On décrit les résonances les plus proches de l’axe réel qui sont créées, sur une variété à bouts euclidiens, par diffraction sur des singularités coniques. Ces résonances sont, asymptotiquement, régulièrement distribuées le long d’une courbe logarithmique. On montre ensuite que, sous cette courbe, il y a une région logarithmique qui ne contient aucune autre résonance de la forme
ici ; où est la dimension et la longueur de la plus longue géodésique reliant deux points coniques.
We describe the resonances closest to the real axis generated by diffraction of waves among cone points on a manifold with Euclidean ends. These resonances lie asymptotically evenly spaced along a curve of the form
here where is the dimension and is the length of the longest geodesic connecting two cone points. Moreover there are asymptotically no resonances below this curve and above the curve
for a fixed
Révisé le :
Accepté le :
Publié le :
Keywords: Diffraction, conic singularities, wave propagation, scattering, resonances.
Mot clés : Diffraction, singularités coniques, propagation des ondes, diffusion, résonances.
Hillairet, Luc 1 ; Wunsch, Jared 2
@article{AIF_2020__70_4_1715_0, author = {Hillairet, Luc and Wunsch, Jared}, title = {On resonances generated by conic diffraction}, journal = {Annales de l'Institut Fourier}, pages = {1715--1752}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {4}, year = {2020}, doi = {10.5802/aif.3355}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3355/} }
TY - JOUR AU - Hillairet, Luc AU - Wunsch, Jared TI - On resonances generated by conic diffraction JO - Annales de l'Institut Fourier PY - 2020 SP - 1715 EP - 1752 VL - 70 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3355/ DO - 10.5802/aif.3355 LA - en ID - AIF_2020__70_4_1715_0 ER -
%0 Journal Article %A Hillairet, Luc %A Wunsch, Jared %T On resonances generated by conic diffraction %J Annales de l'Institut Fourier %D 2020 %P 1715-1752 %V 70 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3355/ %R 10.5802/aif.3355 %G en %F AIF_2020__70_4_1715_0
Hillairet, Luc; Wunsch, Jared. On resonances generated by conic diffraction. Annales de l'Institut Fourier, Tome 70 (2020) no. 4, pp. 1715-1752. doi : 10.5802/aif.3355. https://aif.centre-mersenne.org/articles/10.5802/aif.3355/
[1] La relation de Poisson pour l’équation des ondes dans un ouvert non borné, Commun. Partial Differ. Equations, Volume 7 (1982), pp. 905-958 | DOI | Zbl
[2] Asymptotics of radiation fields in asymptotically Minkowski space, Am. J. Math., Volume 137 (2015) no. 5, pp. 1293-1364 | DOI | MR | Zbl
[3] Resolvent estimates and local decay of waves on conic manifolds, J. Differ. Geom., Volume 95 (2013) no. 2, pp. 183-214 | MR | Zbl
[4] Resonances for homoclinic trapped sets (2016) (https://arxiv.org/abs/1603.07517) | Zbl
[5] Pôles de diffusion engendrés par un coin, Astérisque, Société Mathématique de France, 1997 no. 242 | Numdam | MR | Zbl
[6] On the diffraction of waves by conical singularities. I, Commun. Pure Appl. Math., Volume 35 (1982) no. 3, pp. 275-331 | DOI | MR | Zbl
[7] On the diffraction of waves by conical singularities. II, Commun. Pure Appl. Math., Volume 35 (1982) no. 4, pp. 487-529 | DOI | MR | Zbl
[8] Quantum monodromy and nonconcentration near a closed semi-hyperbolic orbit, Trans. Am. Math. Soc., Volume 363 (2011) no. 7, pp. 3373-3438 | DOI | MR | Zbl
[9] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999, xii+227 pages | MR | Zbl
[10] Spectral gaps for normally hyperbolic trapping, Ann. Inst. Fourier, Volume 66 (2016) no. 1, pp. 55-82 | DOI | Numdam | MR | Zbl
[11] Mathematical theory of scattering resonances (2015) Book in progress, http://math. mit.edu/dyatlov/res/ (22 December 2015, date last accessed)
[12] The diffractive wave trace on manifolds with conic singularities, Adv. Math., Volume 304 (2017), pp. 1330-1385 | DOI | MR | Zbl
[13] A quantitative Vainberg method for black box scattering, Commun. Math. Phys., Volume 349 (2017) no. 2, pp. 527-549 | DOI | MR | Zbl
[14] Distribution of resonances in scattering by thin barriers, Memoirs of the American Mathematical Society, 1248, American Mathematical Society, 2019 | MR | Zbl
[15] Contribution of periodic diffractive geodesics, J. Funct. Anal., Volume 226 (2005) no. 1, pp. 48-89 | DOI | MR | Zbl
[16] Fourier integral operators, I, Acta Math., Volume 127 (1971), pp. 79-183 | DOI | MR
[17] The Analysis of Linear Partial Differential Operators, 3, Springer, 1985 | Zbl
[18] Scattering Theory, Academic Press Inc., 1989 | Zbl
[19] Scattering theory and the trace of the wave group, J. Funct. Anal., Volume 45 (1982) no. 1, pp. 29-40 | DOI | MR | Zbl
[20] Propagation of singularities for the wave equation on conic manifolds, Invent. Math., Volume 156 (2004) no. 2, pp. 235-299 | DOI | MR | Zbl
[21] Quantum transfer operators and quantum scattering, Séminaire : Équations aux Dérivées Partielles. 2009–2010 (Sémin. Équ. Dériv. Partielles), École Polytech., 2012 (Exp. No. VII, 18 p.) | MR | Zbl
[22] From open quantum systems to open quantum maps, Commun. Math. Phys., Volume 304 (2011) no. 1, pp. 1-48 | DOI | MR | Zbl
[23] Complex scaling and the distribution of scattering poles, J. Am. Math. Soc., Volume 4 (1991), pp. 729-769 | DOI | MR | Zbl
[24] Lower bounds on the number of scattering poles, Commun. Partial Differ. Equations, Volume 18 (1993), pp. 847-858 | DOI | MR | Zbl
[25] Lower bounds on the number of scattering poles, II, J. Funct. Anal., Volume 123 (1994) no. 2, pp. 336-367 | DOI | MR | Zbl
[26] Fractal upper bounds on the density of semiclassical resonances, Duke Math. J., Volume 137 (2007) no. 3, pp. 381-459 | MR | Zbl
[27] Exterior elliptic problems that depend polynomially on the spectral parameter, and the asymptotic behavior for large values of the time of the solutions of nonstationary problems, Mat. Sb., N. Ser., Volume 92(134) (1973), p. 224-241, 343 | MR
[28] Asymptotic methods in equations of mathematical physics, Gordon & Breach Science Publishers, 1989, viii+498 pages (translated from the Russian by E. Primrose) | MR
[29] Diffractive propagation on conic manifolds (2016) (https://arxiv.org/abs/1605.00502) | Numdam | Zbl
[30] Poisson formula for resonances in even dimensions, Asian J. Math., Volume 2 (1998) no. 3, pp. 609-617 | DOI | MR | Zbl
[31] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | MR | Zbl
Cité par Sources :