for generalized H-type Carnot groups, Commun. Contemp. Math., Volume 20 (2018) no. 6, 1750081, 24 pages | DOI | MR | Zbl

[11] Cannarsa, Piermarco; Rifford, Ludovic Semiconcavity results for optimal control problems admitting no singular minimizing controls, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 4, pp. 773-802 | DOI | Numdam | MR | Zbl

[12] Cannarsa, Piermarco; Sinestrari, Carlo Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, 2004, xiv+304 pages | MR | Zbl

[13] Cavalletti, Fabio; Huesmann, Martin Existence and uniqueness of optimal transport maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 6, pp. 1367-1377 | DOI | Numdam | MR | Zbl

[14] Denef, Jan; van den Dries, Lou p-adic and real subanalytic sets, Ann. Math., Volume 128 (1988) no. 1, pp. 79-138 | DOI | MR | Zbl

[15] Figalli, Alessio; Rifford, Ludovic Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal., Volume 20 (2010) no. 1, pp. 124-159 | DOI | MR | Zbl

[16] Juillet, Nicolas Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not. (2009) no. 13, pp. 2347-2373 | DOI | MR | Zbl

[17] Lee, Paul W. Y. Ricci curvature lower bounds on Sasakian manifolds (2015) (https://arxiv.org/abs/1511.09381)

[18] Lee, Paul W. Y. On measure contraction property without Ricci curvature lower bound, Potential Anal., Volume 44 (2016) no. 1, pp. 27-41 | DOI | MR | Zbl

[19] Lee, Paul W. Y.; Li, Chengbo; Zelenko, Igor Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 1, pp. 303-321 | DOI | MR | Zbl

[20] Lott, John; Villani, Cédric Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl

[21] Montanari, Annamaria; Morbidelli, Daniele On the lack of semiconcavity of the subRiemannian distance in a class of Carnot groups, J. Math. Anal. Appl., Volume 444 (2016) no. 2, pp. 1652-1674 | DOI | MR | Zbl

[22] Montgomery, Richard A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, 2002, xx+259 pages | MR | Zbl

[23] Ohta, Shin-ichi On the measure contraction property of metric measure spaces, Comment. Math. Helv., Volume 82 (2007) no. 4, pp. 805-828 | DOI | MR | Zbl

[24] Ohta, Shin-ichi On the curvature and heat flow on Hamiltonian systems, Anal. Geom. Metr. Spaces, Volume 2 (2014) no. 1, pp. 81-114 | DOI | MR | Zbl

[25] Rifford, Ludovic Ricci curvatures in Carnot groups, Math. Control Relat. Fields, Volume 3 (2013) no. 4, pp. 467-487 | DOI | MR | Zbl

[26] Rifford, Ludovic Sub-Riemannian geometry and optimal transport, SpringerBriefs in Mathematics, Springer, 2014, viii+140 pages | DOI | MR | Zbl

[27] Rifford, Ludovic Singulières minimisantes en géométrie sous-Riemannienne, Séminaire Bourbaki. Vol. 2015/2016. Exposés 1104–1119 (Astérisque), Société Mathématique de France, 2017 no. 390, pp. 277-301 (Exp. No. 1113) | MR | Zbl

[28] Rizzi, Luca The curvature of optimal control problems with applications to sub-Riemannian geometry, Ph. D. Thesis, Scuola Internazionale di Studi Avanzati (Italy) (2014)

[29] Rizzi, Luca Measure contraction properties of Carnot groups, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 3, 60, 20 pages | DOI | MR | Zbl

[30] Belotto da Silva, André; Rifford, Ludovic The Sard conjecture on Martinet surfaces, Duke Math. J., Volume 167 (2018) no. 8, pp. 1433-1471 | DOI | MR | Zbl

[31] Sturm, Karl-Theodor On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl

[32] Sturm, Karl-Theodor On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl

[33] Villani, Cédric Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | MR | Zbl

Cited by Sources: