En lien avec la classification des feuilletages réguliers dans une surface algébrique complexe, on traite le problème de la classification des surfaces complexes qui admettent un pinceau plat de feuilletages. À propos de cette question, une classification des pinceaux plats qui admettent des feuilletages avec une intégrale première de genre un et des singularités isolées a été obtenue par Lins Neto. Dans ce travail, on complète le travail de Lins Neto, en obtenant la classification des surfaces complexes compactes qui ont un pinceau avec ensemble de tangence invariant.
Related to the classification of regular foliations in a complex algebraic surface, we address the problem of classifying the complex surfaces which admit a flat pencil of foliations. On this matter, a classification of flat pencils which admit foliations with a first integral of genus one and isolated singularities was done by Lins Neto. In this work, we complement Lins Neto’s work, by obtaining the classification of compact complex surfaces which have a pencil with an invariant tangency set.
Révisé le :
Accepté le :
Publié le :
Keywords: compact complex surfaces, pencil of foliations, first integrals
Mot clés : surfaces complexes compactes, pinceaux de feuilletages, intégrale première
Puchuri, Liliana 1
@article{AIF_2020__70_5_2191_0, author = {Puchuri, Liliana}, title = {Classification of flat pencils of foliations on compact complex surfaces}, journal = {Annales de l'Institut Fourier}, pages = {2191--2214}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {5}, year = {2020}, doi = {10.5802/aif.3353}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3353/} }
TY - JOUR AU - Puchuri, Liliana TI - Classification of flat pencils of foliations on compact complex surfaces JO - Annales de l'Institut Fourier PY - 2020 SP - 2191 EP - 2214 VL - 70 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3353/ DO - 10.5802/aif.3353 LA - en ID - AIF_2020__70_5_2191_0 ER -
%0 Journal Article %A Puchuri, Liliana %T Classification of flat pencils of foliations on compact complex surfaces %J Annales de l'Institut Fourier %D 2020 %P 2191-2214 %V 70 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3353/ %R 10.5802/aif.3353 %G en %F AIF_2020__70_5_2191_0
Puchuri, Liliana. Classification of flat pencils of foliations on compact complex surfaces. Annales de l'Institut Fourier, Tome 70 (2020) no. 5, pp. 2191-2214. doi : 10.5802/aif.3353. https://aif.centre-mersenne.org/articles/10.5802/aif.3353/
[1] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer, 1984 | MR | Zbl
[2] On the zeroes of meromorphic vector-fields, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, 1970, pp. 29-47 | DOI | MR | Zbl
[3] Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. Éc. Norm. Sup., Volume 30 (1997) no. 5, pp. 569-594 | DOI | Numdam | MR | Zbl
[4] Some remarks on indices of holomorphic vector fields, Publ. Mat., Barc., Volume 41 (1997) no. 2, pp. 527-544 | DOI | MR | Zbl
[5] Birational geometry of foliations, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2004 | MR | Zbl
[6] Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone; Masson, 1951, pp. 29-55 | MR | Zbl
[7] Feuilletages holomorphes de codimension un sur les espaces homogènes complexes, Ann. Fac. Sci. Toulouse, Math., Volume 5 (1996) no. 3, pp. 493-519 | DOI | Numdam | MR | Zbl
[8] À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes, Rend. Circ. Mat. Palermo, Volume 49 (2000) no. 1, pp. 175-180 | DOI | MR | Zbl
[9] Holomorphic projective structures on compact complex surfaces, Math. Ann., Volume 249 (1980) no. 1, pp. 75-94 | DOI | MR | Zbl
[10] Exceptional families of foliations and the Poincaré Problem (2002) (http://preprint.impa.br/FullText/183__Tue_Nov_26_16_11_27_EDT_2002.html/Pprob1.PDF, Preprint)
[11] Some Examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm, Volume 2 (2002) no. 35, pp. 231-266 | DOI | Numdam | MR | Zbl
[12] Curvature of pencil of foliations, Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I. Volume en l’honneur de Jean-Pierre Ramis (Astérisque), Volume 296, Société Mathématique de France, 2004, pp. 167-190 | Numdam | MR | Zbl
[13] The classification of exceptional CDQL webs on compact complex surfaces, Int. Math. Res. Not. (2010) no. 12, pp. 2169-2282 | DOI | MR | Zbl
Cité par Sources :