Effective operators for Robin eigenvalues in domains with corners
Annales de l'Institut Fourier, Volume 70 (2020) no. 5, pp. 2215-2301.

We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schrödinger-type operator on the boundary of the domain with boundary conditions at the corners.

Nous étudions les valeurs propres du laplacien avec une condition de Robin fortement attractive dans des polygones curvilignes. Grâce à de précédents travaux, on sait que le comportement asymptotique de quelques premières valeurs propres est essentiellement déterminé par les ouvertures des coins, alors que seules quelques estimées grossières sont disponibles pour les valeurs propres suivantes. Sous certaines hypothèses géométriques, nous allons au-delà du nombre critique de valeurs propres et nous donnons un développement asymptotique précis pour chaque valeur propre individuelle en établissant un lien avec un opérateur effectif de type Schrödinger agissant sur le bord du domaine et muni de conditions aux limites aux coins.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3400
Classification: 35J05, 49R05, 35J25
Keywords: Eigenvalue, Laplacian, Robin boundary condition, effective operator, non-smooth domain
Mot clés : Valeur propre, Laplacien, condition aux limites de Robin, opérateur effectif, domaine non-lisse

Khalile, Magda 1; Ourmières-Bonafos, Thomas 2; Pankrashkin, Konstantin 3

1 Institut für Analysis Leibniz Universität Hannover Welfengarten 1 30167 Hannover (Germany)
2 Institut de Mathématiques de Marseille Centre de Mathématiques et Informatique Technopôle de Château Gombert 39 rue Frédéric Joliot Curie 13453 Marseille Cedex 13 (France)
3 Université Paris-Saclay, CNRS Laboratoire de mathématiques d’Orsay 91405 Orsay (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_5_2215_0,
     author = {Khalile, Magda and Ourmi\`eres-Bonafos, Thomas and Pankrashkin, Konstantin},
     title = {Effective operators for {Robin} eigenvalues in domains with corners},
     journal = {Annales de l'Institut Fourier},
     pages = {2215--2301},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {5},
     year = {2020},
     doi = {10.5802/aif.3400},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3400/}
}
TY  - JOUR
AU  - Khalile, Magda
AU  - Ourmières-Bonafos, Thomas
AU  - Pankrashkin, Konstantin
TI  - Effective operators for Robin eigenvalues in domains with corners
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 2215
EP  - 2301
VL  - 70
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3400/
DO  - 10.5802/aif.3400
LA  - en
ID  - AIF_2020__70_5_2215_0
ER  - 
%0 Journal Article
%A Khalile, Magda
%A Ourmières-Bonafos, Thomas
%A Pankrashkin, Konstantin
%T Effective operators for Robin eigenvalues in domains with corners
%J Annales de l'Institut Fourier
%D 2020
%P 2215-2301
%V 70
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3400/
%R 10.5802/aif.3400
%G en
%F AIF_2020__70_5_2215_0
Khalile, Magda; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin. Effective operators for Robin eigenvalues in domains with corners. Annales de l'Institut Fourier, Volume 70 (2020) no. 5, pp. 2215-2301. doi : 10.5802/aif.3400. https://aif.centre-mersenne.org/articles/10.5802/aif.3400/

[1] Antunes, Pedro R. S.; Freitas, Pedro; Krejčiřík, David Bounds and extremal domains for Robin eigenvalues with negative boundary parameter, Adv. Calc. Var., Volume 10 (2017) no. 4, pp. 357-379 | DOI | MR | Zbl

[2] Bakharev, Fedor L.; Matveenko, Sergey G.; Nazarov, Sergeĭ A. Discrete spectrum of a cross-shaped waveguide, St. Petersburg Math. J., Volume 28 (2017), pp. 171-180 | DOI | MR

[3] Bakharev, Fedor L.; Nazarov, Sergeĭ A. Criteria for the Absence and Existence of Bounded Solutions at the Threshold Frequency in a Junction of Quantum Waveguides (2017) | arXiv

[4] Bandle, Catherine; Wagner, Alfred Isoperimetric inequalities for the principal eigenvalue of a membrane and the energy of problems with Robin boundary conditions, J. Convex Anal., Volume 22 (2015) no. 3, pp. 627-640 | MR | Zbl

[5] Bareket, Miriam On an isoperimetric inequality for the first eigenvalue of a boundary value problem, SIAM J. Math. Anal., Volume 8 (1977) no. 2, pp. 280-287 | DOI | MR | Zbl

[6] Berkolaiko, Gregory; Kuchment, Peter Introduction to quantum graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, 2013, xiv+270 pages | MR | Zbl

[7] Birman, Mikhail Sh.; Solomjak, Mikhaĭl Z. Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers, 1987, xv+301 pages | MR

[8] Bonnaillie-Noël, Virginie; Dauge, Monique Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, Volume 7 (2006) no. 5, pp. 899-931 | DOI | MR | Zbl

[9] Bruneau, Vincent; Pankrashkin, Konstantin; Popoff, Nicolas Eigenvalue counting function for Robin Laplacians on conical domains, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 123-151 | DOI | MR | Zbl

[10] Bruneau, Vincent; Popoff, Nicolas On the negative spectrum of the Robin Laplacian in corner domains, Anal. PDE, Volume 9 (2016) no. 5, pp. 1259-1283 | DOI | MR

[11] Bucur, Dorin; Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina A Sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 30 (2019) no. 4, pp. 665-676 | DOI | MR | Zbl

[12] Bucur, Dorin; Freitas, Pedro; Kennedy, James The Robin problem, Shape optimization and spectral theory, Walter de Gruyter, 2017, pp. 78-119 | DOI | MR | Zbl

[13] Cakoni, Fioralba; Chaulet, Nicolas; Haddar, Houssem On the asymptotics of a Robin eigenvalue problem, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 13-14, pp. 517-521 | DOI | MR | Zbl

[14] Colorado, Eduardo; García-Melián, Jorge The behavior of the principal eigenvalue of a mixed elliptic problem with respect to a parameter, J. Math. Anal. Appl., Volume 377 (2011) no. 1, pp. 53-69 | DOI | MR | Zbl

[15] Daners, Daniel; Kennedy, James On the asymptotic behaviour of the eigenvalues of a Robin problem, Differ. Integral Equ., Volume 23 (2010) no. 7-8, pp. 659-669 | MR | Zbl

[16] Dimassi, Mouez; Sjöstrand, Johannes Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999 | MR | Zbl

[17] Exner, Pavel; Minakov, Alexander Curvature-induced bound states in Robin waveguides and their asymptotical properties, J. Math. Phys., Volume 55 (2014) no. 12, 122101, 19 pages | DOI | MR | Zbl

[18] Exner, Pavel; Minakov, Alexander; Parnovski, Leonid Asymptotic eigenvalue estimates for a Robin problem with a large parameter, Port. Math., Volume 71 (2014) no. 2, pp. 141-156 | DOI | MR | Zbl

[19] Exner, Pavel; Post, Olaf Convergence of spectra of graph-like thin manifolds, J. Geom. Phys., Volume 54 (2005) no. 1, pp. 77-115 | DOI | MR | Zbl

[20] Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue, Commun. Pure Appl. Anal., Volume 14 (2015) no. 1, pp. 63-82 | DOI | MR | Zbl

[21] Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina On the maximal mean curvature of a smooth surface, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 9, pp. 891-895 | DOI | MR | Zbl

[22] Filinovskiy, Alexey Vladislavovich Estimates of eigenvalues of a boundary value problem with a parameter, Math. Commun., Volume 19 (2014) no. 3, pp. 531-543 | MR | Zbl

[23] Freitas, Pedro; Krejčiřík, David The first Robin eigenvalue with negative boundary parameter, Adv. Math., Volume 280 (2015), pp. 322-339 | DOI | MR | Zbl

[24] Giorgi, Tiziana; Smits, Robert Eigenvalue estimates and critical temperature in zero fields for enhanced surface superconductivity, Z. Angew. Math. Phys., Volume 58 (2007) no. 2, pp. 224-245 | DOI | MR | Zbl

[25] Giorgi, Tiziana; Smits, Robert Bounds and monotonicity for the generalized Robin problem, Z. Angew. Math. Phys., Volume 59 (2008) no. 4, pp. 600-618 | DOI | MR | Zbl

[26] Grieser, Daniel Spectra of graph neighborhoods and scattering, Proc. Lond. Math. Soc., Volume 97 (2008) no. 3, pp. 718-752 | DOI | MR | Zbl

[27] Grisvard, Pierre Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, 1985, xiv+410 pages | MR | Zbl

[28] Guillopé, Laurent Théorie spectrale de quelques variétés à bouts, Ann. Sci. Éc. Norm. Supér., Volume 22 (1989) no. 1, pp. 137-160 | DOI | Numdam | MR | Zbl

[29] Helffer, Bernard Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer, 1988, vi+107 pages | DOI | MR | Zbl

[30] Helffer, Bernard; Kachmar, Ayman Eigenvalues for the Robin Laplacian in domains with variable curvature, Trans. Am. Math. Soc., Volume 369 (2017) no. 5, pp. 3253-3287 | DOI | MR | Zbl

[31] Helffer, Bernard; Kachmar, Ayman; Raymond, Nicolas Tunneling for the Robin Laplacian in smooth planar domains, Commun. Contemp. Math., Volume 19 (2017) no. 1, 1650030, 38 pages | DOI | MR | Zbl

[32] Helffer, Bernard; Pankrashkin, Konstantin Tunneling between corners for Robin Laplacians, J. Lond. Math. Soc., Volume 91 (2015) no. 1, pp. 225-248 | DOI | MR | Zbl

[33] Helffer, Bernard; Sjöstrand, Johannes Multiple wells in the semiclassical limit. I, Commun. Partial Differ. Equations, Volume 9 (1984) no. 4, pp. 337-408 | DOI | MR

[34] Ivrii, Victor Spectral asymptotics for Dirichlet to Neumann operator (2018) | arXiv

[35] Kachmar, Ayman; Keraval, Pierig; Raymond, Nicolas Weyl formulae for the Robin Laplacian in the semiclassical limit, Confluentes Math., Volume 8 (2016) no. 2, pp. 39-57 | DOI | Numdam | MR | Zbl

[36] Khalile, Magda Spectral asymptotics for Robin Laplacians on polygonal domains, J. Math. Anal. Appl., Volume 461 (2018) no. 2, pp. 1498-1543 | DOI | MR | Zbl

[37] Khalile, Magda; Pankrashkin, Konstantin Eigenvalues of Robin Laplacians in infinite sectors, Math. Nachr., Volume 291 (2018) no. 5-6, pp. 928-965 | DOI | MR | Zbl

[38] Kovařík, Hynek; Pankrashkin, Konstantin On the p-Laplacian with Robin boundary conditions and boundary trace theorems, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2, 49, 29 pages | DOI | MR | Zbl

[39] Kovařík, Hynek; Pankrashkin, Konstantin Robin eigenvalues on domains with peaks, J. Differ. Equations, Volume 267 (2019) no. 3, pp. 1600-1630 | DOI | MR | Zbl

[40] Krejčiřík, David; Lotoreichik, Vladimir Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions (2017) | arXiv | Zbl

[41] Krejčiřík, David; Lotoreichik, Vladimir Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, J. Convex Anal., Volume 25 (2018) no. 1, pp. 319-337 | MR | Zbl

[42] Lacey, Andrew A.; Ockendon, John R.; Sabina, José Multidimensional reaction diffusion equations with nonlinear boundary conditions, SIAM J. Appl. Math., Volume 58 (1998) no. 5, pp. 1622-1647 | DOI | MR | Zbl

[43] Levitin, Michael; Parnovski, Leonid On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr., Volume 281 (2008) no. 2, pp. 272-281 | DOI | MR | Zbl

[44] Levitin, Michael; Parnovski, Leonid; Polterovich, Iosif; Sher, David Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues. (2017) | arXiv

[45] Lou, Yuan; Zhu, Meijun A singularly perturbed linear eigenvalue problem in C 1 domains, Pac. J. Math., Volume 214 (2004) no. 2, pp. 323-334 | DOI | MR | Zbl

[46] McCartin, Brian J. Eigenstructure of the equilateral triangle. IV. The absorbing boundary, Int. J. Pure Appl. Math., Volume 37 (2007) no. 3, pp. 395-422 | MR | Zbl

[47] McCartin, Brian J. Laplacian eigenstructure of the equilateral triangle, Hikari Ltd., 2011, x+200 pages | MR | Zbl

[48] Molchanov, Stanislav; Vainberg, Boris Scattering solutions in networks of thin fibers: small diameter asymptotics, Commun. Math. Phys., Volume 273 (2007) no. 2, pp. 533-559 | DOI | MR | Zbl

[49] Nazarov, Sergeĭ A. Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder, Comput. Math. Math. Phys., Volume 54 (2014) no. 8, pp. 1261-1279 | DOI | MR | Zbl

[50] Nazarov, Sergeĭ A. The spectra of rectangular lattices of quantum waveguides, Izv. Math., Volume 81 (2017), pp. 29-90 | DOI | Zbl

[51] Nazarov, Sergeĭ A.; Ruotsalainen, Keijo; Uusitalo, Pauliina Asymptotics of the spectrum of the Dirichlet Laplacian on a thin carbon nano-structure, C. R. Méc. Acad. Sci. Paris, Volume 343 (2015), pp. 360-364

[52] Pankrashkin, Konstantin On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains, Nanosyst. Phys. Chem. Math., Volume 4 (2013), pp. 474-483 | Zbl

[53] Pankrashkin, Konstantin On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon, Nanosyst. Phys. Chem. Math., Volume 6 (2015), pp. 46-56 | DOI

[54] Pankrashkin, Konstantin On the discrete spectrum of Robin Laplacians in conical domains, Math. Model. Nat. Phenom., Volume 11 (2016) no. 2, pp. 100-110 | DOI | MR | Zbl

[55] Pankrashkin, Konstantin Eigenvalue inequalities and absence of threshold resonances for waveguide junctions, J. Math. Anal. Appl., Volume 449 (2017) no. 1, pp. 907-925 | DOI | MR | Zbl

[56] Pankrashkin, Konstantin; Popoff, Nicolas Mean curvature bounds and eigenvalues of Robin Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1947-1961 | DOI | MR | Zbl

[57] Pankrashkin, Konstantin; Popoff, Nicolas An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter, J. Math. Pures Appl., Volume 106 (2016) no. 4, pp. 615-650 | DOI | MR | Zbl

[58] Post, Olaf Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case, J. Phys. A, Math. Gen., Volume 38 (2005) no. 22, pp. 4917-4931 | DOI | MR | Zbl

[59] Post, Olaf Spectral analysis on graph-like spaces, Lecture Notes in Mathematics, 2039, Springer, 2012, xvi+431 pages | DOI | MR | Zbl

[60] Reed, Michael; Simon, Barry Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978, xv+396 pages | MR | Zbl

[61] Savo, Alessandro Optimal eigenvalue estimates for the Robin Laplacian on Riemannian manifolds (2019) | arXiv | Zbl

[62] Trani, Leonardo Some remarks on Robin-Laplacian eigenvalues, Rend. Accad. Sci. Fis. Mat., Napoli, Volume 84 (2017), pp. 87-96

Cited by Sources: