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CLASSIFICATION OF FLAT PENCILS OF FOLIATIONS
ON COMPACT COMPLEX SURFACES

by Liliana PUCHURI

Abstract. — Related to the classification of regular foliations in a complex
algebraic surface, we address the problem of classifying the complex surfaces which
admit a flat pencil of foliations. On this matter, a classification of flat pencils
which admit foliations with a first integral of genus one and isolated singularities
was done by Lins Neto. In this work, we complement Lins Neto’s work, by obtaining
the classification of compact complex surfaces which have a pencil with an invariant
tangency set.
Résumé. — En lien avec la classification des feuilletages réguliers dans une sur-

face algébrique complexe, on traite le problème de la classification des surfaces
complexes qui admettent un pinceau plat de feuilletages. À propos de cette ques-
tion, une classification des pinceaux plats qui admettent des feuilletages avec une
intégrale première de genre un et des singularités isolées a été obtenue par Lins
Neto. Dans ce travail, on complète le travail de Lins Neto, en obtenant la clas-
sification des surfaces complexes compactes qui ont un pinceau avec ensemble de
tangence invariant.

1. Introduction

It is a well known fact that every foliation on P2 must have singularities,
however, there exist complex surfaces which admit regular foliations, that
is, foliations without singularities. Then it is natural to ask for a classifi-
cation of complex surfaces which admit regular foliations. Related to this
problem, we have a classification of regular foliations on complex surfaces
due to Brunella [3], which is based from Enriques–Kodaira classification of
compact complex surfaces. Brunella’s classification is as follows.

Theorem 1.1 ([3, Théorème 2]). — Every regular foliation over a com-
pact complex surface X with Kod(X) < 2 belongs to the following list:
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2020 Mathematics Subject Classification: 34C07, 14J27, 14D06, 32S65.



2192 Liliana PUCHURI

(1) elliptic or rational fibrations,
(2) foliations transversal to elliptic or rational fibrations,
(3) turbulent foliations,
(4) linear foliations on a torus,
(5) trivial foliations on Hopf or Inoue surfaces.

The notion of pencil (or linear family) of foliations was defined by Lins
Neto [12]. A pencil P := {Fα}α∈C on a compact complex surface X is
defined by two foliations F0 and F∞ in P together with an isomorphism
between their normal bundles. Associated to a pencil are its curvature (see
Section 3.2) and its tangency set ∆(P) (see Section 3.1) which is an analytic
set formed by the singularities of the foliations in P. A pencil is called flat
if its curvature is zero.
In this work, we address the following problem:

“Classify the compact complex surfaces which admit flat
pencils with an invariant tangency set”.

Moreover, for these particular pencils, we will characterize the following set

Ip(P) :=
{
α ∈ C : Fα has a meromorphic first integral on X

}
.

This is related to the Poincaré’s problem, which consists in bounding the
degree of an invariant algebraic curve in terms of the degree of the foliation.
The paper is divided as follows: Sections 2 and 3 contain the preliminary

definitions we will need in this work, in particular, Section 3 contains the
definition and main features of the pencils of foliations. In Section 4, we
consider the case when ∆(P) is empty. Theorems 4.5 and 4.6, and Corol-
laries 4.7 and 4.8, are comprised in the following theorem.

Theorem. — Let X be a complex compact surface which admits a pen-
cil P with empty tangency set. Then X is either a torus or a Hopf surface
and P is generated by linear foliations. Moreover

(1) If X is a Hopf surface then Ip(P) = ∅.
(2) If X is a torus and #Ip(P) > 3 then X = E×E, with E = C/〈1, τ〉

and Ip(P)\{∞} is either Q or Q(τ), only up to a reparametrization
of the parameter space of the pencil.

Finally, in Section 5, we deal with flat pencils with invariant and non-
empty tangency set. Four remarkable examples in P2 of this kind of pencils
were given by Lins Neto in [10, 11, 12], see Example 3.6. Lins Neto also
obtained in [10] the following characterization of these pencils.
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Theorem 1.2 ([10, Theorem 3]). — Let M be a compact complex sur-
face and F , G be two foliations onM such that TF = TG and P = (Fα)α∈C
be the pencil generated by F and G. Suppose that

(1) F 6= G;
(2) The singularities of F are reduced in the sense of Seidenberg;
(3) F and G have holomorphic first integrals, say f : M → S1 and

g : M → S2, respectively, where f is an elliptic fibration.
Then

(1) If KM 6= 0 then M is a rational surface. In this case, the pencil is
bimeromorphically equivalent to one of the types of Example 3.6.
Moreover, we have Ip(P) = λ · Q · Γ ∪ {∞}, where λ ∈ C∗ and
Γ = 〈1, e2πi/3〉 or 〈1, i〉. In particular, E(P) is countable and dense
in C.

(2) If KM = 0 then, either M is a complex algebraic torus, or M is an
algebraic K3 surface. Moreover, the family is exceptional (in the
sense of [10]) if, and only if, Ip(P) contains at least three elements.

In [11, 12], Lins Neto computes the set Ip(P), for the pencils given in
Example 3.6. This was done using the theory of foliations transversal to
the fibers of a fibration applied to a certain element of the pencil with
an holomorphic first integral with genus one, in order to find an explicit
formula of the generators of the holonomy group of the foliations in such
pencils. In this work, we deal with the case when the pencil P has an
element with an holomorphic first integral with genus zero. Our first result
is about the generators of the holonomy group of the foliations Fα ∈ P
with isolated singularities. In the following theorem, IS(P) is the set of
indices where the associated foliation has isolated singularities.

Theorem. — Let P = {Fα}α∈C be a flat pencil on a compact complex
surface X such that F∞ has an holomorphic first integral f : X → P1

and ∆(P) is invariant. If gen(f) = 0 then, for any α ∈ IS(P), the global
holonomy group Gα of Fα is finitely generated by f1,α, . . . , fk,α, where
these generators could be either

fj,α(z) = λjz + ajα+ bj , j = 1, . . . , k,
or

fj,α(z) = exp(2πi(µjα+ νj))z, j = 1, . . . , k.

The following theorem is our main result. In this theorem, under the
same conditions of the previous theorem, we prove that X is a rational
surface and characterize the set Ip(P).
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Theorem. — Let P = {Fα}α∈C be a flat pencil on a compact complex
surface X such that F∞ has an holomorphic first integral f : X → P1 and
∆(P) is invariant. If gen(f) = 0 then X is a rational surface where one of
the following hold:

(1) Ip(P) is finite,
(2) IS(P) ⊂ Ip(P), or
(3) Ip(P)∩IS(P) = Q∩IS(P), up to a reparametrization of the pencil.

2. Preliminaries

In this section we recall some basic concepts needed for later sections.
Throughout this section, X will denote a compact complex surface, unless
otherwise stated.
An holomorphic foliation F on X is given by a family of holomorphic

1-forms {ωi}i∈ I defined over an open covering U = {Ui}i∈ I of X such
that ωi = gijωj , with gij ∈ O∗(Uij), where Uij = Ui∩Uj 6= ∅. The singular
set of F , is the analytic set Sing(F) such that Sing(F) ∩ Ui = {wi = 0}.
The multiplicative cocycles {gij}i, j ∈ I define the linear fibration NF on X,
which will be called the normal fibration of F .
A foliation F can also be defined by a family of holomorphic vector fields

Xi, defined over an open covering U = {Ui}i∈ I ofX such thatXi = fijXj ,
with fij ∈ O∗(Uij), where Uij = Ui∩Uj 6= ∅. Thus the tangent bundle of F
on X, denoted by TF , is defined by the multiplicative cocycles {f−1

ij }i, j ∈ I .
Let N∗F and T ∗F be the dual fibrations of NF and TF , respectively.

Then [3, Lemme 1]:
KX = N∗F ⊗ T ∗F ,

where KX is the canonical bundle of X.
We now recall the Poincaré–Hopf and Baum–Bott indices, defined by

Brunella [4], see also [2, 3, 5]. Let p ∈ X be an isolated singularity of F
and let (x, y, U) be a coordinate system with p ∈ U and x(p) = y(p) = 0,
such that F is represented in U by

Y (x, y) = P (x, y) ∂
∂x

+Q(x, y) ∂
∂y
,

where P and Q are holomorphic over U and gcd(P,Q) = 1. In addition, let
J be the Jacobian matrix of (P,Q) at (0, 0). The Poincaré–Hopf index of
F at p is defined as

PH(F , p) = Res(0,0)
det J
P ·Q

dx ∧ dy.

ANNALES DE L’INSTITUT FOURIER
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It is well known that this index coincides with the Milnor number of Y at
p, that is,

PH(F , p) = dimC
Op
〈P,Q〉

.

The Baum–Bott index of F at p, is defined as

BB(F , p) = Res(0,0)
(Tr J)2

P ·Q
dx ∧ dy.

Denote m(F) =
∑

p∈ Sing(F)

PH(F , p) and BB(F) =
∑

p∈ Sing(F)

BB(F , p).

The following formulas can be found in [3, Section 2, Proposition 1],
and [5, p. 34], respectively:

m(F) = c2(X) +BB(F)−NF ·KX ,(2.1)
BB(F) = NF ·NF .(2.2)

Let C ⊂ X a curve which is non-invariant by F . Given p ∈ C, let f = 0
a local reduced equation of C and F represented by Y an holomorphic field
in some neighborhood U of p. The tangency index of F with respect to C
at p is defined as

Tang(F , C, p) = dimC
Op

〈f, Y (f)〉 .

Moreover,

Tang(F , C) =
∑

p∈ Sing(F)∩C

Tang(F , C, p).

In addition, we have the following formulas [3, Lemme 2]:

NF · C = X (C) + Tang(F , C),
TF · C = C · C − Tang(F , C).

When C is invariant by F , for any p ∈ C, there is also the GSV index
Z(F , C, p), see [4, Section 3] and [5, p. 24] for details. Let {f = 0} be a local
equation of C around p, and let ω be an holomorphic 1-form generating F
around p. Because C is F-invariant, we can factorize ω around p as

gω = hdf + fη,

where η is an holomorphic 1-form, g and h are holomorphic functions, and
h, f (and therefore g, f) are relatively prime, that is, h (and therefore g)
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does not vanish identically on each branch of C. Thus, the GSV index is
defined as

Z(F , C, p) = vanishing order of h
g

∣∣∣∣
C

at p

=
∑
i

vanishing order of h
g

∣∣∣∣
Ci

at p

Denote, in addition,

Z(F , C) =
∑

p∈ Sing(F)∩C

Z(F , C, p)

We also have the following formulas [3, Lemme 3]:

NF · C = C · C + Z(F , C),
TF · C = χ(C)− Z(F , C).

A fibration on X is a surjective holomorphic map ϕ : X → S over a
Riemann surface such that ϕ−1(c) is connected for generic c. Let CV (ϕ)
be the set of critical values of ϕ. Given c ∈ S denote ϕc = ϕ−1(c) and
V = ϕ−1(CV (ϕ)). By Ehresman fibration theorem [6], the map

ϕ|X\V : X \ V → S \ CV (ϕ)

is a locally trivial C∞ bundle. Then χ(ϕc) = χ(ϕc′), for every c, c′ ∈
S \ CV (ϕ). Therefore, the genus of ϕ is gen(ϕ) = gen(ϕc), for any c ∈
S \ CV (ϕ). When gen(ϕ) = 0 (respectively, gen(ϕ) = 1) the fibration ϕ is
called rational (respectively, elliptic).
A foliation F on X is tangent to a fibration ϕ if the leaves of F are the

fibers of ϕ. Moreover, a foliation is called a rational (respectively, elliptic)
fibration if it is tangent to a rational (respectively, elliptic) fibration.
A foliation F on X is called a Riccati foliation (respectively, turbulent

foliation), if there exists a rational (respectively, elliptic) fibration whose
generic fibers are transversal to F .
Let F be a foliation on X. An holomorphic (respectively, meromorphic)

first integral of F is a non-constant holomorphic (respectively, meromor-
phic) map f : X → S, where S is a Riemann surface, and for all c ∈ S,
f−1(c) is a union of leaves and singularities of F . We will assume that the
generic level curve of f is irreducible. This implies that any holomorphic
first integral of a foliation is a fibration.
Let f be a first integral of a foliation F . When f is holomorphic, the

genus of f is the genus of f considered as a fibration. On the other hand,
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when f is meromorphic, the genus of f is the genus of the fibration obtained
after a finite number of blow-ups on the singularities of f .

Let T be a two dimensional complex torus. The following result is due
to Ghys [7].

Proposition 2.1. — Let F be a regular foliation on T . Then there
exists a covering π : C2 → T such that F is induced by the closed 1-form
b(x)dx+ dy, where b(x) is either constant or an elliptic function.

The set of linear foliations on T is naturally identified with the one-
dimensional projective space PH0(T,Ω1

T ). Let I(T ) be the set of linear
foliations in PH0(T,Ω1

T ) which admit an holomorphic first integral and let
i(t) be its cardinality. The following proposition is a result due to Pereira
and Pirio [13, Proposition 11.1], adapted for our purposes.

Proposition 2.2. — If i(T ) > 3 then i(T ) = ∞ and there exists an
elliptic curve E = C/〈1, τ〉 such that T = E × E. Moreover, if ω1, ω2 are
linearly independent 1-forms on T admitting rational first integrals, then

(2.3) {λ ∈ C : ω1 + λω2 has an holomorphic first integral}
= End(E)⊗Q,

where End(E)⊗Q is either Q or Q(τ).

Proposition 2.3. — Let X be a Hopf surface. Then

{α ∈ C : dy − αdx has an holomorphic first integral} = ∅.

Proof. — First assume that X is a primary Hopf surface, that is, it has
the form

X = C2 \ {(0, 0)}
Γ

where Γ is generated by f(x, y) = (ax+λyr, by), with r ∈ Z, r > 0, a, b ∈ C,
0 < |a| 6 |b| < 1 and either λ = 0 or a = br. Straightforward calculations
show that the iterations of f take the form

fn(x, y) =
(
anx+ nλan−1yr, bny

)
, n ∈ Z.

We claim that, for n ∈ Z, (x, 1) = fn(z, 1) if and only if n = 0 and x = z.
The if part is immediate. For the only if part, is enough to observe that
(x, 1) = fn(z, 1) = (anz+nλan−1, bn) and 1 = bn implies n = 0 and x = z,
since |b| < 1.
Given α ∈ C \ {0}, let us consider Lα = {π(x, αx + 1) : x ∈ C} and a

cross section Σ = {π(x′, 1) : x′ ∈ C}. Note that

π(x, αx+ 1) = π(x′, 1) ∈ Σ ∩ Lα ⇐⇒ x = bn − 1
α

, x′ = bn − 1
anα

− nλ

a
,

TOME 70 (2020), FASCICULE 5
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for some n ∈ Z. By our previous claim, we conclude that there are infinite,
non-equivalent, elements of the form π(x′, 1) ∈ Lα ∩ Σ. Therefore Lα ∩ Σ
is infinite. Now for α = 0, we consider L0 = {π(x, 1) : x ∈ C} and let
Σ = {π(1, y) : y ∈ C}. In this case,

π(x, 1) = π(1, y) ∈ Σ ∩ L0 ⇐⇒ x = 1
an
− nλ1

a
, y = bn,

for some n ∈ Z. Again, by our previous claim, there are infinite, non-
equivalent, elements of the form π(x, 1) ∈ L0 ∩ Σ. Therefore L0 ∩ Σ is
infinite. The case when α = ∞ is analogous. We conclude that Fα must
have infinite non-compact leaves, and so it does not have a first integral.
When X is a secondary Hopf surface, from [1, Chapter 5, Section 18],

there exists a finite unramified cover that is a primary Hopf surface, that
is, there exists an holomorphic F : X1 → X, where X1 is a primary Hopf
surface. The Proposition 2.3 follows. �

3. Pencils of foliations

Most of the following definitions and properties were introduced by Lins
Neto in [12].

3.1. First definitions

Let F and G be two distinct foliatons on a compact complex surface X
with isolated singularities and whose normal fibers bundles are isomorphic,
which will be denoted as NF = NG . Then there exist an open covering
U = {Ui}i∈ I of X and collections (ωi)i∈ I , (ηi)i∈ I and (gij)ij such that

(1) ωi and ηi are holomorphic 1-forms on Ui, which define F and G on
Ui, respectively,

(2) if Uij = Ui ∩ Uj 6= ∅ then ωi = gijωj and ηi = gijηj , on Uij .
Using item (2), given α ∈ C, the collections {Ui, ωi + αηi, gij}i,j ∈ I de-
fine a foliation Fα. Thus, we obtain a linear family of foliations P(F ,G)
= {Fα}α∈C, which is called the pencil generated by F and G. Note that
F0 = F and F∞ = G.

The tangency set between F and G, denoted by Tang(F ,G), is defined as

Tang(F ,G) ∩ Ui = {ωi ∧ ηi = 0}.

ANNALES DE L’INSTITUT FOURIER
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Given a pencil P = P(F ,G), it is straightforward to observe that, for
every α, β ∈ C, α 6= β,

Tang(F ,G) = Tang(Fα,Fβ).

This allows us to consider the tangency set ∆(P) of P as ∆(P)
= Tang(F ,G). It is easy to prove that,

(3.1) ∆(P) =
⋃
α∈C

Sing(Fα).

In particular, ∆(P) = ∅ if, and only if, Sing(Fα) = ∅, for all α ∈ C. Let
[∆(P)] be the divisor defined by ∆(P) then [3, Lemme 4]

(3.2) O([∆(P)]) = T ∗F ⊗NG .

Let P = P(F ,G) be a pencil. Consider the sets

NI(P) = {α ∈ C : Fα has non-isolated singularities}

and IS(P) = C \NI(P). From equation (3.1), we conclude that NI(P) is
finite, since F = F0 has isolated singularities and ∆(P) is an analytic set.
Moreover, for every α, β ∈ IS(P), α 6= β, we have P(F ,G) = P(Fα,Fβ)
and NFα = NFβ .
The fact that NI(P) is finite implies that the foliations in P can have a

singular set of codimension one, as shown by the following example.

Example 3.1. — Let X = P1 × P1 and let (x, y,C2) be a coordinate
system on X. Let F and G two foliations on X such that F|C2 is induced
by the 1-form dy = 0 and G|C2 is induced by the 1-form dx = 0. It is
not difficult to note that, if P = P(F ,G) = {Fα}α∈C then Fα is defined
in C2 by dy + αdx = 0. Thus, taking coordinates (x, t,C2), (u, y,C2) and
(u, t,C2), with u = 1/x and t = 1/y, Fα is respectively defined by

dt− αt2dx = 0, −u2dy + αdu = 0, u2dt+ αt2du = 0.

Note that NF ' NG , since

dy + αdx = 1
t2

(dt− αt2dx) = 1
u2 (−u2dy + αdu) = 2 1

t2u2 (u2dt+ αt2du).

In addition,

Sing(Fα) =


{∞} × P1, if α = 0,
P1 × {∞}, if α =∞,
{(∞,∞)}, if α 6= 0,∞,

and
∆(P) = Sing(F0) ∪ Sing(F∞).

TOME 70 (2020), FASCICULE 5
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The following are examples of pencils with empty tangency set.

Example 3.2. — Let X = C2/Γ be a complex torus and let π : C2 → X

be the natural projection. Let P be the pencil on X induced by the family
of 1-forms dx + αdy. Clearly Sing(Fα) = ∅, for all α ∈ C, and therefore
∆(P) = ∅.

Example 3.3. — LetX be the Hopf surface defined by C2 \ {(0, 0)}
〈f〉

, with

f(x, y) = (x/2, y/2), and let π : C2\{(0, 0)} → X be the natural projection.
In C2 \ {(0, 0)} consider P defined by the 1-forms dx + αdy = 0 and let
P∗ = π∗(P) be the induced pencil on X. Then ∆(P∗) = ∅.

3.2. Curvature of a pencil

Let P = {Fα}α∈C be a pencil on a compact complex surface X, defined
by (ωi + αηi, Ui, gij)i,j ∈ I . Given i ∈ I we can find a unique 1-form θi,
meromorphic on Ui and holomorphic on Ui \∆(P), such that

dωi = θi ∧ ωi, dηi = θi ∧ ηi.

Hence we can define a 2-form Θ on X, holomorphic on X \∆(P), such that

Θ|Ui\∆(P) = dθi.

From now on, Θ = Θ(P) will be called the curvature of P. In addition, a
pencil P is flat whenever its curvature is zero, that is Θ(P) ≡ 0.

Remark 3.4. — The pencils P and P∗ respectively defined in Exam-
ples 3.2 and 3.3 are flat. This is a consequence of Proposition 4.1, since
both have an empty tangency set.

The following Lemma 3.5 shows us that X admits an holomorphic pro-
jective structure [9] outside ∆(P).

Lemma 3.5 ([12, Lemma 2.1.4]). — Let P = {Fα}α∈C be a flat pencil
on X. Given p ∈ X \∆(P), there exists a system of coordinates (x, y, U),
where U is a neighborhood of p and (x, y) : U → C2, such that, for any
α ∈ C, Fα is defined on U by the linear 1-form

dy + αdx.

Furthermore, if (u, v, V ) is another system of coordinates, where U ∩ V is
non-empty and convex and Fα is defined by dv + αdu then du = λdx and
dv = λdy, for some λ ∈ C, λ 6= 0.

ANNALES DE L’INSTITUT FOURIER
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3.3. On the components of the pencil’s tangency set

Let P = {Fα}α∈C be a pencil on compact complex surface X and let
C be an irreducible component of ∆(P). Then C is called invariant for
the pencil if C is invariant for Fα, for all α ∈ C. Moreover, ∆(P) is called
invariant, if every irreducible component of ∆(P) is invariant for the pencil.
The set of parameters α ∈ C for which Fα admit an holomorphic first
integral will be denoted by Ip(P).

Example 3.6. — Each one of the following examples defines a flat pen-
cil whose tangency set is invariant. These examples can be found in [11]
and [12, Example 3]. See also [10, Example 1.6].

(1) Degree two pencil, defined as

P2

{
w1 =

(
4x− 9x2 + y2) dy − (6y − 12xy)dx,

η1 = (2y − 4xy)dy − 3
(
x2 − y2) dx,

with ∆(P2) = −4y2 + 4x3 + 12xy2 − 9x4 − 6x2y3 − y4.
(2) Degree three pencil, defined as

P3

{
w4 =

(
−4x+ x3 + 3xy2) dy − 2y

(
y2 − 1

)
dx,

η4 =
(
x2y − y3) dy − 2x

(
y2 − 1

)
dx,

with ∆(P3) = (y2 − x)(y − x2

4 )(y3 − x3 + 3xy + 1).
(3) Degree three pencil, defined as

P ′3

{
w2 =

(
−x+ 2y2 − 4x2y + x4) dy − y (−2− 3xy + x3) dx,

η2 =
(
2y − x2 + xy2) dy − (3xy − x3 + 2y3) dx,

with ∆(P ′3) = (x3 − 1)(y3 − 1)(x3 − y3).
(4) Degree four pencil, defined as

P4

{
w3 =

(
x3 − 1

)
xdy −

(
y3 − 1

)
ydx,

η3 =
(
x3 − 1

)
y2dy −

(
y3 − 1

)
x2dx,

with ∆(P4) =
(
y2 − 1

) (
x+ 2 + y2 − 2x

) (
x2 + y2 + 2x

)
.

Definition 3.7. — Let P = {Fα}α∈C be a pencil on compact complex
surface X such that F∞ has an holomorphic first integral f : X → S. The
pencil P is called transversal to f if there exists β ∈ IS(P) such that the
generic fibers of f are Fβ-transversal.

In particular, note that if P is transversal to f then, for all α ∈ IS(P),
the generic fibers of f are also Fα-transversal.

TOME 70 (2020), FASCICULE 5
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Lemma 3.8. — Let P be a pencil on a compact complex surface X such
that F∞ has an holomorphic first integral f : X → S. If ∆(P) is invariant
then P is transversal to f .

Proof. — Let α ∈ IS(P). For any generic regular fiber F of f we have
F∩Sing(Fα) = ∅ and F is transversal to ∆(P). Therefore, Tang(Fα, F ) = 0
for any generic regular fiber. �

Remark 3.9. — Under the conditions of Lemma 3.8: if ∆(P) is invariant
then

∆(P) =
k⋃
j=1

f−1(cj) ∪
r⋃
l=1

Cl,

where c1, . . . , ck ∈ S and Cl ⊂ Sing(F∞), for l = 1, . . . , r.

3.4. Holonomy of a pencil

Let P = {Fα}α∈C be a pencil on a compact complex surface X such that
F∞ has an holomorphic first integral f : X → S and ∆(P) is invariant.
We will follow the steps of [12, Section 2]. Throughout this section,

we will denote by Tc the level curve f−1(c) ⊂ X. Since ∆(P) is invari-
ant, by Lemma 3.8, P is transversal to f . Then, there exist open sets
W = S \ {c1, . . . , ck} and U = X \ f−1({c1, . . . , ck}) such that, for any
α ∈ IS(P) \ {∞}, the foliation Fα is transversal to the fibers of f in all
points of the set U . By Ehresmann’s theory of foliations transversal to the
fibers of a fibration [6], for any α ∈ IS(P) \ {∞}, we have the associated
holonomy representation Holα of Fα,

Holα : Π1(W, c)→ Diff(Tc),

where c ∈W , with the following properties:
(1) For any leaf L of Fα|U , f |L : L→W is a covering map.
(2) Given a (regular) fiber Tc and a closed curve γ : [0, 1] → W

with γ(0) = γ(1) = c, that is, [γ] ∈ Π1(W, c), the diffeomorphism
Holα([γ]) : Tc → Tc is defined as follows: take p ∈ Tc and let Lα(p)
be the leaf of Fα passing through p. Since f |Lα(p) : Lα(p) → W is
a covering map, there exists a unique curve γ̃ on Lα(p) such that
f ◦ γ̃ = γ and γ̃(0) = p. Now consider Holα([γ])(p) = γ̃(1).

(3) Denote by Gα the subgroup Holα(Π1(W, c)) of Diff(Tc), then

L ∩ Tc = {h(q) : h ∈ Gα}.

The group Gα is called the global holonomy group of Fα.
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Remark 3.10. — Since the foliation Fα and the fibration f |U are holo-
morphic, it follows that all elements h ∈ Gα are automorphisms of the
curve Tc.

Fixed β ∈ IS(P) and p ∈ Tc, by item (2) above and Lemma 3.5, there
exists an open covering {Un}mn=1 of γ̃β [0, 1] and a system of coordinates
(Xn, Yn) on Un such that Un ∩Un+1 is connected and Fβ is represented in
Un by the 1-form

(3.3) ωn,β = dYn + βdXn.

Note that F0|Un : dYn = 0, and F∞|Un : dXn = 0.
From [12], there exists ε > 0 and a cross section Σ0 to Fβ at q0 ∈ Tc

such that hα ∈ Gα takes the form

(3.4) hα|Σ0(q0) = Y −1
m (λY1(q0) + aα+ b),

for all α in a certain open disk Dε(β).

Remark 3.11. — Also in [12], Lins Neto proved that when gen(f)
= 1, the generators of the global holonomy group Gα, fj,α, take the form
fj,α(z) = λjz + ajα+ bj , j = 1, . . . , k, where z is the uniformizing coordi-
nate of the torus. We will deal with the case gen(f) = 0 in Section 5.

4. Classification of pencils with empty tangency set

In this section, we will deal with pencils P over a compact complex
surfaceX such that ∆(P) = ∅. We begin with the following result extracted
from [11, Theorem 2].

Proposition 4.1. — Let P be a pencil with empty tangency set, de-
fined on a compact complex surface. Then P is flat.

Lemma 4.2. — If there exists a pencil on X with empty tangency set
then X is a minimal surface, that is, X does not contain smooth rational
curves with self-intersection −1.

Proof. — Let P = P(F ,G) be a pencil on X such that ∆(P) = ∅ and
assume that X is not minimal. Then X contains a rational and smooth
curve C such that C ·C = −1. From equation (3.2), OX [∆(P)] = T ∗F ⊗NG
= OX , hence TF = NG . Therefore

(4.1) TF = NF = NG .
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Now, if C were invariant by F then, by equation (4.1) and the intersection
formulas [5, p. 25] we would have

TF · C = X (C)− Z(F , C) = 2 = NF · C = C · C + Z(F , C) = −1,

which is a contradiction. Analogously, if C were invariant by G then
2 = NG · C = TG · C = −1, again a contradiction. Thus C is neither
invariant by F nor G, therefore

(4.2) TF · C = C · C − Tang(F , C) = NG · C = X (C)− Tang(G, C).

As TF · C = C · C − Tang(F , C) = TG · C = C · C − Tang(F , C), we have
Tang(F , C) = Tang(G, C). Then in equation (4.2) we obtain C · C = −1
= X (C) = 2, again a contradiction. Thus, X is minimal. �

Lemma 4.3. — Let P be a pencil with empty tangency set, on a compact
complex surfaceX. Let F ∈ P and letH be a foliation tangent to a fibration
whose generic fibers are F-transversal. Then H ∈ P.

Proof. — Let F be a regular fiber of H, not invariant by F , such that
Tang(F , F ) = 0. Given p ∈ F , by Lemma 3.5, there exists a system of
coordinates (x, y, U), with p ∈ U and x(p) = y(p) = 0, where P is defined
on U by dx + αdy. Hence TpX = 〈 ∂∂x ,

∂
∂y 〉, then there exists β ∈ C such

that Tang(Fβ ,H) > 0. We claim that F is invariant by Fβ . Otherwise,

Tang(Fβ , F ) = F · F − TFβ · F = F · F − TF · F = Tang(F , F ) = 0,

a contradiction. Therefore, H = Fβ . �

Lemma 4.4. — Let P be a pencil with empty tangency set, on a compact
complex surface X. Then P does not contain foliations tangent to rational
fibrations.

Proof. — Let Fβ ∈ P be tangent to a rational fibration ϕ. Then, for any
α 6= β, Fα is a Riccati foliation relative to ϕ. Take a fiber F of ϕ, then there
exists a system of coordinates (x, y, U) such that F ⊂ U ' D × P1 such
that the projections π1 : D × P1 → D and π2 : D × P1 → P1 define Fβ |U
and Fα|U , respectively. Hence, the pencil P on U is defined by the 1-form
dx+αdy, which has a non-empty tangency set, as Example 3.1 shows. The
Lemma 4.4 follows. �

The following Theorem 4.5 fully characterizes the compact surfaces which
possess a pencil with empty tangency set.

Theorem 4.5. — Let X be a compact complex surface which admits a
pencil with empty tangency set. Then X is either a torus or a Hopf surface.
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Proof. — Let P = P(F ,G) be a pencil on X such that ∆(P) = ∅. From
equation (4.1), TF = NG = NF . Since KX = T ∗F ⊗ N∗F , KX = N∗F ⊗ N∗F ,
which in turn implies c1(X) = 2c1(NF ) (cf. [3, p. 571]). On the other hand,
∆(P) = ∅ implies Sing(Fα) = ∅, for all α ∈ C, so

0 = BB(F) = N2
F = 1

4c1(X)2,

where the second equality follows from equation (2.2). Moreover, from equa-
tion (2.1), we obtain

(4.3) c2(X) = m(F)−BB(F) +NF ·KX = NF ·KX = −2N2
F = 0.

Thus, from Lemma 4.2, X is a minimal surface with c21(X) = c2(X) = 0.
By Kodaira’s Compact Surfaces Classification Theorem [1, Theorem 1.1]
we obtain Kod(X) < 2.

From [3, the proof of Theorem 1.1], Inoue surfaces just admit at most
two regular foliations, so they cannot contain a pencil of foliations with
empty tangency set. Therefore X is not an Inoue surface.

Now assume that X is neither a torus nor a Hopf surface. Then from
Theorem 1.1 and Lemma 4.3, there exists a foliation Fα ∈ P which is an
elliptic fibration, that is, Fα is tangent to an elliptic fibration ϕ : X → S,
where S is either an elliptic curve or isomorphic to P1. Note that, given any
Fβ ∈ P, β 6= α, Fβ is transversal to ϕ. Thus ϕ is a principal fiber bundle
with locally constant transition functions. From [1, p 197], since X is not
a torus, S is not an elliptic curve and S = P1.

Given Fβ ∈ P, the holonomy group of Fβ is also trivial, because Π1(P1)
is trivial. This implies that for any leaf L of Fβ , ϕ|L : L → P1 is a bi-
holomorphism. Therefore Fβ is a rational fibration, a contradiction with
Lemma 4.4. �

Theorem 4.6. — Let P be a pencil of foliations with empty tangency
set, on a compact complex surface X. Then X is either a torus or a Hopf
surface and P is generated by linear foliations.

Proof. — Let P = P(F ,G). By Theorem 4.5, X is either a torus or a
Hopf surface. First we assume that X is a torus. By Proposition 2.1, there
exists a covering π : C2 → X such that F and G are induced by the closed
1-forms ω = b(x)dx+ dy and η = c(x)dx+ dy, respectively, where b and c
are either constants or elliptic functions. Let x0 be a regular point of b and
c, then there exists a neighborhood U of π(x0, 0) such that

∆(P) ∩ U = {π(x, y) ∈ U : b(x) = c(x)} = ∅.
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Since b(x) 6= c(x), b and c must be both constants and, in particular, P is
a pencil generated by linear foliations.
Now assume that X is a Hopf surface. Note that X is not elliptic, that

is, it does not admit an elliptic fibration, otherwise by [3, p. 585], F and
G would be defined in a neighborhood of C2 \ {(0, 0)} by a quasihomoge-
neous vector field, so ∆(P) 6= ∅. Since X is not elliptic, by [3, p. 586], in
C2 \ {(0, 0)} each foliation is either linear or can be extended to a foliation
with a saddlepoint singularity at the origin, which cannot be possible since
the tangency set is non-empty. �

Theorems 4.5 and 4.6 imply that the only surfaces which admit pencils
with empty tangency set are tori and Hopf surfaces. We now characterize
Ip(P) for pencils with empty tangency set defined on these surfaces.

The following Corollary 4.7 is consequence from Proposition 2.2.

Corollary 4.7. — Let X is a torus and let P be a pencil on X with
empty tangency set. If #Ip(P) > 3 then X = E × E, with E = C/〈1, τ〉
and Ip(P) \ {∞} is either Q or Q(τ), only up to a reparametrization of the
parameter space of the pencil.

The following Corollary 4.8 is consequence of Proposition 2.3.

Corollary 4.8. — Let X be a Hopf surface and let P be a pencil on
X with empty tangency set. Then Ip(P) is empty.

5. Classification of pencils with invariant and non-empty
tangency set

The following Lemma 5.1 can be found in [10, Lemma 3.2.1].

Lemma 5.1. — Let F and G be foliations on a compact complex surface
X with isolated singularities and isomorphic tangent bundles. Assume that
F has an holomorphic first integral f : X → S, where S is a compact
Riemann surface. Thus,

(1) If gen(f) = 0 then F = G.
(2) If gen(f) = 1 and F 6= G then G is turbulent relative to f .
(3) If gen(f) > 2 and F 6= G then Tang(G, F ) > 0, for any regular fiber

F of f , non-invariant by G.

Proposition 5.2. — Let P = {Fα}α∈C be a pencil on a compact com-
plex surface X such that F∞ has an holomorphic first integral f : X → S.
If ∞ ∈ IS(P) then gen(f) > 1. In addition:
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(1) If gen(f) = 1 then there exist c1, . . . , ck ∈ S such that

∆(P) ⊂
k⋃
j=1

f−1(cj) .

(2) If gen(f) > 2 then ∆(P) must have a non-invariant component.
In particular, ∆(P) is invariant if, and only if, gen(f) = 1.

Proof. — Without loss of generality we may assume that 0 also belongs
to IS(P). As F0 6= F∞, by Lemma 5.1, we obtain that gen(f) > 1.

Let α ∈ IS(P), there exists a regular fiber F , non-invariant by Fα, such
that F ∩∆(P) 6= ∅ and F ∩ Sing(Fα) = ∅. This implies that

(5.1) Tang(Fα, F ) > 0.

Assume gen(f) = 1. We claim that every component C of ∆(P) is contained
in some fiber of f . Assume otherwise, so C is a non-invariant component
of ∆(P). On the other hand,

F · F − Tang(Fα, F ) = TFα · F = TF∞ · F = χ(F )− Z(F∞, F ) = 0,

where the last equality follows since gen(F ) = 1 and F ∩ Sing(Fα) = ∅.
Hence Tang(Fα, F ) = 0, a contradiction with (5.1). Therefore, any compo-
nent of ∆(P) is contained in some fiber of f , so there exist c1, . . . , ck ∈ S
such that

∆(P) ⊂
k⋃
j=1

f−1(cj).

Now assume that gen(f) > 2, and let F be a generic regular fiber of f ,
non-invariant by Fα. If ∆(P) is invariant, then there exist c1, . . . , ck ∈ S
such that

∆(P) ⊂
k⋃
j=1

f−1(cj) and F ∩∆(P) = ∅ .

In particular, Tang(Fα, F ) = 0, again a contradiction with (5.1). This
implies item (2). �

Corollary 5.3. — Let P = {Fα}α∈C be a pencil on a compact com-
plex surface X such that F∞ has an holomorphic first integral f : X → S.
If ∞ ∈ IS(P) then the following are equivalent:

(1) gen(f) = 1,
(2) ∆(P) is invariant,

(3) there exist c1, . . . , ck ∈ S such that ∆(P) ⊂
k⋃
j=1

f−1(cj).
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In particular, in this case, P is transversal to f .

Lemma 5.4. — Let P = {Fα}α∈C be a pencil on a compact complex
surface X such that F∞ has an holomorphic first integral f : X → S

and ∆(P) is invariant. Let α ∈ IS(P) such that Z(Fα, C) > 1, for all
components C of ∆(P), Fα has a meromorphic local first integral in every
singularity, and Gα is finite. Then α ∈ Ip(P).

Proof. — By [8], to prove that α ∈ Ip(P), it is enough to prove that
Fα has infinitely many compact invariant curves. Let L be a leaf of Fα
not contained in ∆(P). We assert that L \ L ⊂ Sing(Fα). Take x ∈ L \ L.
Since Gα is finite, there exists a component C of ∆(P) such that x ∈ C.
Now Z(Fα, C) > 1 implies that C ∩ Sing(Fα) 6= ∅. Let p ∈ C ∩ Sing(Fα),
then, using our hypotheses, Fα has a meromorphic first integral defined on
a neighborhood U of p. We may assume, without loss of generality, that
x ∈ U , hence x ∈ Sing(Fα). �

Proposition 5.5. — Let P = {Fα}α,∈C be a pencil on a compact
complex surface X such that F∞ has an holomorphic first integral f :
X → S. If ∆(P) is invariant then gen(f) 6 1. Moreover, let α ∈ IS(P),
α 6=∞.

(1) If gen(f) = 0 then ∞ /∈ IS(P) and Fα is a Riccati foliation with
respect to f .

(2) If gen(f) = 1 then Fα is a turbulent foliation relative to f .

Proof. — On the contrary, assume that gen(f) > 2. Since ∆(P) is in-
variant, P is transversal to f . From Section 3.4, given γ ∈ Π1(W, c), we
obtain the holomorphic map

Fγ : IS(P) \ {∞} × Tc → Tc, Fγ(α, p) = Holα(γ)(p),

where Holα is the holonomy representation. Note that Fγ(α, ·) does not
depend on α, as Aut(Tc) is finite. In particular, if α, β ∈ IS(P) \ {∞} then
their global holonomy groups coincide. Using the same argument as [10,
p. 34] we obtain a neighborhood V of β such that Fα = Fβ , for all α ∈ V .
This is a contradiction.
Finally, items (1) and (2) follow from the fact that P is transversal

to f . �

From now on P = {F∞}α∈C is a flat pencil on a compact complex surface
X such that F∞ has an holomorphic first integral f : X → S and ∆(P) is
invariant and non-empty. From Proposition 5.5, gen(f) 6 1. Theorem 1.2
deals with the case when gen(f) = 1. We now consider the case when
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gen(f) = 0. Under this condition, the following proposition provides an
explicit form of the elements of the global holonomy group.

Theorem 5.6. — Let P = {Fα}α∈C be a flat pencil on a compact
complex surface X such that F∞ has an holomorphic first integral f :
X → P1 and ∆(P) is invariant. If gen(f) = 0 then, for any α ∈ IS(P),
the global holonomy group Gα of Fα is finitely generated by f1,α, . . . , fk,α,
where these generators could be either

fj,α(z) = λjz + ajα+ bj , ∀ j = 1, . . . , k,

or

fj,α(z) = exp(2πi(µjα+ νj))z, ∀ j = 1, . . . , k.

Proof. — We will follow the notations used in Section 3.4. Since ∆(P) is
invariant, P is transversal to f and, as gen(f) = 0, Fα is a Riccati foliation,
for all α ∈ IS(P). In addition, since ∞ /∈ IS(P), there exists a component
of ∆(P) contained in Sing(F∞) and

∆(P) =
k∑
j=1

nj
[
f−1(cj)

]
+

l∑
s=1

C ′s,

for j = 1, . . . , k, and C ′s ⊂ Sing(F∞), for s = 1, . . . , l.
Now assume, without loss of generality, that 0 ∈ IS(P). From now on,

for each c ∈ W , with W as in Section 3.4, Tc will denote the level curve
f−1(c). Fix j ∈ {1, . . . , k}, then there exists a neighborhood Dj ⊂ W of
cj such that

f−1(Dj) ' Dj × Tcj 3 (x, y),

where Tcj ' P1. Moreover, since F0 is transversal to f , we may assume that
the projections π1 : Dj × Tcj → Dj and π2 : Dj × Tcj → Tcj respectively
define the foliations F∞ and F0 on Dj × Tcj . In particular, dx = 0 and
dy = 0 respectively represent F∞ and F0 on Dj × Tcj .
We now look for an explicit expression for the generators of Gα. For

this, fix c ∈ W . We first consider the case when c ∈ Dj . Recall that
fj,α = Holα(γ), for some curve γ ∈ Π1(W, c). Now c ∈ Dj implies that
fj,α coincides with the holonomy of Fα around Tcj . Since Fα is a Riccati
foliation, from the construction done in Section 3.4, there exists an open
covering {Un}mn=1 of γ̃([0, 1]), where γ̃ is a lifting of γ, such that D1, Dm ⊂
D, Un ' Dn×P1, Dn is holomorphic to a disc in C, and Fα|Un is given by

(5.2) ωα = dy + αP (x, y)dx,
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where P (x, y) =
r∑
i=0

ai(x)yi, r 6 2 and ai(x) holomorphic, for i = 0, . . . , r.

From equation (5.2) we obtain dωα = θ ∧ ωα, with θ = Py
P dy, for all

α ∈ C. Since P is flat, there exist (ν0, ν1, ν2) ∈ C3 \ {0} and a holomorphic
a(x) such that ai(x) = νia(x), i = 0, . . . , r. This in turn implies that
P (x, y) = a(x)p2(y), where p2(y) is a polynomial with degree at most
two. Moreover, dωα = θ ∧ ωα, with θ = p′

2(y)
p2(y)dy, for all α ∈ C. Thus,

after a change of coordinates in the fiber, we have two possibilities, either
C1 = {y =∞} ⊂ Sing(F∞) is a component of ∆(P) with multiplicity 2, or
C1 = {y = 0} and C2 = {y = ∞} are invariant components of ∆(P) with
multiplicity 1, and C1, C2 ⊂ Sing(F∞). We now address these two cases
separately:

(1) If C1 = {y =∞} is a component of ∆(P) with multiplicity 2 then
p2(y) = λ, for some λ 6= 0. In addition,

ω0 + αω∞ = d

(
y + αλ

∫ x

x0

a(t)dt
)

= d(Yn + αXn),

where

(5.3) Yn(x, y) = y + constant,

for all n = 1, . . . , m. Now, from equation (3.4),

fj,α|Σ0(q0) = Y −1
m (λY1(q0) + aα+ b)

and from equation (5.3), we obtain

fj,α(z) = λjz + ajα+ bj .

(2) If C1 = {y = 0} and C2 = {y = ∞} are invariant components of
∆(P) with multiplicity 1, then p2(y) = y. In addition,

ω0 + αω∞
y

= dy

y
+ αa(x)dx = d (Yn + αXn) ,

where Yn|Σn(y) = exp(2πi(µjα + νj))y, for n = 1, . . . , m. This
implies fj,α(z) = exp(2πi(µjα+ νj))z.

On the other hand, when c /∈ Dj , fj,α is conjugated to one of the expres-
sions obtained on items (1) and (2). Therefore, since ∆(P) is invariant and
Fα is a Riccati foliation,

fj,α(z) = λjz + ajα+ bj , ∀ j = 1, . . . , k,

or

fj,α(z) = exp(2πi(µjα+ νj))z, ∀ j = 1, . . . , k.
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�

Lemma 5.7. — Let P = {Fα}α∈C be a pencil on a compact complex
surface X such that F∞ has an holomorphic first integral f : X → P1

and ∆(P) is invariant. Assume also that, for all α ∈ IS(P), the global
holonomy group of Fα is given by

Gα = 〈fj,α〉, with fj,α(z) = λjz + ajα+ bj , j = 1, . . . , k.

If #(Ip(P) ∩ IS(P)) > 2 then Gα is finite, for all α ∈ IS(P).

Proof. — Without loss of generality we may assume that 0 ∈ Ip(P) ∩
IS(P) and

Gα = 〈λ1z+a1α+b1, . . . , λnz+anα+bn, z+an+1α+bn+1, . . . , z+akα+bk〉

where λj 6= 1, for j 6 n. Since 0 ∈ Ip(P), fj,0 has finite order, for all j, λj
is a root of unity, for all j 6 n, and bj = 0, for j > n+ 1. Besides, as G0 is
abelian, the generators fj,0 have a common fixed point bj

1−λj , which does
not depend on j. Now take β ∈ Ip(P) ∩ IS(P), β 6= 0, which exists, by
hypotheses. Note that, for all j > n+1, βaj = 0, which implies aj = 0. Since
Gβ is abelian, the common fixed point βaj+bj

1−λj of fj,β does not depend on j.
This in turn implies that aj

1−λj also does not depend on j. In particular, for
any α ∈ IS(P), Gα is abelian, because aj

1−λj and bj
1−λj do not depend on j.

We conclude that Gα is finite, for all α ∈ IS(P), because Gα is an abelian
group, finitely generated, whose all its elements have finite order. �

Theorem 5.8. — Let P = {Fα}α∈C be a flat pencil on a compact
complex surface X such that F∞ has an holomorphic first integral f :
X → P1 and ∆(P) is invariant. If gen(f) = 0 then X is a rational surface
where one of the following hold:

(1) Ip(P) is finite,
(2) IS(P) ⊂ Ip(P), or
(3) there exist β ∈ Ip(P) and λ ∈ C∗ such that

Ip(P) ∩ IS(P) = (λQ + β) ∩ IS(P).

Proof. — We can suppose that every fiber of f is regular, up to blowing-
down π : X → X1 [1, p. 142]. In particular, g = f ◦ π−1 : X1 → P1 is an
holomorphic fiber bundle with typical fiber P1 and X1 is a nth Hirzebruch
surface [1, p. 141]. Therefore X is rational, because X1 is birrationally
equivalent to P2.
By Theorem 5.6, for any α ∈ IS(P), the holonomy group Gα =

〈f1,α, . . . , fk,α〉 is determined by either
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fj,α(z) = λjz + αaj + bj , ∀ j ∈ {1, . . . , k},

or

fj,α(z) = exp(2πi(µjα+ νj))z, ∀ j ∈ {1, . . . , k}.

Assume that Ip(P) is infinite. In particular Ip(P)∩ IS(P) is also infinite
and, without loss of generality, we also may assume that 0 ∈ Ip(P)∩IS(P).
We divide our analysis in two cases. First assume that fj,α(z) = λjz +

αaj + bj , for all j = 1, . . . , k. Fix α ∈ IS(P). By Lemma 5.7 Gα is finite.
Moreover, following [5, the proof of Proposition 2], since 0 ∈ Ip(P), Fα is a
Riccati foliation and ∆(P) is invariant, Fα has local first integral on their
singularities and Z(Fα, C) > 1, for every component C of ∆(P). Therefore,
by Lemma 5.4, α ∈ Ip(P).
On the other hand, assume that fj,α(z) = exp(2πi(µjα + νj))z,

j = 1, . . . , k. In this case:
(1) If µj = 0 for all j = 1, . . . , k, take α ∈ IS(P). Since 0 ∈ Ip(P),

νj ∈ Q, for all j = 1, . . . , k, and Gα is finite. Since Fα has a
meromorphic local first integral in each singularity and Z(α,C) > 1,
for all component C of ∆(P), from Lemma 5.4, α ∈ Ip(P).

(2) If there exists j ∈ {1, . . . , k} such that µj 6= 0 then we may assume,
without loss of generality, that µj 6= 0, for j = 1, . . . , r and µj = 0,
for j = r + 1, . . . , k. Fix β ∈ Ip(P) ∩ IS(P), so Gβ is finite and
µjβ + νj ∈ Q, for all j = 1, . . . , r. Let α ∈ IS(P), α 6= β, then

Gα is finite ⇐⇒
µj(α− β) + µjβ + νj = µjα+ νj ∈ Q, ∀ j = 1, . . . , r,

⇐⇒ µj(α− β) ∈ Q, ∀ j = 1, . . . , r,

In particular, for i, j ∈ {1, . . . , r}, we obtain µi
µj
∈ Q, that is,

(µ1, . . . , µr) = µ1(1, q2, . . . , qr),

where qi ∈ Q, for i = 2, . . . , r. The implies, even when α = β, that

Gα is finite ⇐⇒ µj(α− β) ∈ Q, ∀ j = 1, . . . , r,
⇐⇒ µ1(α− β) ∈ Q

⇐⇒ α ∈ µ−1
1 Q + β.

In particular, if α ∈ Ip(P) ∩ IS(P) then α ∈ µ−1
1 Q + β. Now

take α ∈ (µ−1
1 Q + β) ∩ IS(P), hence Gα is finite. Since Fα has a
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meromorphic local first integral in each singularity and Z(α,C) > 1,
for every component C of ∆(P), from Lemma 5.4, α ∈ Ip(P).

�

When ∞ ∈ IS(P)∩ Ip(P) and ∆(P) is invariant, from Theorem 1.2, we
obtain the following proposition.

Proposition 5.9. — Let P = {Fα}α∈C be a flat pencil on a compact
complex surface X such that F∞ is reduced and has an holomorphic first
integral f : X → S, and ∆(P) is invariant. If ∞ ∈ IS(P) and is a limit
point of Ip(P) then:

(1) If KX 6= 0 then there exist λ ∈ C∗ and a ∈ C such that

Ip(P) = (λ(Q⊕ τQ) + a) ∪ {∞},

where τ is either i or e2πi/3.
(2) If KX = 0 and gen(S) = 0 then X is an algebraic torus. Moreover,

assume X = E × E, where E is an elliptic curve, then

Ip(P) = End(E)⊗Q.

Proof. — Since ∆(P) is invariant and ∞ ∈ IS(P), by Corollary 5.3,
gen(f) = 1. On the other hand, from the fact that F∞ is reduced and Ip(P)
has a limit point at ∞, we obtain that there exists a neighborhood U of
∞ such that, for any α ∈ U , Fα has reduced singularities and holomorphic
first integral. We now take any β ∈ U such that Fβ 6= F∞. By Theorem 1.2,
the Proposition 5.9 follows. �
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