Nous prouvons une inégalité isopérimétrique pour les groupes. En application, nous montrons que la fonction de Følner de tout groupe de Grigorchuk à croissance intermédiaire est au moins exponentielle. En tant qu’autre application, nous obtenons des bornes inférieures sur les fonctions de Følner dans divers groupes nilpotents par cycliques. Sous une hypothèse de régularité, nous obtenons une caractérisation des fonctions de Følner de ces groupes. Comme autre application, nous évaluons le comportement asymptotique de la fonction de Følner de . Nous étudions des exemples de groupes avec la propriété de Shalom parmi les extensions d’un groupe nilpotent par un groupe cyclique. Nous montrons qu’il existe des groupes hyperboliques lacunaires avec la propriété . Nous trouvons des groupes avec la propriété , qui sont des produits directs de groupes hyperbolique lacunaires et ont des fonctions Følner arbitrairement grandes.
We prove an isoperimetric inequality for groups. As an application we show that any Grigrochuk group of intermediate growth has at least exponential Følner function. As another application, we obtain lower bounds on Følner functions in various nilpotent-by-cyclic groups. Under a regularity assumption, we obtain a characterization of Følner functions of these groups. As a further application, we evaluate the asymptotics of the Følner function of . We study examples of groups with Shalom’s property among nilpotent-by-cyclic groups. We show that there exist lacunary hyperbolic groups with property . We find groups with property , which are direct products of lacunary hyperbolic groups and have arbitrarily large Følner functions.
Révisé le :
Accepté le :
Publié le :
Keywords: Følner function, isoperimetric profile, Følner sets, growth function
Mot clés : Fonction de Folner, profil isopérimétrique, ensembles de Folner, fonction de croissance
Erschler, Anna 1 ; Zheng, Tianyi 2
@article{AIF_2020__70_4_1363_0, author = {Erschler, Anna and Zheng, Tianyi}, title = {Isoperimetric inequalities, shapes of {F{\o}lner} sets and groups with {Shalom{\textquoteright}s} property ${H_{\protect \mathrm{FD}}}$}, journal = {Annales de l'Institut Fourier}, pages = {1363--1402}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {4}, year = {2020}, doi = {10.5802/aif.3360}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3360/} }
TY - JOUR AU - Erschler, Anna AU - Zheng, Tianyi TI - Isoperimetric inequalities, shapes of Følner sets and groups with Shalom’s property ${H_{\protect \mathrm{FD}}}$ JO - Annales de l'Institut Fourier PY - 2020 SP - 1363 EP - 1402 VL - 70 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3360/ DO - 10.5802/aif.3360 LA - en ID - AIF_2020__70_4_1363_0 ER -
%0 Journal Article %A Erschler, Anna %A Zheng, Tianyi %T Isoperimetric inequalities, shapes of Følner sets and groups with Shalom’s property ${H_{\protect \mathrm{FD}}}$ %J Annales de l'Institut Fourier %D 2020 %P 1363-1402 %V 70 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3360/ %R 10.5802/aif.3360 %G en %F AIF_2020__70_4_1363_0
Erschler, Anna; Zheng, Tianyi. Isoperimetric inequalities, shapes of Følner sets and groups with Shalom’s property ${H_{\protect \mathrm{FD}}}$. Annales de l'Institut Fourier, Tome 70 (2020) no. 4, pp. 1363-1402. doi : 10.5802/aif.3360. https://aif.centre-mersenne.org/articles/10.5802/aif.3360/
[1] Speed Exponents of Random Walks on Groups, Int. Math. Res. Not. (2017) no. 9, pp. 2567-2598 | MR | Zbl
[2] Branch groups, Handbook of algebra, Vol. 3, Volume 3, Elsevier, 2003, pp. 989-1112 | DOI | MR | Zbl
[3] Speed of random walks, isoperimetry and compression of finitely generated groups (2015) (https://arxiv.org/abs/1510.08040) | Zbl
[4] Shalom’s property and extensions by by locally finite groups (2017) (https://arxiv.org/abs/1706.00707) | Zbl
[5] A geometric approach to on-diagonal heat kernel lower bounds on groups, Ann. Inst. Fourier, Volume 51 (2001) no. 6, pp. 1763-1827 | DOI | MR | Zbl
[6] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoam., Volume 9 (1993) no. 2, pp. 293-314 | DOI | Zbl
[7] Automorphisms and endomorphisms of lacunary hyperbolic groups (2016) (https://arxiv.org/abs/1606.00679) | Zbl
[8] -cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations, Bull. Soc. Math. Fr., Volume 105 (1977) no. 3, pp. 281-336 | DOI | Numdam | Zbl
[9] Groups, orders, and dynamics (2014) (https://arxiv.org/abs/1408.5805)
[10] Gromov’s theorem on groups of polynomial growth and elementary logic, J. Algebra, Volume 89 (1984) no. 2, pp. 349-374 | DOI | MR | Zbl
[11] On isoperimetric profiles of finitely generated groups, Geom. Dedicata, Volume 100 (2003), pp. 157-171 | DOI | MR | Zbl
[12] Critical constants for recurrence of random walks on -spaces, Ann. Inst. Fourier, Volume 55 (2005) no. 2, pp. 493-509 | DOI | Numdam | MR | Zbl
[13] Piecewise automatic groups, Duke Math. J., Volume 134 (2006) no. 3, pp. 591-613 | MR | Zbl
[14] Poisson–Furstenberg boundaries, large-scale geometry and growth of groups, Proceedings of the International Congress of Mathematicians. Volume II (2010), pp. 681-704 | MR | Zbl
[15] Almost invariance of distributions for random walks on groups (2016) (https://arxiv.org/abs/1603.01458) | Zbl
[16] Finite-Dimensional Representations constructed from Random Walks (2016) (https://arxiv.org/abs/1609.08585) | Zbl
[17] Mixing, malnormal subgroups and cohomology in degree one (2016) (https://arxiv.org/abs/1607.05056) | Zbl
[18] On Burnside’s problem on periodic groups, Funkts. Anal. Prilozh., Volume 14 (1980) no. 1, pp. 53-54 | MR | Zbl
[19] Degrees of growth of finitely generated groups, and the theory of invariant means, Izv. Math., Volume 25 (1985) no. 2, pp. 259-300 | DOI | Zbl
[20] On growth in group theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (1991), pp. 325-338 | MR
[21] Milnor’s problem on the growth of groups and its consequences, Frontiers in complex dynamics (Princeton Mathematical Series), Volume 51, Princeton University Press, 2014, pp. 705-773 | DOI | MR
[22] Groups of polynomial growth and expanding maps, Publ. Math., Inst. Hautes Étud. Sci. (1981) no. 53, pp. 53-73 | DOI | Numdam | MR
[23] Hyperbolic groups, Mathematical Sciences Research Institute Publications, 8, Springer, 1987, pp. 75-263 | MR
[24] Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999, xx+585 pages | MR | Zbl
[25] Entropy and isoperimetry for linear and non-linear group actions, Groups Geom. Dyn., Volume 2 (2008) no. 4, pp. 499-593 | DOI | MR | Zbl
[26] The theory of groups, The Macmillan Co., 1959, xiii+434 pages | Zbl
[27] Finiteness conditions for soluble groups, Proc. Lond. Math. Soc., Volume 4 (1954), pp. 419-436 | DOI | MR | Zbl
[28] Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, 2000 | Zbl
[29] A quasi-isometric embedding theorem for groups, Duke Math. J., Volume 162 (2013) no. 9, pp. 1621-1648 | MR | Zbl
[30] Lacunary hyperbolic groups, Geom. Topol., Volume 13 (2009) no. 4, pp. 2051-2140 (with an appendix by Michael Kapovich and Bruce Kleiner) | DOI | MR | Zbl
[31] Kazhdan constants of hyperbolic groups, Funct. Anal. Appl., Volume 36 (2002) no. 4, pp. 290-297 | DOI | MR | Zbl
[32] A functional analysis proof of Gromov’s polynomial growth theorem, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 3, pp. 549-556 | DOI | MR | Zbl
[33] Isoperimetric profiles and random walks on some permutation wreath products (2015) (https://arxiv.org/abs/1510.08830) | Zbl
[34] Trees, Springer Monographs in Mathematics, Springer, 2003, x+142 pages (translated from the French original by John Stillwell, corrected 2nd printing of the 1980 English translation) | Zbl
[35] Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math., Volume 192 (2004) no. 2, pp. 119-185 | DOI | MR | Zbl
[36] Large scale Sobolev inequalities on metric measure spaces and applications, Rev. Mat. Iberoam., Volume 24 (2008) no. 3, pp. 825-864 | DOI | MR | Zbl
[37] Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces, Comment. Math. Helv., Volume 86 (2011) no. 3, pp. 499-535 | DOI | MR | Zbl
[38] Isoperimetric profile and random walks on locally compact solvable groups, Rev. Mat. Iberoam., Volume 29 (2013) no. 2, pp. 715-737 | DOI | MR | Zbl
[39] Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, 138, Cambridge University Press, 2000, xii+334 pages | MR | Zbl
[40] Rate of escape of the mixer chain, Electron. Commun. Probab., Volume 14 (2009), pp. 347-357 | MR | Zbl
Cité par Sources :