On resonances generated by conic diffraction
[Sur les résonances créées par diffraction sur des singularités coniques]
Annales de l'Institut Fourier, Tome 70 (2020) no. 4, pp. 1715-1752.

On décrit les résonances les plus proches de l’axe réel qui sont créées, sur une variété à bouts euclidiens, par diffraction sur des singularités coniques. Ces résonances sont, asymptotiquement, régulièrement distribuées le long d’une courbe logarithmique. On montre ensuite que, sous cette courbe, il y a une région logarithmique qui ne contient aucune autre résonance de la forme

λ logλ=-ν;

ici ; ν=(n-1)/2L 0 n est la dimension et L 0 la longueur de la plus longue géodésique reliant deux points coniques.

We describe the resonances closest to the real axis generated by diffraction of waves among cone points on a manifold with Euclidean ends. These resonances lie asymptotically evenly spaced along a curve of the form

λ logλ=-ν;

here ν=(n-1)/2L 0 where n is the dimension and L 0 is the length of the longest geodesic connecting two cone points. Moreover there are asymptotically no resonances below this curve and above the curve

λ logλ=-Λ

for a fixed Λ>ν.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3355
Classification : 58J50, 58J47, 78A45
Keywords: Diffraction, conic singularities, wave propagation, scattering, resonances.
Mot clés : Diffraction, singularités coniques, propagation des ondes, diffusion, résonances.

Hillairet, Luc 1 ; Wunsch, Jared 2

1 Institut Denis Poisson CNRS-Université d’Orléans rue de Chartres BP 6759, 45067 Orléans cedex 2 (France)
2 Department of Mathematics Northwestern University 2033 Sheridan Road Evanston IL 60208-2730 (USA)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2020__70_4_1715_0,
     author = {Hillairet, Luc and Wunsch, Jared},
     title = {On resonances generated by conic diffraction},
     journal = {Annales de l'Institut Fourier},
     pages = {1715--1752},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {4},
     year = {2020},
     doi = {10.5802/aif.3355},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3355/}
}
TY  - JOUR
AU  - Hillairet, Luc
AU  - Wunsch, Jared
TI  - On resonances generated by conic diffraction
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 1715
EP  - 1752
VL  - 70
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3355/
DO  - 10.5802/aif.3355
LA  - en
ID  - AIF_2020__70_4_1715_0
ER  - 
%0 Journal Article
%A Hillairet, Luc
%A Wunsch, Jared
%T On resonances generated by conic diffraction
%J Annales de l'Institut Fourier
%D 2020
%P 1715-1752
%V 70
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3355/
%R 10.5802/aif.3355
%G en
%F AIF_2020__70_4_1715_0
Hillairet, Luc; Wunsch, Jared. On resonances generated by conic diffraction. Annales de l'Institut Fourier, Tome 70 (2020) no. 4, pp. 1715-1752. doi : 10.5802/aif.3355. https://aif.centre-mersenne.org/articles/10.5802/aif.3355/

[1] Bardos, Claude; Guillot, Jean-Claude; Ralston, James La relation de Poisson pour l’équation des ondes dans un ouvert non borné, Commun. Partial Differ. Equations, Volume 7 (1982), pp. 905-958 | DOI | Zbl

[2] Baskin, Dean; Vasy, András; Wunsch, Jared Asymptotics of radiation fields in asymptotically Minkowski space, Am. J. Math., Volume 137 (2015) no. 5, pp. 1293-1364 | DOI | MR | Zbl

[3] Baskin, Dean; Wunsch, Jared Resolvent estimates and local decay of waves on conic manifolds, J. Differ. Geom., Volume 95 (2013) no. 2, pp. 183-214 | MR | Zbl

[4] Bony, Jean-Francois; Fujiie, Setsuro; Ramond, Thierry; Zerzeri, Maher Resonances for homoclinic trapped sets (2016) (https://arxiv.org/abs/1603.07517) | Zbl

[5] Burq, Nicolas Pôles de diffusion engendrés par un coin, Astérisque, Société Mathématique de France, 1997 no. 242 | Numdam | MR | Zbl

[6] Cheeger, Jeff; Taylor, Michael Eugene On the diffraction of waves by conical singularities. I, Commun. Pure Appl. Math., Volume 35 (1982) no. 3, pp. 275-331 | DOI | MR | Zbl

[7] Cheeger, Jeff; Taylor, Michael Eugene On the diffraction of waves by conical singularities. II, Commun. Pure Appl. Math., Volume 35 (1982) no. 4, pp. 487-529 | DOI | MR | Zbl

[8] Christianson, Hans Quantum monodromy and nonconcentration near a closed semi-hyperbolic orbit, Trans. Am. Math. Soc., Volume 363 (2011) no. 7, pp. 3373-3438 | DOI | MR | Zbl

[9] Dimassi, Mouez; Sjöstrand, Johannes Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999, xii+227 pages | MR | Zbl

[10] Dyatlov, Semyon Spectral gaps for normally hyperbolic trapping, Ann. Inst. Fourier, Volume 66 (2016) no. 1, pp. 55-82 | DOI | Numdam | MR | Zbl

[11] Dyatlov, Semyon; Zworski, Maciej Mathematical theory of scattering resonances (2015) Book in progress, http://math. mit.edu/dyatlov/res/ (22 December 2015, date last accessed)

[12] Ford, G. Austin; Wunsch, Jared The diffractive wave trace on manifolds with conic singularities, Adv. Math., Volume 304 (2017), pp. 1330-1385 | DOI | MR | Zbl

[13] Galkowski, Jeffrey A quantitative Vainberg method for black box scattering, Commun. Math. Phys., Volume 349 (2017) no. 2, pp. 527-549 | DOI | MR | Zbl

[14] Galkowski, Jeffrey Distribution of resonances in scattering by thin barriers, Memoirs of the American Mathematical Society, 1248, American Mathematical Society, 2019 | MR | Zbl

[15] Hillairet, Luc Contribution of periodic diffractive geodesics, J. Funct. Anal., Volume 226 (2005) no. 1, pp. 48-89 | DOI | MR | Zbl

[16] Hörmander, Lars Fourier integral operators, I, Acta Math., Volume 127 (1971), pp. 79-183 | DOI | MR

[17] Hörmander, Lars The Analysis of Linear Partial Differential Operators, 3, Springer, 1985 | Zbl

[18] Lax, Peter D.; Phillips, Ralph S. Scattering Theory, Academic Press Inc., 1989 | Zbl

[19] Melrose, Richard Scattering theory and the trace of the wave group, J. Funct. Anal., Volume 45 (1982) no. 1, pp. 29-40 | DOI | MR | Zbl

[20] Melrose, Richard; Wunsch, Jared Propagation of singularities for the wave equation on conic manifolds, Invent. Math., Volume 156 (2004) no. 2, pp. 235-299 | DOI | MR | Zbl

[21] Nonnenmacher, Stéphane Quantum transfer operators and quantum scattering, Séminaire : Équations aux Dérivées Partielles. 2009–2010 (Sémin. Équ. Dériv. Partielles), École Polytech., 2012 (Exp. No. VII, 18 p.) | MR | Zbl

[22] Nonnenmacher, Stéphane; Sjöstrand, Johannes; Zworski, Maciej From open quantum systems to open quantum maps, Commun. Math. Phys., Volume 304 (2011) no. 1, pp. 1-48 | DOI | MR | Zbl

[23] Sjöstrand, Johannes; Zworski, Maciej Complex scaling and the distribution of scattering poles, J. Am. Math. Soc., Volume 4 (1991), pp. 729-769 | DOI | MR | Zbl

[24] Sjöstrand, Johannes; Zworski, Maciej Lower bounds on the number of scattering poles, Commun. Partial Differ. Equations, Volume 18 (1993), pp. 847-858 | DOI | MR | Zbl

[25] Sjöstrand, Johannes; Zworski, Maciej Lower bounds on the number of scattering poles, II, J. Funct. Anal., Volume 123 (1994) no. 2, pp. 336-367 | DOI | MR | Zbl

[26] Sjöstrand, Johannes; Zworski, Maciej Fractal upper bounds on the density of semiclassical resonances, Duke Math. J., Volume 137 (2007) no. 3, pp. 381-459 | MR | Zbl

[27] Vaĭnberg, Boris Rufimovich Exterior elliptic problems that depend polynomially on the spectral parameter, and the asymptotic behavior for large values of the time of the solutions of nonstationary problems, Mat. Sb., N. Ser., Volume 92(134) (1973), p. 224-241, 343 | MR

[28] Vaĭnberg, Boris Rufimovich Asymptotic methods in equations of mathematical physics, Gordon & Breach Science Publishers, 1989, viii+498 pages (translated from the Russian by E. Primrose) | MR

[29] Wunsch, Jared Diffractive propagation on conic manifolds (2016) (https://arxiv.org/abs/1605.00502) | Numdam | Zbl

[30] Zworski, Maciej Poisson formula for resonances in even dimensions, Asian J. Math., Volume 2 (1998) no. 3, pp. 609-617 | DOI | MR | Zbl

[31] Zworski, Maciej Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | MR | Zbl

Cité par Sources :