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ON RESONANCES GENERATED BY CONIC
DIFFRACTION

by Luc HILLAIRET & Jared WUNSCH (*)

Abstract. — We describe the resonances closest to the real axis generated by
diffraction of waves among cone points on a manifold with Euclidean ends. These
resonances lie asymptotically evenly spaced along a curve of the form

Imλ

log |Reλ|
= −ν;

here ν = (n− 1)/2L0 where n is the dimension and L0 is the length of the longest
geodesic connecting two cone points. Moreover there are asymptotically no reso-
nances below this curve and above the curve

Imλ

log |Reλ|
= −Λ

for a fixed Λ > ν.

Résumé. — On décrit les résonances les plus proches de l’axe réel qui sont créées,
sur une variété à bouts euclidiens, par diffraction sur des singularités coniques.
Ces résonances sont, asymptotiquement, régulièrement distribuées le long d’une
courbe logarithmique. On montre ensuite que, sous cette courbe, il y a une région
logarithmique qui ne contient aucune autre résonance de la forme

Imλ

log |Reλ|
= −ν;

ici; ν = (n − 1)/2L0 où n est la dimension et L0 la longueur de la plus longue
géodésique reliant deux points coniques.

1. Introduction

Let Xn be a manifold with cone points Y1, . . . , YN and with Euclidean
ends. We make the geometric assumption that there are no trapped geo-
desics that do not hit the cone points, and that there are a finite number of
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geodesics γkij connecting cone points Yi and Yj for each i, j (with possibly
more than one geodesic connecting a given pair, hence the index k). We
further assume that no two endpoints of any pair of these geodesics y, y′
are π-related; loosely speaking, this means that no three cone points are
collinear (see Section 2 below for precise definitions).

Let L0 denote the longest geodesic connecting two (not a priori distinct)
cone points. Assume that no two distinct oriented geodesics between cone
points of maximal length L0 end at a common cone point(1) (e.g., one could
assume that there is a unique geodesic of length L0 and it connects two
distinct cone points). Thus the longest path(s) along two successive conic
geodesics is (are) obtained by traversing back and forth along a single
geodesic, resulting in length 2L0. Let 2L′ denote the length of the next
longest path traversing two successive geodesics connecting cone points.
The main result of this paper is:

Theorem 1.1. — Let λj be a sequence of resonances of the Laplacian
on a conic manifold X subject to the geometric hypotheses above, with

− Imλj
log |Reλj| → ν.

Then either ν = (n− 1)/2L0 or ν > Λ where

Λ = min{n/(2L0), (n− 1)/(2L′)}.

More precisely, for a sequence of resonances satisfying

lim sup
(
− Imλj

log |Reλj|

)
< Λ

there exist δ > 0 and a constant CIm such that, up to extracting a subse-
quence,

Imλj = − (n− 1)
2L0

log |Reλj |+ CIm +O(|Reλj |−δ);

also there exists CRe such that the following quantization condition holds

(1.1) Reλj ∈ CRe + π

L0
Z +O(|Reλj |−δ).

This latter condition should be interpreted as saying the resonances have
real parts in the union of the intervals B(CRe + πk/L0, C|k|−δ) for k ∈ Z
and for some fixed C.
Moreover, there is only a finite number of pairs (CRe, CIm): one for each

geodesic of length L0.

(1)Note that this hypothesis rules out a geodesic loop of length L0 from a cone point to
itself, since the geodesic and its reversal end at the same point.

ANNALES DE L’INSTITUT FOURIER



RESONANCES GENERATED BY CONE POINTS 1717

The constants CRe and CIm are geometrically meaningful: they are re-
lated to the imaginary and real parts respectively of the logarithm of the
product of diffraction coefficients along the corresponding maximal length
closed diffractive geodesic undergoing two diffractions. It also follows from
this description that if the diffraction coefficient along every maximal geo-
desic vanishes then, for any sequence of resonances

lim sup
(
− Imλj

log |Reλj |

)
> Λ.

The theorem applies via the method of images to the Dirichlet or Neu-
mann problem on the exterior of one or more polygons in the plane, via a
“doubling” in which two copies of the exterior domain are sewn together
along their common edges to make a manifold with cone points, see e.g. [15,
Section 1], [3, Section 1]. As long as no three vertices are collinear, the
collinearity assumption is satisfied; at most one geodesic connects two cone
points; nontrapping is an open condition (and always satisfied for the ex-
terior of a single convex polygon); and the longest path condition certainly
holds if, say, no two pairs of vertices are the same distance apart. Our
geometric hypotheses are thus generically satisfied in the polygonal case
(once nontrapping is stipulated); we expect them to be generic in the more
general nontrapping conic setting as well.

Our main theorem consists of a upper bound for the locations of reso-
nances of X lying in a log neighborhood of the real axis (albeit without
multiplicity bounds), implying that resonances in this region can only con-
centrate on a log curve. We recall that previous work of Baskin–Wunsch [3]
Galkowski [13] showed on the one hand [3] that some region of the form

− Imλj
log |Reλj |

> ν0 > 0, |λj | > R

contains no resonances (subject to some genericity conditions on the re-
lationship among the conic singularities); it was more precisely observed
by Galkowski [13] that ν0 could be taken to be (n − 1)/2L0 + ε. On the
other hand, the authors and Galkowski showed(2) the following existence
theorem for resonances using a trace formula:

Theorem 1.2. — Assume there is a single maximal orbit of length
2L0 undergoing two diffractions with nonvanishing diffraction coefficients,

(2)This theorem was proved by the authors in the odd dimensional case and an-
nounced by the second author, with a sketch of the proof, at the Berkeley/Bonn/Paris
Nord/Zürich PDE Video Seminar in September 2015. Galkowski subsequently published
a proof covering both even and odd dimensional cases (citing the authors) as Theorem 5
of [13].

TOME 70 (2020), FASCICULE 4



1718 Luc HILLAIRET & Jared WUNSCH

whose iterates are all isolated in the length spectrum. Then for every ε > 0,

#
{
λj : − Imλj

log |Reλj |
<
n− 1
2L0

+ ε

}
∩B(0, r) > Cεr

1−ε.

The proof employs a trace formula of Ford–Wunsch [12] (previously
proved by the first author [15] in the case of flat surfaces) describing the
singularities of the wave trace induced by diffractive closed orbits, together
with a theorem relating resonances to the renormalized wave trace due to
Bardos–Guillot–Ralston [1], Melrose [19], and Sjöstrand–Zworski [25] (as
well as [30] for the even dimensional case). It also uses a Tauberian theorem
of Sjöstrand–Zworski [24]. As a proof has appeared in [13] (see also [29])
we do not give one here.

Thus, previous results implied that infinitely many resonances lie in any
logarithmic “strip” ∣∣∣∣ Imλ

log |Reλ| + n− 1
2L0

∣∣∣∣ < ε.

The results at hand sharpen this result by pushing down further into the
complex plane: we now know that below this first (approximate) logarith-
mic curve of resonances there is a gap region.
All this is in marked contrast with the case of a non-trapping smooth

manifold with Euclidean ends, where classic results of Lax–Phillips [18] and
Vainberg [27, 28] show that for for every ν > 0, there exists R > 0 so that
the region

Imλ > −ν log |Reλ|, |λ| > R

contains no resonances at all. The existence of resonances along log curves
is thus a consequence of the weak trapping effects of repeated diffraction
at the cone points (see discussion below). Our results therefore occupy a
middle ground between the smooth nontrapping case and the case of a
smooth manifold with trapped geodesics, where no matter how unstable
the structure of the trapped set, there seem to be resonances closer to
the real axis than those studied here: for instance there are now numerous
results about the existence of resonances lying near lines parallel to the real
axis, generated by normally hyperbolic trapping, cf. [10]. (That sequences
of resonances should always exist in some strip near the real axis in cases
of trapping on a smooth manifold with Euclidean ends is the content of the
modified Lax–Phillips conjecture.)
Previous results on strings of resonances on log curves as in Theorem 1.1

include the much more precise study in [5] of the related special case of one
orbit bouncing back and forth between an analytic corner and a wall. The
treatise [4] contains similar (and highly refined) results in the setting of

ANNALES DE L’INSTITUT FOURIER
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resonances generated by homoclinic orbits; such resonances are somewhat
closer to the real axis than those discussed here, but the variable-order
propagation of singularities techniques used below also appear in [4].
The appearance of the factor (n− 1)/(2L0) in our main theorem is quite

natural from a dynamical point of view; after a semiclassical rescaling of
the problem, we show that it represents the minimal “rate of smoothing”
enjoyed by a solution to the semiclassical Schrödinger equation owing to
its diffraction by cone points.
More precisely, consider a putative semiclassical resonant state uh, this

would be a solution to the Schrödinger equation with a complex spectral
parameter, here with imaginary part approximately −2νh log(1/h). As we
discuss below, the semiclassical wavefront set for such a solution to the
stationary Schrödinger equation propagates along geodesics that are per-
mitted to branch at cone points. In evaluating the regularity of uh, we show
(Proposition 4.2) that it loses regularity along the forward bicharacteristic
flow at a constant rate proportional to ν. At each diffraction, by contrast,
uh generically gains regularity by approximately the factor h(n−1)/2. These
gains and losses of regularity must be in balance along any closed branched
geodesic in the wave-front set of uh. The smallest ν will thus be obtained
when the diffractive gain in semiclassical regularity along the branched
orbit is as small as possible per unit length. We thus show that the opti-
mal scenario is that of concentration along the closed branching orbit that
diffracts as infrequently as possible: this is the orbit traveling back and
forth between the two maximally separated cone points. Correspondingly
there is a long-living resonant state concentrated along this orbit that loses
energy to infinity via diffraction as infrequently as possible. It is an instance
of the “weak trapping” phenomenon referred to above and yields the value
ν = (n− 1)/(2L0).
It is a natural conjecture that (at least generically), all resonances in

any log neighborhood of the real axis lie on quantized log curves Imλ ∼
−νj log |Reλ| for some family of νj . We have been unable to gain sufficient
control on error terms to verify this, however.

2. Conic geometry

We now specify our geometric hypotheses, which are much the same as
those employed in [3]: we assume that our manifold has conic singularities
and Euclidean ends, as follows.

TOME 70 (2020), FASCICULE 4
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Let X be a noncompact manifold with boundary, K a compact subset
of X, and let g be a Riemannian metric on X◦ such that X\K is isometric
to a union of finitely many exteriors of Euclidean balls

⊔
j(Rnzj\Bn(0, R0))

and such that g has conic singularities at the boundary of X:

g = dr2 + r2h(r, dr, y,dy);

here g is assumed to be nondegenerate over X◦ and h|∂X induces a metric
on ∂X, while r is a boundary defining function. We let Yα, α = 1, . . . N
denote the components of ∂X; we will refer to these components in what
follows as cone points, as each boundary component is a single point when
viewed in terms of metric geometry.
For simplicity of notation, we will retain the notation Bn(0, R) (with

R � 0) for the union of K and the intersection(s) of this large ball with
the Euclidean end(s) X\K.
Theorem 1.2 of [20] implies that we may choose local coordinates (r, y)

in a collar neighborhood of each Yα such that the metric takes the form

(2.1) g = dr2 + r2h(r, y,dy),

where h is now a family in r (which is the distance function to the boundary)
of smooth metrics on Yα. The curves {r = r0±t, y = y0} are now unit-speed
geodesics hitting the boundary, and indeed are the only such geodesics.

We will say that the conic manifold X is of product type if locally near
∂X the metric can be written in the form

(2.2) g = dr2 + r2h(y,dy)

in some product coordinates in a collar neighborhood of ∂X, where r is a
defining function and where h is a fixed (i.e., r-independent) metric on ∂X.

We say that the concatenation of a geodesic entering the boundary at
y = y0 ∈ Yα and another leaving at y = y1 ∈ Yα at the same time is a
geometric geodesic if y0, y1 are connected by a geodesic in Yα (with respect
to the metric h|r=0) of length π. Such concatenations of geodesics turn out
to be exactly those which are locally approximable by families of geodesics
in X◦ (see [20]). In the special case of a surface with conic singularity there
are locally just two of these, corresponding to limits of families of geodesics
that brush past the cone point on either side; more generally, there is a
(locally) codimension-two family of such geodesics through any cone point.
By contrast, we say that concatenation of a geodesic entering the bound-

ary at y = y0 ∈ Yα and another leaving at y = y1 ∈ Yα at the same time is
a diffractive geodesic if there is no restriction on y0, y1 besides lying in the
same boundary component Yα.We say that a diffractive geodesic is strictly

ANNALES DE L’INSTITUT FOURIER
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diffractive if it is not geometric. We say that two points in the cotangent
bundle of R × X are diffractively related (resp. strictly diffractively, ge-
ometrically) if they are connected by a diffractive geodesic (resp. strictly
diffractive, geometric).
The principal results of [20] (see also [6, 7]) are that singularities for

solutions of the wave equation propagate along diffractive geodesics, with
the singularities arising at strictly diffractive geodesics being generically
weaker than the main singularities. More precisely, if q is a point with
coordinates (r0, y0) lying close to a cone point Yα, the solution

u ≡ e− i t
√

∆ δq

is shown to have a conormal singularity at the diffracted wavefront r = t−r0
(for t > r0) lying in H−1/2−ε away from the geometric continuations of the
geodesic from q to Yα (whereas the main singularity is in H−n/2−ε). The
symbol (and also precise order) of this singularity was analyzed in [12],
based on computations in the product case by Cheeger–Taylor [6, 7], yield-
ing the following:

Proposition 2.1 ([12]). — Let p = (r, y) and p′ = (r′, y′) be strictly
diffractively related points near cone point Yα. Then near (t, p, p′), the
Schwartz kernel of the half-wave propagator e−it

√
∆(acting on half-densities)

has an oscillatory integral representation

(2.3) e− i t
√

∆ =
∫
Rξ

ei(r+r′−t)·ξ aD(t, r, y; r′, y′; ξ)dξ

whose amplitude aD ∈ S0 is

(2.4) (rr′)−n−1
2

2π i χ(ξ) ·Dα(y, y′)

·Θ− 1
2 (Yα→y) Θ− 1

2 (y′→Yα)ωg(r, y)ωg(r′, y′)

modulo elements of S− 1
2 +0. Here, χ ∈ C∞(Rξ) is a smooth function sat-

isfying χ ≡ 1 for ξ > 2 and χ ≡ 0 for ξ < 1. The factor Dα(y, y′) is the
Schwartz kernel of the operator e− iπ

√
∆Yα+(n−2)2/4, while the factors Θ− 1

2

are given by nonvanishing determinants of Jacobi fields (cf. [12] for details).
In the case where X is of product type near Yα, the amplitude aD admits

an asymptotic expansion in powers of |ξ|1/2.

TOME 70 (2020), FASCICULE 4
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3. Analytic preliminaries

We begin by making a semiclassical rescaling of our problem. Existence of
a resonance λ implies the existence of a certain kind of “outgoing” solution
u (an associated resonant state) of the equation

(∆− λ2)u = 0.

Setting Reλ = h−1 and Imλ = −ν log Reλ = −ν log h−1 gives

(3.1) (h2∆− zh)u = 0

where

zh = (1− i νh log(1/h))2 = 1 +O((h log(1/h))2)− 2 i νh log(1/h).

Our aim is to understand the resonances of the family h2∆−zh in a logarith-
mic neighbourhood of the real axis. More precisely, we look for resonances
in the set of zh with
√
zh ∈ Ωε ≡ {(−Λ + ε)h log(1/h) < Im

√
zh < 0, Re

√
zh ∈ [1− ε, 1 + ε]}

Now we recall (cf. [23] or [11, Chapter 4]) that the resonances of the
Laplacian with argument having magnitude less than a fixed θ agree with
poles of complex-scaled operator ∆θ which coincides with the original
Laplacian on a large compact set but which, near infinity, is deformed
into the complex domain. Existence of a resonance at zh is then equivalent
to existence of an L2 eigenfunction of the non-self-adjoint complex scaled
problem.
As in [4, Section 2], [26] we will scale only to an angle O(h log(1/h)); this

restriction on the scaling has the virtue (albeit an inessential one here) that
the overall propagation of singularities near the scaling is still bi-directional:
while propagation into the scaling region loses powers of h, it only loses a
finite number of such powers (see Proposition 4.2 below). Scaling to fixed
angle, by contrast, would break the propagation of semiclassical singulari-
ties at the boundary of the scaled region. Thus we fix M � 0 and set θ so
that

(3.2) tan θ = Mh log(1/h).

We let Dx = −i∂x and we consider an operator given by the Laplace–
Beltrami operator ∆g on the compact part K ⊂ X and, on the ends (with
Euclidean coordinate x ∈ Rn), given by the expression

∆θ =
(
(I + iF ′′θ (x))−1Dx

)
·
(
(I + iF ′′θ (x))−1Dx

)
,

ANNALES DE L’INSTITUT FOURIER
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where
Fθ(x) = (tan θ) · g(|x|)

for a function g chosen so that

g(t) = 0, t 6 R1, g(t) = 1
2 t

2, t > 2R1, g
′′(t) > 0.

We now set
Pθ = h2∆θ,

By construction, we have the following decomposition of X
(1) The interior region Bn(0, R1) in which Pθ = h2∆.
(2) The scaling region R1 6 R 6 2R1. In this region, we have

Id + iF ′′θ (x) = Id + tan θG(x) = Id + iMh log(1/h) ·G(x),

for some n× n matrix G with smooth entries. We then obtain the
asymptotic expansion

Pθ ∼ h2∆ +
∑
k>1

(tan θ)kQk

for some Qk ∈ Diff2
h .

(3) The deep scaling region (R > 2R1) in which

Pθ = (1 + i tan θ)−2h2∆.

This decomposition implies that there exists a constant C, independent of
h, such that, for any v

(3.3) ‖(Pθ − h2∆)v‖L2 6 Ch log(1/h)‖(h2∆ + 1)v‖L2

Let us assume as above, that, for a sequence of resonances, there exists
ν,E ∈ (0,∞) for which

zh = E + o(1)− i(2ν + o(1))h log(1/h).

Since existence of resonances is equivalent to existence of eigenvalues of the
complex-scaled operator Pθ, there exists a sequence of solutions to

(3.4) (Pθ − zh)uh = 0,

that is normalized in L2.

There is a slight ambiguity in the nomenclature since the eigenfunction
uh in the latter equation differs from the resonant state in (3.1), although
the zh are the same. We will say that this uh is a resonant state.

The semiclassical principal symbol of Pθ − zh is then given by

σh(h2∆θ)− E + o(1) + i(2ν + o(1))h log(1/h).

TOME 70 (2020), FASCICULE 4
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We easily see as in [23], [11] that for h sufficiently small,

−C1θ|ξ|2 6 Im σh(h2∆θ) 6 0

and
Im σh(h2∆θ) 6 −C2θ|ξ|2, |x| > 2R1.

Hence if M is sufficiently large (relative to ν), Pθ − zh enjoys a kind of
semiclassical hypoellipticity in |x| > 2R1 in the sense that as h ↓ 0 the
imaginary part of its symbol is a nonvanishing multiple of h log(1/h) in
this region. This will have consequences for regularity of solutions to (Pθ−
zh)uh = O(h∞) that we will derive in the following sections.

4. Semiclassical wavefront set and propagation of
singularities

Let (uh)h>0 be a bounded sequence in L2(X). For a positive sequence
εh, we will use the notation uh = OL2(εh) to say that ε−1

h uh is a bounded
sequence in L2(X).
For (x, ξ) ∈ T ∗X◦ we define (cf. [31, Chapter 8])

(x, ξ) /∈WFsh uh ⇐⇒ there exists A ∈ Ψh(X) elliptic at (x, ξ)
and Auh = OL2(hs).

Likewise

(x, ξ) /∈WFh uh ⇐⇒ there exists A ∈ Ψh(X) elliptic at (x, ξ)
and Auh = OL2(h∞).

As usual, we have

WFh uh =
⋃
s

WFsh uh.

(Note that, for the moment, we are only dealing with wavefront set away
from cone points)
By standard elliptic regularity in the semiclassical calculus, we have the

following result.

Lemma 4.1. — Let (Pθ − zh)uh = OL2(h∞) with Re zh = E + o(1).
We have

WFh uh ∩ T ∗X◦ ⊂ {|ξ|2g = E}.

ANNALES DE L’INSTITUT FOURIER
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This lemma implies that the wave-front set of uh does not intersect
the 0−section in T ∗X0. Thus, we may test uh against standard (non-
semiclassical) pseudodifferential or Fourier Integral operators in order to
understand its semiclassical wave-front. To understand the propagation of
singularities, it thus suffices to study U(t)uh, where U(t) denotes the half-
wave propagator U(t) = exp(− i t

√
∆).

The rest of this section is devoted to the proof of the following propaga-
tion of singularities result. What is novel here is the variable semiclassical
order (in addition to the presence of complex scaling). Note also that this
proposition only governs propagation in X◦, away from cone points.

Proposition 4.2. — Let

(Pθ − zh)uh = OL2(h∞)

with
zh = E + o(1)− i(2ν + o(1))h log(1/h).

(1) For t > 0 assume that {expt′H(q), t′ ∈ [0, t]} ⊂ T ∗(X◦ ∩B(0, R1)).
Then

q /∈WFsh uh =⇒ exptH(q) /∈WFs
′

h uh

for all s′ < s− 2tν.
(2) For t > 0, assume that {expt′H(q), t′ ∈ [0, t]} ⊂ T ∗(X◦∩B(0, R1)).

Then
exptH(q) /∈WFs

′

h uh =⇒ q /∈WFsh uh
for all s < s′ + 2tν,

(3) There exists some M0 > 0 such that for any q ∈ T ∗X◦ and t ∈ R
(not necessarily positive)

q /∈WFsh uh =⇒ exptH(q) /∈WFs
′

h uh,

for all s′ < s −M0|t| provided {expt′H(q) : t′ between 0 and t} ⊂
T ∗X◦. In particular this implies

(4.1) q ∈WFh uh ⇐⇒ exptH(q) ∈WFh uh,

provided the flow does not reach a cone point.
(4) There exists C > 0 such that for t > 0 and {expt′H(q), t′ ∈ [0, t]} ⊂

T ∗(X\B(0, 2R1)),

q /∈WFsh uh =⇒ exptH(q) /∈WFs
′

h uh

for all s′ < s+ Ct.

TOME 70 (2020), FASCICULE 4
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Remark 4.3. — The main content of the proposition is that, in the inte-
rior region and under forward propagation, semiclassical regularity drops
at a rate 2νt on the t-parametrized flow along H, the Hamilton vector field
of the symbol of P. Note, though, that the vector field H/2

√
E induces

unit speed geodesic flow, hence the rate of regularity loss along unit-speed
geodesics is νt/

√
E, where E is the real part of the spectral parameter and

−2 i νh log(1/h) the imaginary part.
The situation is more complicated near the boundary of the scaling re-

gion, where there are gains or losses in regularity owing to the scaling which
compete with the 2νt loss rate, but these gains and losses are also of finite
order. The last part illustrates that deep within the scaling region, forward
propagation gains regularity; this will be our substitute for elliptic regu-
larity in the scaling region, since we do not have full semiclassical elliptic
regularity with the angle h log(1/h) scaling employed here: semiclassical
singularities instead propagate but decay. (Cf. [4, Lemma 8.4] for related
results.)

Remark 4.4. — This proposition can be proved using commutator ar-
guments involving operators of variable semiclassical order. We refer the
reader to [14, Section 2.3] for a thorough treatment of the symbols of these
operators. The main difference with ordinary commutator arguments is the
presence of log(1/h) losses in the computation of the Poisson bracket (see
also [2, Appendix A] for analogous discussion in the homogeneous setting).
We have chosen a different approach using the half-wave propagator since
we will need to understand U(t)uh anyway to go through the conical points.

In the next subsection, we prove parts (1) and (2) of Proposition 4.2 and
in the following one we will turn to the parts (3) and (4).

4.1. Propagation in the interior region

Consider a resonant state uh, i.e., a solution to

(Pθ − zh)uh = 0.

Then of course locally in B(0, R1) we have simply

(h2∆− zh)uh = 0

so that, by finite speed of propagation,

sin(t
√

∆)√
∆

uh =
h sin(t

√
zh
h )

√
zh

uh,

ANNALES DE L’INSTITUT FOURIER



RESONANCES GENERATED BY CONE POINTS 1727

in B(0, R1 −A) for any |t| < A.

We need a little more work to understand U(t)uh.

Lemma 4.5. — Let uh be a resonant state associated with the resonance
zh with √zh ∈ Ωε. For any |t| < A and any open set V such that V ⊂
B(0, R1 −A) ∩X◦.

(4.2) U(t)uh = e− i t√zh/h uh +O(h∞)

in L2(V ).

Proof. — Since (Pθ−zh)uh = 0, we have (h
√

∆+√zh)(h
√

∆−√zh)uh =
0 in V. Using the results of Appendix A, we know that, in V,

√
∆ is a

pseudodifferential operator with real symbol so that, by ellipticity of the
first factor, we obtain (h

√
∆−√zh)uh = O(h∞) in L2(V ). We now set

vh(t, · ) = sin(t
√

∆)√
∆

uh.

We have

U(t)uh = ∂tvh(t, · )− i
√

∆vh

= cos
(
t

√
zh
h

)
uh − i

h sin
(
t
√
zh
h

)
√
zh

√
∆uh.

The claim follows since h
√

∆uh = √zhuh +O(h∞). �

Proof of (1) and (2) of Proposition 4.2. — Let (x0, ξ0) in T ∗X◦ ∩
B(0, R1) and t such that the geodesic of length t emanating from (x0, ξ0)
stays in T ∗X◦ ∩B(0, R1). We write φt for exptH .

If (x0, ξ0) /∈WFsh(uh) then we can find microlocal cutoffs Π0 near (x0, ξ0)
and Π near φt(x0, ξ0) such that Π0uh = OL2(hs) and ΠU(t)(I − Π0) is
smoothing. It follows that

Πuh = ei t√zh/h ΠU(t)uh + OL2(h∞)

= ei t√zh/h ΠU(t)Π0uh + OL2(h∞)

By unitary of U(t),

‖ei t√zh/h ΠU(t)Π0uh‖ 6 h−2(νt+0)‖Π0uh‖,

hence

�(4.3) Πuh = OL2(hs−2νt−0).
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4.2. Propagation in the scaling region

We now prove a propagation result which is valid everywhere in T ∗X◦,
including the scaling region.
Let (x0, ξ0) /∈ WFsh(uh). Assume that φt(x0, ξ0) lies over X◦ for all t ∈

[0, T ], for some T > 0.We will show that φt(x0, ξ0) /∈WFs−M0t−ε
h uh for all

t ∈ [0, T ] and ε > 0; the case of negative values of t will follow by the exact
same argument, which is not sensitive to choices of sign. The constant M0
will be defined during the proof.
We prove by (descending) induction that for any N ∈ N the following

holds true: for any ε > 0, we have φt(x0, ξ0) /∈WFs−N−M0t−ε
h for t ∈ [0, T ].

This assertion certainly holds true if N is large enough (since uh ∈ L2).
We now assume that it holds true for some N , set s′ = s−N, and choose
ε > 0.

There exists Π0 ∈ Ψh(X◦), elliptic at (x0, ξ0), with Π0u = OL2(hs). Let

Π(t) = U(t)Π0U(−t);

by the results of Appendix A this is in fact a pseudodifferential opera-
tor elliptic at φt(x0, ξ0). By our inductive hypothesis, we may shrink Π0
if necessary (but still include a fixed open neighborhood of (x0, ξ0) in
its elliptic set) and then additionally find Π̃(t) elliptic on WF′Π(t) with
Π̃(t)u = OL2(hs′−M0t− ε2 ).
Microlocally in T ∗X◦, the operator h

√
∆ +√zh is an elliptic pseudodif-

ferential operator so that

√
∆uh −

√
zh
h

uh = Qhuh,

where we have set

Qh := h−1(h
√

∆ +
√
zh)−1 (h2∆− Pθ

)
.

Thus Qh ∈ log(1/h)Ψh(X◦) in the scaling region (and vanishes where the
scaling vanishes).
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Let f(t) = ‖Π(t)uh‖. Then we compute:

2ff ′ = d
dtf

2 = 2 Im
〈

[
√

∆,Π(t)]uh,Π(t)uh
〉

= −2 Im
〈

Π(t)
√

∆uh,Π(t)uh
〉

= −2 Im 〈Π(t)(
√
zh/h+Qh)uh,Π(t)uh〉

= −2 Im
√
zh/h‖Π(t)uh‖2 − 2 Im 〈Π(t)Qhuh,Π(t)uh〉

= −2 Im
√
zh/h‖Π(t)uh‖2 − 2 Im 〈QhΠ(t)uh,Π(t)uh〉

− 2 Im 〈[Π(t), Qh]uh,Π(t)uh〉.

There exists a constant M0 (which is independent of s′) such that

M0 >
(−Im√zh/h) + ‖Qh‖

log(1/h) ,

and another constant C such that ‖[Π(t), Qh]uh‖ 6 Ch log(1/h)‖Π̃(t)uh‖.
Hence we obtain

2ff ′ 6 2M0 log(1/h)‖Π(t)uh‖2 + Ch log(1/h)‖Π̃(t)uh‖‖Π(t)uh‖

6 2M0 log(1/h)f2 + Ch1+s′−M0t− ε2 log(1/h)f.

An application of the Gronwall inequality now yields

f(t) 6 f(0)h−M0t + Ch1+s′−M0t−εh
ε
2 log(1/h),

hence our assumption on Π0 yields

f(t) 6 Ch1+s′−M0t−ε,

which, since Π(t) is elliptic on φt(x0, ξ0), completes the proof of the induc-
tion step. Part (3) of the proposition follows by setting N = 0.
Finally, in the deep scaling region, we follow the same argument as in

the un-scaled region, using that

Pθuh = zhuh =⇒
√

∆uh = (1 + ih tan θ)
√
zh
h

uh

so that we obtain, in place of (4.3), the gain in regularity

‖Πuh‖ = O(hs+Ct).

5. Microlocal concentration on the outgoing set

We now deduce from the preceding section the fact that the wavefront
set of a resonant state only lives on the outgoing set, which we define
below. Unless otherwise specified below, we will take the asymptotics (5.1)
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for zh as a standing assumption from now on, so that we may apply the
propagation theorems obtained above.

Corollary 5.1. — Let

(Pθ − zh)uh = O(h∞)

with

(5.1) zh = E + o(1)− i(2ν + o(1))h log(1/h).

Let q ∈ T ∗X◦ and assume that exp−tH(q) ∈ T ∗X◦ for all t > 0. Then
q /∈WFh uh.

Proof. — The assumption on the flowout of q means, given our stand-
ing hypothesis that geodesics in X◦ are non-trapped, that the backward
flowout of q eventually escapes into the deep scaling region X\B(0, 2R1).
Thus there exists T0 such that for t > T0, π(exp−tH q) /∈ B(0, 2R1). Since
uh ∈ L2, part (4) of Proposition 4.2, applied to a neighborhood of the back-
ward flowout of exp−T0H(q) for arbitrarily long times, gives exp−T0H(q) /∈
WFh uh. Part (3) then yields q /∈WFh uh. �

This proposition tells us that a resonant state uh can only have wave-
front on rays that emanate from the conical points. This leads to the fol-
lowing definition.

Definition 5.2. — Let Γ± denote the flowout/flowin from/to the union
of cone points, i.e.

Γ± =
{
q ∈ T ∗X◦ : exptH(q)→ Y as t→ t±0 for some t0 ≶ 0

}
Let Γ ≡ Γ+ ∩Γ− denote the geodesics propagating among the cone points.

Locally near Y, in coordinates (r, y) from (2.1) with canonical dual co-
ordinates ξ, η, we have Γ± = {ξ ≷ 0, η = 0}. The preceding corollary thus
says that

WFh(uh) ⊂ Γ+.

The set Γ is the trapped set that corresponds to our setting (cf. [11,
Chapter 6]). It consists in the geodesic rays that connect two (not neces-
sarily distinct) conical points. We now proceed to show that a non-trivial
resonant state must have some wavefront set on Γ. This will result from
the composition with the half-wave propagator near a conical point and of
the known structure of this operator.
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6. Composition with the wave propagator

Recall that U(t) denotes the half-wave propagator :

U(t) = e− i t
√

∆ .

The propagation results of [6, 7, 20] translate immediately into statements
on propagation of semiclassical wavefront set:

Proposition 6.1. — Let Ah, Bh ∈ Ψh(X◦) be compactly supported
semiclassical pseudodifferential operators with microsupports in a neigh-
borhood of a cone point Yα that are strictly diffractively related (i.e., no
geometric geodesics through Yα connect a point in WF′hAh and WF′hBh)
and with

(WF′hAh ∪WF′hBh) ∩ (0− section) = ∅.
Then for any fh with (Ph − zh)fh = O(h∞) we have

WFh(AhU(t)Bhfh) ⊂ D ◦WFh fh

where D denotes the canonical relation in canonical coordinates (r, ξ, θ, η)

{(r, ξ, y, η, r′, ξ′, y′, η′) : r + r′ = t, η = η′ = 0, ξ = −ξ′}.

Moreover a quantitative version of this result holds: there exists N such
that

WFsh(AhU(t)Bhfh) ⊂ D ◦WFs+Nh fh.

As a special case, this result tells us that if there is no wavefront set at
all on geodesics arriving at Yα then there is no wavefront set on geodesics
leaving it.
Proof. — The main result of [20] is that near diffractively related points,

for fixed t, the Schwartz kernel of U(t) is a conormal distribution with
respect to r+ r′ = t. Then (8.4.8) of [31] shows that in fact we locally have

WFh(U(t))\{0− section} = N∗{r + r′ = t}.

The mapping property on WFh then follows from the usual results on
mapping properties of FIOs.
The quantitative version follows from the closed graph theorem. (We

could of course get an explicit N but it is immaterial for our purposes.) �

Remark 6.2. — The precise form of the principal symbol of the conormal
distribution will not concern us so much as the mere fact of conormality
(and the order of the distribution).
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As a consequence of this lemma and of Proposition 6.1 together with our
“free” propagation results above (Proposition 4.2), we may now draw the
desired conclusion about the microsupport of a resonant state.

Corollary 6.3. — Suppose uh ∈ L2(X) and

(Pθ − zh)uh = 0.

Then WFh uh ⊂ Γ+. If WFh uh ∩ Γ = ∅ then uh = O(h∞).

Proof. — The containment in Γ+ is simply Corollary 5.1 above.
Now suppose that there is no wavefront set along Γ = Γ+∩Γ−. Consider

one cone point Yα. It is possible to choose, for small ε, Bh that microlocal-
izes near the sphere of radius ε centered at Yα in the incoming directions
and Ah that microlocalizes near the same sphere but in the outgoing di-
rections, so that, setting t = 2ε,

WFhAhU(t)uh = WFAhU(t)Bhuh.

Applying Proposition 6.1, we find WFhAhU(t)Bhuh = ∅. The latter equal-
ity and equation (4.2) then implies that WFhAhuh = ∅. Since this argu-
ment works for any α, we see from our propagation results above that
uh = O(h∞) globally. �

It is thus sufficient to understand uh near the rays in Γ in order to
understand its global behavior. In the following section, we encode the
behaviour of uh near such a ray by restricting uh to a transversal cross-
section. This is reminiscent of the construction of the quantum monodromy
matrix of Nonnenmacher–Sjöstrand–Zworski (see [21, 22]).

7. Restriction and extension

Let S ⊂ X◦ be an open oriented hypersurface and let (x, y) denote
normal coordinates near S, i.e., x denotes the signed distance from the
nearest point on S, which then has coordinate y ∈ S. We let ξ, η denote
canonical dual variables to (x, y) in T ∗X.

In the following proposition, we construct an extension operator E that
builds a microlocal solution to (Ph−zh) = O(h∞) given data on S (Cauchy
data).

Proposition 7.1. — There exists an amplitude a and a phase

φ =
(

(y − y′) · η + x
√

1− |η|2g(0,y) +O(x2)
)
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having phase variable η ∈ Rn−1 such that the operator E with kernel defined
by

E(x, y, y′) ≡
( h
√
zh

)−(n−1)
∫
a(x, y, y′, η;h) eiφ√zh/h dη

solves
(Ph − zh)Efh = O(h∞),

Efh|x=0 = fh +O(h∞),

for any fh such that WF(fh) ⊂ {|η| < 1
2}. The amplitude a enjoys an

asymptotic expansion in nonnegative powers of h/√zh, with coefficients
that are smooth functions of y′, p.

Proof. — We employ the Ansatz(√
zh
h

)n−1 ∫
a(x, y, y′, η;h/

√
zh) eiφ√zh/h f(y′)dηdy′,

where a is assumed to have an asymptotic expansion

a ∼
∞∑
j=0

aj(x, y, y′, η)
(

h
√
zh

)j
.

We find that the Cauchy data is reproduced (modulo O(h∞)) so long as

(7.1) a|x=0 ≡ 1

and φ|x=0= (y−y′)·η.On the other hand, applying Ph−zh to this expression
yields, first, the eikonal equation

zh
(
(∂xφ)2 + |∇yφ|2g

)
− zh = 0,

which as usual can locally be solved in the form

φ =
(

(y − y′) · η + x
√

1− |η|2x,y +O(x2)
)
,

by parametrizing the Lagrangian given by flowout along the Hamilton flow
in (x, ξ, y, η) of the set{(

x = 0, ξ =
√

1− |η|2g(0,y), y = y′, η = η′
)}

.

Next, the leading transport equation reads

2 ih
√
zh∇φ · ∇a0 + ih

√
zh∆(φ)a0 = 0.

This can be solved by integrating from x = 0 to give a smooth solution
with Cauchy data (7.1).
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The next transport equation picks out the term (h/√zh)a1 and now reads

2 ih
(

h
√
zh

)
√
zh∇φ · ∇a1 + ih

√
zh

(
h
√
zh

)
∆(φ)a1 − h2∆(a0) = 0;

this likewise has a smooth solution a1. Subsequent transport equations take
the same form.
We may now Borel sum the results of solving the transport equations to

find that the operator E with kernel

E(x, y, y′) ≡
(

h
√
zh

)−(n−1) ∫
a(x, y, y′, η;h) eiφ√zh/h dη

solves
(Ph − zh)Efh = O(h∞),

Efh|x=0 = fh +O(h∞). �

This extension operator gives us a way to parametrize (microlocally) any
solution to (Ph − zh)uh = O(h∞).

Proposition 7.2. — Let uh be a solution to (Ph−zh)uh = O(h∞) such
that WFh uh ⊂ {ξ > 0}. Set fh = uh|x=0. Then microlocally near (p0, γ̇

k
ij),

uh − Efh = O(h∞).

Proof. — The proof relies on the microlocal energy estimates of [8, Sec-
tion 3.2] (based, in turn on [17, Sections 23.1-23.1] in the homogeneous
setting). According to these estimates, for any solution to (Ph − zh)wh =
O(h∞) with WF′ wh ⊂ {ξ > 0} we have the bound

(7.2) ‖wh|x=x1‖ . h−C|x1|‖wh|x=0‖;

the only real change needed from the treatment in [8] stems from the fact
that operators A± used there are no longer self-adjoint, with A∗± − A± =
O(h log(1/h)), leading to the growth in norms in the equation above: the
LHS of equation (3.10) of [8] now has a factor of hCy inside the supremum
arising from the non-self-adjointness.
Equation (7.2) suffices to show that our solution

wh = uh − Efh

to
(Ph − zh)wh = O(h∞),

wh|x=0 = O(h∞)

must itself be O(h∞), as desired. �
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We can now use standard FIO methods first to change the phase function
to the Riemannian distance along the geodesic γ and then to extend E in
a microlocal neighbourdhood of γ even past conjugate points.

Changing the phase function means that, for (x, y) strictly away from S

but still in a small neighborhood, we may also write uh in the form

(7.3) uh(p) =
∫ (

h
√
zh

)−(n−1)/2
ã(p, y′;h/

√
zh) ei√zh dist(p,y′)/hfh(y′;h)dy′

+O(h∞)

where dist denotes the Riemannian distance. Again the amplitude has an
expansion in integer powers of h/√zh.
To see that this is possible, it suffices to observe that we may do a

stationary phase expansion in the y′, η integrals (Proposition B.3 below),
reducing the number of phase variables from (n − 1) to zero. In this case,
by construction the value of dx,yφ where dηφ = 0 is just the tangent to
the geodesic flowout from (x = 0, ξ, y, η) where ξ2 + |η|2 = 1, so that it
agrees with dx,y dist((x, y), (0, y′)), hence the new oscillatory term becomes
exactly ei dist√zh/h . The amplitude has an expansion in powers of h/√zh,
with an overall factor of (h/√zh)(n−1)/2, since the η integral was over Rn−1.

We now proceed to extend the structure theorem for E : fh → uh globally
along a given geodesic, even past conjugate points.

Proposition 7.3. — Fix a geodesic γ intersecting S orthogonally at
p0 ∈ S. Let p ∈ γ not be conjugate to p0. Subject to the assumptions of
Proposition 7.1, microlocally near (p, γ̇) we have uh = E(fh) with

(7.4) Efh =
∫ (

h
√
zh

)−(n−1)/2
a(p, y′, η; zh, h) ei dist(p,y′)√zh/h fh(y′)dηdy′.

The function dist should be interpreted here (potentially far beyond the
injectivity radius) as the smooth function given by distance along the family
of geodesics remaining microlocally close to γ, i.e., specified by the locally-
defined smooth inverse of the exponential map.

Proof. — Using the preceding construction, for any x0 small enough we
can construct Ex0 starting from the surface x = x0. Denoting by Rx0 the
restriction to the surface x = x0 we then have, by construction the following
semigroup property :

(7.5) ExRxE = E .

The proof then follows by decomposing the geodesic into small enough steps
[xi, xi+1] and applying stationary phase. �
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Definition 7.4. — Since we will often be referring to symbols that
have a half-step polyhomogeneous expansion in h/√zh in the product type
case (i.e., with metric of the form (2.2) near the boundary), but only have
a leading order asymptotics modulo O((h/√zh)1/2−0) times the leading
order power in the general case, we will simply say that the function in
question has adapted half-step asymptotics to cover both cases.

This distinction will not be of great importance for the results presented
here, but we will maintain it in the hope of future applications in which
the product type case may offer stronger results.

7.1. Undergoing one diffraction

Now we study the composition of the microlocalized extension operator
and the microlocalized wave propagator when one diffraction occurs.

Let γ be a geodesic orthogonal to S at p0 ∈ S and terminating at cone
point Yj , with p0 not conjugate to Yj (see [3] for a definition of conjugacy
in this context). Away from the conjugate locus of p0 let distS be the
distance function from S measured along geodesics near γ. Let distj denote
the distance function from the cone point Yj , and let distS,j denote the
restriction of distj to S, near p0.

Proposition 7.5. — Let WF′hA and WF′hB contain only diffractively
related points, and let√zh ∈ Ωε. There exists a symbol c ∈ S0 with adapted
half-step asymptotics such that for

(7.6) distj(x) < t < distS,j(p0) + distj(x),

we have

AU(t)BE(x, y′) = c(x, y′;h/
√
zh) ei(distS,j(y′)+distj(x)−t)√zh/h .

Proof. — We will employ stationary phase to compose the two oscillatory
integral representations (2.3) and (7.3). In particular, we must evaluate an
integral of the form(

h
√
zh

)−(n−1)/2∫∫ ∞
0

aD ei(distj(x)+distj(x′′)−t)ξ aS ei distS(x′′,y′)√zh/h dξdx′′,

where aS has a complete asymptotic expansion in √zh/h while aD has
adapted half-step asymptotics. We would like to formally make the change
of variables ξ = ξ′

√
zh/h and then do stationary phase (as in Appendix B)

in the small parameter h/√zh ↓ 0; justifying this deformation into the
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complex in fact proceeds as follows. To begin, we let η = hξ so that we are
trying to evaluate

h−1
(

h
√
zh

)−(n−1)/2∫∫ ∞
0
aD ei(distj(x)+distj(x′′)−t)η/haS ei distS(x′′,y′)√zh/h dηdx′′.

By the usual method of nonstationary phase, we then find that the integral
is unchanged modulo O(h∞) if we insert a compactly supported cutoff χ(η),
equal to 1 for |η| < 2. Finally, we replace χ(η)aD(. . . , η) with an almost-
analytic extension in η, and set ξ′ = η/

√
zh, justifying the resulting contour

deformation exactly as in the proof of Lemma B.2 in the appendix. This
finally yields(

h
√
zh

)−(n+1)/2∫∫ ∞
0
aD ei(distj(x)+distj(x′′)−t)ξ′

√
zh/h aS ei distS(x′′,y′)√zh/h dξ′dx′′.

Finally we apply Proposition B.3 to justify a formal stationary phase ex-
pansion of this expression. Stationary points are where

distj(x) + distj(x′′)− t = 0,(7.7)
∇x′′ distj(x′′) + ξ′∇x′′ distS(x′′, y′) = 0.(7.8)

The latter equation implies that ξ′ = 1 and that x′′ must lie on the
unique geodesic near γ connecting y′ to Yj , hence at the stationary point,
distj(x′′)+distS(x′′, y′) = distS,j(y′). Thus stationary phase yields a result
of the form

symbol · ei(distS,j(y′)+distj(x)−t)√zh/h .

Since the stationary phase is in the n+1 variables (x′′, ξ) we gain an overall
factor (h/√zh)(n+1)/2, reducing the overall power of h/√zh to zero. �

We can extend this formula for larger times by precomposing and post-
composing with U(t) (see [12, Section 5]). Using the semigroup property for
U(t), and stationary phase to compute the compositions, we see that this
formula continues to hold, correctly interpreted for x far from Yj as well,
as long as x is not conjugate to Yj and we microlocalize near the geodesic
connecting Yj to x.

Proposition 7.6. — Let A be microsupported sufficiently close to a
geodesic γ coming from Yj , in a small neighborhood of a point not conju-
gate to Yj along γ. There exists a symbol c ∈ S0 with adapted half-step
asymptotics such that for

distj(x) < t < distS,j(p0) + distj(x),

AU(t)E(x, y′) = c(x, y′;h/
√
zh) ei(distS,j(y′)+distj(x)−t)√zh/h,
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where the distance is interpreted as distance along geodesics microlocally
close to γ.

Finally, we examine what happens when we again restrict to a hypersur-
face. Let the geometric setup be as above, with S′ a hypersurface orthogonal
to a geodesic from Yj . Let R denote the operation of restriction to S′, and
let distj,S′ denote the distance function from the cone point Yj to S′.

Proposition 7.7. — There exists a symbol c ∈ S0 such that for

distj(y) < t < distj(y′) + distj(y),

RU(t)E(y, y′) = c(y, y′;h/
√
zh) ei(distS,j(y′)+distj,S′ (y)−t)√zh/h .

8. Monodromy data

In this section we examine relations that hold among the restrictions of
a resonant state to cross sections of geodesics in Γ.

Consider the directed multigraph whose vertices are the cone points and
whose edges are the oriented geodesics connecting pairs of cone points.
Let E be the edge set of this graph and for e, f ∈ E write e → f if e
and f are adjacent in the sense of digraphs, i.e., if e terminates at some
vertex Yi while f emanates from Yi. For any edge e let ē denote the edge
corresponding to the same geodesic but with opposite orientation.
To each directed edge e we fix a patch of oriented hypersurface Se inter-

secting it orthogonally at a point not conjugate to either of the cone points
at which e originates and terminates. There is no particular need to require
that Se and Sē be identical as unoriented surfaces (but of course that is
one option). We arrange for the sake of simplicity that each Se intersects
only the edges e, ē.

For each e ∈ E let d±e denote the functions on Se given by the distances
to the cone points at the end point (+) and starting point (−) of e. Let `e
denote the length of the edge e (hence of course `e = `ē).
For each edge e ∈ E, let Ee resp. Re respectively denote the parametrix

for the extension operator (7.4) and the restriction operators from/to the
oriented surface Se orthogonal to this edge (as discussed in Section 7).
Given f, e ∈ E with f → e, with incidence at the cone point Yj let tfe de-
note a number exceeding dist(Sf , Yj)+dist(Yj , Se) by a small fixed quantity
ε1 > 0.

Lemma 8.1. — Consider a sequence of solutions to

(Pθ − zh)uh = 0, h ↓ 0.
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For each e ∈ E,

(8.1) Reuh −
∑
f→e

ei tfe
√
zh/hReU(tfe)EfRfuh = O(h∞).

Proof. — We first recall that, for any t,

Reuh = Re ei t√zh/h U(t)uh +O(h∞);

choose t = d + ε where d is the distance from Se to the cone point Yj
from which the edge e emanate and ε is small enough so that t < tfe − ε
for all f → e. By propagation of singularities (Proposition 6.1) Reuh is
determined, modulo O(h∞), by uh on the sphere of radius ε centered at
Yj . Denote by V the ε

2 neighborhood of this sphere. Since WFh uh is a
subset of the geodesics represented by the edges in E, we may let Af denote
microlocalizers along all edges f → e, supported in V with WF′h(I − Af )
disjoint from all points near f that are diffractively related to points in
Se in time t. By the semiclassical Egorov theorem [31, Theorem 11.1] for
e− i s

√
∆ = e− i s

√
h2∆/h (with s = tfe − t), we may write

AfU(tfe − t) = U(tfe − t)A′f
whereA′f is microsupported near the intersection of f with Sf with WF′h(I−
A′f ) disjoint from a smaller neighborhood of this intersection.
By Proposition 6.1, then,

(8.2) Reuh =
∑
f→e

Re ei t√zh/h U(t)Afuh +O(h∞).

and by (4.2) and a further application of Proposition 6.1,

Re ei t√zh/h U(t)Afuh = Re ei tfe
√
zh/h U(t)AfU(tfe − t)uh +O(h∞)

= Re ei tfe
√
zh/h U(tfe)A′fuh +O(h∞)

= Re ei tfe
√
zh/h U(tfe)EfRfuh +O(h∞). �

Thus we conclude that the functions Reuh satisfy a set of relations which
we can now employ to deduce constraints on Im zh. By Proposition 7.7 we
find the following:

Proposition 8.2. — There exist symbols cfe of order zero with adapted
half-step asymptotics such that for each e,

(8.3) Reuh =
∑
f→e

AfeRfuh +O(h∞)

where Afe has Schwartz kernel

(8.4) Afe(y, y′) = cfe(y, y′;h/
√
zh) ei(d−e (y)+d+

f
(y′))√zh/h .
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Proof. — We insert the representation of the wave propagator from Pro-
position 7.7 into (8.1). �

Thus we have a matrix equation with operator-valued entries for the
restriction to the hypersurfaces.

Proposition 8.3. — LetM be the constant used in defining the scaling
region and L0 the longest geodesic between two cone points. For each e,

there exists a smooth amplitude se(y;h) ∈ h−1−ML0S(1) such that

Reuh = ei d−e (y)√zh/h se(y;h) +O(h∞).

Remark 8.4. — No claim is made here about polyhomogeneity of se in h.

Proof. — We want to prove that y 7→ se(y;h) is smooth and that any
seminorm ‖∂βs( · ; h)‖∞ is O(h−1−ML0). The fact that s is smooth follows
from the fact that uh is smooth by ellipticity. Using the eigenvalue equation
we also have ‖uh‖Hkloc

= O(h−k), so that, roughly speaking, we lose one
power of h by differentiating. The content of the proposition is thus that
this loss actually does not occur.
We apply the operator given in (8.4) to uh, noting that we can pull the

factor ei d−e (y)√zh/h out of the integral. What remains is to show that the
remaining factors of the form

(8.5) s̃fe(y;h) =
∫
cfe(y, y′;h/

√
zh) ei d+

f
(y′)√zh/h(Rfuh)(y′)dy′

are in fact smooth amplitudes.
Using Sobolev embedding, and the fact that uh is a solution to the eigen-

value equation, we have

‖Rfuh‖L2(y) 6 Ch−1.

Replacing in (8.5) and using the Cauchy–Schwarz inequality we obtain

|s̃fe(y, h)| 6 Ch−1h−ML0

(∫ ∣∣∣∣cfe(y, y′; h
√
zh

)∣∣∣∣2 dy′
) 1

2

.

The integral is uniformly bounded (in h) owing to the fact that cfe is a
symbol. Moreover, s̃fe enjoys iterated regularity under differentiation in y,
as y derivatives of (8.5) only hit the factor cfe, hence all y-derivatives are
O(h−1−ML0). �

It is convenient to rewrite (8.3) in terms of the amplitudes se :

(8.6) se =
∑
f→e

ei `f
√
zh
h Mfesf ,
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whereMfe has Schwartz kernel

(8.7)
Mfe(y, y′) = cfe

(
y, y′; h

√
zh

)
ei
√
zh
h φf (y,y′)

with φf (y, y′) = d+
f (y′) + d−f (y′)− `f .

Observe that the phase φf has a unique non-degenerate critical point at
y′ = 0 and satisfies φf (0) = 0.

Equation (8.6) can be rewritten as

(Id−M) s = O(h∞),

which is typical of a monodromy operator in such settings. In our setting,
we can pass to a discrete set of restriction data, given by the jets of the
restriction to Se at e. (Compare, e.g., Proposition 4.3 of [5] and see also [21,
22]). This will reduce the monodromy equation to a finite dimensional
system.
For each α ∈ Nn−1, we thus let

sαe = ∂αy se,

so that
se(y) =

∑
|α|<N

sαe
yα

α! +Re,N , Re,N = O(|y|N ),

Applying the stationary phase computation in Appendix B gives the
asymptotic expansion

(8.8) Mfe(y′
α) ∼

(
h
√
zh

)n−1
2 ∑

k> |α|2

mefαk

(
y; h
√
zh

)(
h
√
zh

)k
,

where mefαk is a symbol.

Remark 8.5. — If |α| is odd, a closer inspection shows that this contri-
bution is O(h∞).

Proposition 8.6.

(1) For each f → e, α, β there exist C(α, β, e, f ;h), bounded in h ↓ 0,
such that

sαe =
∑
f→e

∑
j<N

∑
|β|62j

C

(
α, β, j, e, f ; h

√
zh

)(
h
√
zh

)(n−1)/2+j
ei `f

√
zh
h sβf(8.9)

+O
((

h
√
zh

)(n−1)/2+N
ei `f

√
zh
h

)
.
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The coefficients C(α, β, j, e, f ; h√
zh

) enjoy adapted half-step asymp-
totics, and in particular

C

(
α, 0, 0, e, f ; h

√
zh

)
≡ C(α, e, f) +O

((
h
√
zh

)1/2−0
)
,

with C(α, e, f) independent of h√
zh
.

(2) For all m0 > 0 there exist m1 > 0 and N1 ∈ N such that whenever
sαe = O(hm1) for all e ∈ E, |α| 6 N1, we have

se(y) = O(hm0) for all e ∈ E.

Proof. — We truncate the asymptotic expansion (8.8) at k = N. We
plug it into (8.6) and then extract the coefficient sαe from this expansion.
This gives (8.9). The assertions on the coefficients follow by inspection. For
the last assertion, we first observe that∣∣∣ei `f

√
zh
h

∣∣∣ = O(h−ML0),

whereM is the constant used to define the scaling region and L0 the longest
geodesic between cone points. We then choose N so that n−1

2 +N−ML0 >
m0. We then set N1 = 2N, and m1 = m0 − n−1

2 , so that in (8.9) all the
terms are O(hm0). �

9. Proof of Theorem 1.1

We now prove Theorem 1.1.
Fix any ε > 0. We assume throughout that
√
zh ∈ Ωε ≡ {(−Λ + ε)h log(1/h) < Im

√
zh < 0, Re

√
zh ∈ [1− ε, 1 + ε]}.

Our aim is to show that if zh is such a sequence of resonances, with
Re√zh → E and Im√zh ∼ −νh log(1/h) then we must have ν = (n −
1)/2L0, while Re√zh satisfy a quantization condition. As discussed above,
we fix M, the parameter in our complex scaling, with M � Λ so that
square roots of eigenvalues of Pθ in Ωε agree with resonances of P in that
set. By Proposition 4.2 and Proposition 6.1, there exists some m0 > 0 such
that if WFm0 uh∩Γ = ∅, then WFε uh = ∅, hence uh could not possibly be
an L2-normalized resonant state. It thus suffices to show that if √zh ∈ Ωε
does not satisfy the quantization condition or the condition on the imagi-
nary part, we must have WFm0

h uh ∩ Γ = ∅ for this fixed, potentially large,
m0 > 0. Moreover, again by Proposition 4.2, it suffices to show absence of
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WFm1 uh at the intersection of Γ with the edges e ∈ E, for some poten-
tially larger m1 > 0. To show this, in turn, we see by the second part of
Proposition 8.6 that it suffices to show that if the desired conditions on zh
are not met then each sαe is O(hm2) for all α with |α| 6 N2 for some large
(but geometrically determined) N2.

Thus, we suppose that either the quantization condition or the imaginary
part condition is violated and we aim to show that consequently sαe =
O(hm2) for this finite list of values of α.
For any N > N2, we let AN denote the weighted directed edge adjacency

matrix for a multigraph with multiple edges (e, α) for each edge e ∈ E

as above, but now with α ∈ Nn−1 a multi-index, with |α| < N and with
(e, α)→ (f, β) an adjacency iff e→ f in our original multigraph of directed
geodesics with edge set E. The (e, α, f, β) entry of AN may thus be nonzero
only if f → e, and in that case is defined to be:

(AN )e,α,f,β ≡
∑

j∈N:|β|62j<2N

C

(
α, β, j, e, f ; h

√
zh

)(
h
√
zh

)(n−1)/2+j
ei `f

√
zh
h ,

with C(α, β, j, e, f ; h√
zh

) given by Proposition 8.6.

Lemma 9.1. — If √zh ∈ Ωε, and

(Pθ − zh)uh = 0

then viewed as an h-dependent vector s = {sαe }, the Cauchy data sαe of uh
on the hypersurfaces Se satisfies

(9.1) s = AN · s + r, r = O(h(n−1+N)/2−L0(Λ−ε)).

Proof. — This is just a truncation of the result of Proposition 8.6, where
we also use the fact that for √zh ∈ Ωε, zh, z−1

h = O(1) while Im√zh >
(−Λ + ε)h log(1/h), hence∣∣∣ei `f

√
zh/h

∣∣∣ = O(h−`f (Λ−ε)) = O(h−L0(Λ−ε)),

while the sαe are all bounded as h ↓ 0. �

Since the entries in AN are all seen to be O(h(n−1)/2−L0(Λ−ε)) by the
same reasoning as in the proof of Lemma 9.1, we find applying AN to both
sides of our relation that

(9.2)

A2
Ns = ANs−ANr

= s− r−ANr

= s +O
(
h(n−1+N)/2−L0(Λ−ε)

)
+O

(
h(n−1)+N/2−2L0(Λ−ε)

)
= s +O

(
h(n−1+N)/2−L0(Λ−ε)

)
,
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since Λ 6 (n− 1)/2L0.

Now we examine the entries in A2
N . This matrix has diagonal entries,

corresponding to two-cycles in our digraph. The largest such entries are
the two with zero multi-index that correspond to traversing f, f̄ or f̄ , f,
for f a maximal edge, i.e., `f = L0. We assume from now on that there
are J such maximal edges. By assumption, no two geodesics with length
L0 are incident on the same cone point. It is thus impossible to have an
off-diagonal entry in A2

N with a maximal contribution and the only way to
obtain these largest entries is to traverse one maximal oriented geodesic fj
and then return whence we came on f̄j .
The remaining entries are all bounded by either

O(h(n−1)−(2L′)(Λ−ε))

in the case in which at least one edge traversed is not maximal, or else by

O(h(n−1)+1−2L0(Λ−ε))

in the case that one multi-index β (and hence one value of j) is nonzero.
In either case, we find that the entry is bounded by O(hε′) with

(9.3) ε′ ≡ min
{

(n− 1)− 2L′(Λ− ε), (n− 1) + 1/2− 2L0(Λ− ε)
}
.

Note that this is a positive number, by definition of Λ; the 1/2 term in
the second expression is not optimal in the argument above but will be
necessary below. Thus, if we write AN in block form with the edges (f, 0)
and (f̄ , 0) with f maximal listed first, we have

A2
N = Q0

N +O(hε
′
)

with

Q0
N =



B̃1
. . . 0

B̃J
0

0 .. .
0


where the 2× 2 block B̃j is given by

B̃j = (AN )(f̄j ,0,fj ,0)(AN )(fj ,0,f̄j ,0) Id2×2
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and where the number of these blocks equals the number of maximal
geodesics. Replacing these matrix entries with their leading order approx-
imation, we now get the improvement

A2
N = QN +O(hε

′
)

with

QN =



B1
. . . 0

BJ
0

0 .. .
0


and where, for each j (3)

Bj = C(0, f̄j , fj)C(0, fj , f̄j)h(n−1) e2iL0
√
zh/h Id2×2 .

Here we have used the fact that approximating (AN )(f,0,f̄ ,0) by

C(0, f, f̄)h(n−1)/2 eiL0
√
zh/h

incurs an error of O(h(n−1)/2+1/2−0 eiL0
√
zh/h). Hence for any N sufficiently

large, for for √zh ∈ Ωε we have

(AN )(f̄ ,0,f,0)(AN )(f,0,f̄ ,0) − C(0, f̄ , f)C(0, f, f̄)h(n−1) e2 iL0
√
zh/h

= O(h(n−1)+1/2−0 ei 2L0
√
zh/h)

= O(hε
′
),

with ε′ given by (9.3) above; this argument is where the 1/2 gain in the
second term in the minimum taken in (9.3) is now optimal.
Now choose N big enough that

(n− 1 +N)
2 − L0Λ� m2 + ε′,

where we recall that m2 is the decay rate required to show that uh could
not be an L2-normalized eigenfunction of Pθ. Then by (9.2) we have the
simple equation

(Id−QN +O(hε
′
))s = O(hm2+ε′).

Clearly, if Id−QN is invertible with (Id−QN )−1 = O(h−ε′/2) we can then
invert to obtain

s = O(hm2+ε′/2),

(3) In the sequel, we will drop the index j for readibility.
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which is the desired estimate: if this holds, then uh could not have been a
normalized resonant state after all.
Thus in order for a resonance to exist, we must have, by contrast, a lower

bound on the inverse of (Id−QN )−1. In particular, for some maximal edge
f , we must have∣∣∣C(0, f̄ , f)C(0, f, f̄)h(n−1) e2 iL0

√
zh/h−1

∣∣∣−1
> Ch−ε

′/2,

i.e.,
C(0, f̄ , f)C(0, f, f̄)h(n−1) e2 iL0

√
zh/h = 1 +O(hε

′/2).
Taking log, this yields

2 iL0

√
zh
h

+ (n− 1) log h+ logC(0, f̄ , f)C(0, f, f̄) ∈ 2π iZ +O(hε
′/2).

The equality of imaginary parts yields for the constant

CRe = − Im logC(0, f̄ , f)C(0, f, f̄)/2L0,

Re
√
zh ∈ h

(
CRe + π

L0
Z
)

+O(h1+ε′/2)

while taking real parts gives for the constant

CIm = Re logC(0, f̄ , f)C(0, f, f̄)/2L0

Im
√
zh = − (n− 1)

2L0
h log(1/h) + CImh+O(h1+ε′/2).

Recalling that semiclassical rescaling gave

Re
√
zh = 1, h = (Reλ)−1,

Im√zh
h

= Imλ,

this yields the statements of the theorem.

Remark 9.2. — As shown by Galkowski [13], if one of the diffraction
coefficients C(0, f̄ , f) does not vanish then the width of the resonance free
logarithmic region depends on L0. Our argument shows when all these
coefficients vanish, we indeed obtain a larger resonance-free logarithmic
region, so that this condition is sharp.

Appendix A. (Micro)-locality of
√

∆

The aim of this appendix is to prove the two following facts for the
Laplace operator ∆ on a manifold with conical singularities.

Proposition A.1. — Let X be a manifold with conical singularities
and ∆ its self-adjoint Laplace operator (Friedrichs extension). Then
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(1) For any open sets, U, V ∈ X such that U ∩V = ∅, and V ⊂ X◦, for
any N , ∆N

√
∆ is continuous from L2(V ) into L2(U).

(2) For any open set U such that U ⊂ X◦,
√

∆ seen as an operator from
H1(U) into L2(U) is a (first order) pseudodifferential operator.

Both results will follow from studying the heat kernel and using the
transform : √

∆ = ∆
Γ( 1

2 )

∫ ∞
0

e−t∆ t−
1
2 dt.

First, we take ρ ∈ C∞0 ([0,+∞)) that is identically 1 on [0, 2t0] for some
t0 > 0 and write ψ = 1− ρ. Since∫ ∞

0
e−t∆ ψ(t)t− 1

2 dt = e−t0∆
∫ ∞

0
e−(t−t0)∆ ψ(t)t− 1

2 dt,

we see that the operator that is defined by the former integral is smoothing.
Hence, both claims will follow from the same claims where

√
∆ is re-

placed by

∆
∫ ∞

0
ρ(t) e−t∆ t−

1
2 dt.

Multiplying by ∆ does not modify the statements so that it suffices to
study the operator-valued integral :

(A.1)
∫ ∞

0
e−t∆ ρ(t)t− 1

2 dt

Proof of (1). — For any a ∈ L2(U), we define the distribution Ta on
R× V by

(Ta, φ(t)b(y))D′×D =
∫ ∞

0
〈a, e−t∆ b〉L2φ(t)dt.

Since limt→0+〈a, e−t∆ b〉L2 = 0, a simple calculation shows that, in the
distributional sense

(∂t + ∆y)Ta = 0, in D′(R× V ).

By hypoellipticity in R× V , it follows that Ta is smooth.
Since Ta vanishes identically for t < 0

∀ (a, b) ∈ L2(U)× L2(V ), t 7→ 〈e−t∆ a, b〉

is smooth on [0,∞) and vanishes to infinite order at 0.
In particular, for any N and k, the N -th derivative of the latter function

vanishes to order k at 0. So the quantity

t−k〈∆N e−t∆ a, b〉

is bounded on (0, 1].
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By the principle of uniform boundedness this implies that

‖∆N e−t∆ ‖L2(V )→L2(U) = O(tk).

Plugging this bound into the integral (A.1) yields the result. �

Proof of (2). — We begin by choosing Ũ that is compactly embedded
into X◦ and such that U ⊂ Ũ .We denote by e the heat kernel on X and by
ẽ the heat kernel on a complete smooth Riemannian manifold X̃ in which
Ũ is embedded.

We denote by r the distribution on R× U × U that is defined by

(r, φ) =
∫ ∞

0

∫
U×U

(e(t, x, y)− ẽ(t, x, y))φ(t, x, y)dxdydt.

Observing that, for any φ∫
U×U

(e(t, x, y)− ẽ(t, x, y))φ(t, x, y)dxdy −→
t→0

0,

we obtain that, in D′(R× U × U)

(2∂t + ∆x + ∆y)r = 0.

So by hypoellipticity, r is smooth on R× U × U.
Consequently, in (A.1), if we replace ∆ by the Laplace operator on X̃,

we make an error whose kernel is∫ ∞
0

ρ(t)r(t, x, y)t− 1
2 dt.

Since r is smooth and vanishes to infinite order at t = 0 this integral is a
smooth function of x and y. It follows that

√
∆ in U coincides with

√
∆̃

up to a smoothing operator. �

Appendix B. Stationary phase

In this appendix we discuss the method of stationary phase when the
large parameter is allowed to be complex, with imaginary part compara-
ble to the logarithm of the real part. We will parallel the treatment and
notation in [31, Section 3.5]. The outcome will be that we may treat the
factor of wh below as a formal parameter, but we have been unable to find
a justification for these manipulations in the published literature.

As before we write

Ωε ≡ {wh : (−Λ + ε)h log(1/h) < Imwh < 0, Rewh ∈ [1− ε, 1 + ε]}.
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For a ∈ C∞c (Rn), ϕ ∈ C∞(Rn) real valued and wh ∈ Ωε, we define

Ih(a, ϕ;wh) ≡
∫
Rn

eiϕwh/h adx.

Note that the exponential term may be polynomially growing in h owing
to the presence of the factor wh ∈ C. We will use throughout the fact that
h/wh = O(h) for wh ∈ Ωε.

Lemma B.1. — Let wh ∈ Ωε. If dϕ 6= 0 on supp a, then Ih(a, ϕ;wh) =
O(h∞).

Proof. — As in Lemma 3.14 of [31], we simply integrate by parts using
the operator

L = h

iwh
1
|∂ϕ|2

∂ϕ · ∂,

chosen so that

Lk eiϕwh/h = eiϕwh/h .

The integration by parts then gains (h/wh)k = O(hk). �

Thus as in the usual case, we may (decomposing a using a partition
of unity) read off stationary phase asymptotics as a sum of asymptotics
associated to each critical point, for a nondegenerate ϕ; also we may use
the Morse Lemma to convert ϕ into a diagonal quadratic form near each
of those critical points. The only difficulty is then to compute quadratic
stationary phase asymptotics, as in Theorem 3.13 of [31].

Lemma B.2. — Let wh ∈ Ωε. Let

ϕ(x) = 1
2 〈Qx, x〉

be a quadratic phase, with Q a nonsingular, symmetric, real matrix. For
all N ∈ N,

Ih(a, ϕ;wh)

=
(

2πh
wh

)n
2 e iπ

4 sgnQ

|detQ|1/2

N−1∑
k=0

1
k!

(
h

wh

)k(〈Q−1D,D
〉

2 i

)k
a(0) +O(hN )

 .

Proof. — Let ã denote an almost analytic extension of a with support
in a small neighborhood (in Cn) of supp a (see [16, Section 3.1], as well as,
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for instance, [9, Chapter 8]). Then

(B.1)

Ih(a, ϕ;wh) =
∫
Rn

eiϕ(x)wh/h a(x) dx1 ∧ · · · ∧ dxn

=
∫
Rn

eiϕ(x√wh)/h a(x) dx1 ∧ · · · ∧ dxn

=
∫

Γ
eiϕ(z)/h ã(z/

√
wh)w−n/2h dz1 ∧ · · · ∧ dzn

where Γ is the complex contour {zj = √whxj , xj ∈ R}. Since ã is com-
pactly supported, we may apply Stokes’s theorem on the domain

Υ =
{
z ∈ Cn : zj = ((1− s) + s

√
wh)xj , xj ∈ R, s ∈ [0, 1]

}
to obtain

(B.2) Ih(a, ϕ;wh) =
∫
Rn

eiϕ(x)/h ã(x/
√
wh)w−n/2h dx1 ∧ · · · ∧ dxn

+
∫∫

Υ
eiϕ(z)/h ∂

[
ã(z/
√
wh)w−n/2h dz1 ∧ · · · ∧ dzn

]
.

By almost-analyticity of ã, the latter integral is O(h∞) since the sup-
port of the integrand is compact and over this compact set Im(z/√wh) =
O(h log(1/h)) for z ∈ Υ. The former integral is then an ordinary stationary
phase integral with quadratic phase to which we may directly apply Theo-
rem 3.13 of [31]. Note of course that in applying the usual formula for the
Gaussian integral, we are using the fact that

(B.3)

∂|α|

∂xα
(
ã(x/
√
wh)

)∣∣
x=0 = w

−|α|/2
h

∂|α|

∂zα
ã(0)

= w
−|α|/2
h

∂|α|

∂xα
a(0). �

Assembling the foregoing results, we finally arrive at the desired station-
ary phase expansion in general. (Cf. [31, Theorem 3.16].)

Proposition B.3. — Let wh ∈ Ωε, a ∈ C∞c (Rn). Suppose x0 is the
unique point in supp a at which ∂ϕ = 0 and that det ∂2ϕ(x0) 6= 0. Then
there exist differential operators A2k(x,D) of order 6 2k such that for all
N ∈ N

Ih(a, ϕ;wh) =
(
N−1∑
k=0

A2k(x,D)a(x0)
(
h

wh

)k+n/2
)

e
iϕ(x0)wh

h +O(hN+n/2).

In particular,

A0 = (2π)n/2
∣∣det ∂2ϕ(x0)

∣∣−1/2 e iπ
4 sgn ∂2ϕ(x0) .
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