Nous formulons plusieurs conjectures sur les domaines à bords de courbure moyenne positive dans l’espace euclidiens ainsi que dans des espaces plus généraux de courbure scalaire minorée. Nous prouvons quelques théorèmes qui étayent ces conjectures.
We formulate several conjectures on mean convex domains in the Euclidean spaces, as well as in more general spaces with lower bounds on their scalar curvatures, and prove a few theorems motivating these conjectures
Mot clés : courbure moyenne, courbure scalaire
Gromov, Misha 1, 2
@article{AIF_2019__69_7_3169_0, author = {Gromov, Misha}, title = {Mean {Curvature} in the {Light} of {Scalar} {Curvature}}, journal = {Annales de l'Institut Fourier}, pages = {3169--3194}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {7}, year = {2019}, doi = {10.5802/aif.3347}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3347/} }
TY - JOUR AU - Gromov, Misha TI - Mean Curvature in the Light of Scalar Curvature JO - Annales de l'Institut Fourier PY - 2019 SP - 3169 EP - 3194 VL - 69 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3347/ DO - 10.5802/aif.3347 LA - en ID - AIF_2019__69_7_3169_0 ER -
%0 Journal Article %A Gromov, Misha %T Mean Curvature in the Light of Scalar Curvature %J Annales de l'Institut Fourier %D 2019 %P 3169-3194 %V 69 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3347/ %R 10.5802/aif.3347 %G en %F AIF_2019__69_7_3169_0
Gromov, Misha. Mean Curvature in the Light of Scalar Curvature. Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 3169-3194. doi : 10.5802/aif.3347. https://aif.centre-mersenne.org/articles/10.5802/aif.3347/
[1] Sewing Riemannian manifolds with positive scalar curvature., J. Geom. Anal., Volume 28 (2018) no. 4, pp. 3553-3602 | DOI | MR | Zbl
[2] Scalar curvature estimates for compact symmetric spaces., Differ. Geom. Appl., Volume 16 (2002) no. 1, pp. 65-78 | DOI | MR | Zbl
[3] Positive curvature, macroscopic dimension, spectral gaps and higher signatures., Functional analysis on the eve of the 21st century. Volume II. In honor of the eightieth birthday of I. M. Gelfand. Proceedings of a conference, held at Rutgers University, New Brunswick, NJ, USA, October 24-27, 1993, Birkhäuser, 1996, pp. 1-213 | Zbl
[4] Homotopical effects of dilatation., J. Differ. Geom., Volume 13 (1978), pp. 303-310 | DOI | MR | Zbl
[5] The classification of simply connected manifolds of positive scalar curvature., Ann. Math., Volume 111 (1980), pp. 423-434 | DOI | MR | Zbl
[6] Spin and scalar curvature in the presence of a fundamental group. I., Ann. Math., Volume 111 (1980), pp. 209-230 | DOI | MR | Zbl
[7] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds., Publ. Math., Inst. Hautes Étud. Sci., Volume 58 (1983), pp. 83-196 | DOI | Numdam | Zbl
[8] 101 Questions, Problems and Conjectures around Scalar Curvature (https://www.ihes.fr/~gromov/wp-content/uploads/2018/08/positivecurvature.pdf) | Zbl
[9] Dirac and Plateau billiards in domains with corners., Cent. Eur. J. Math., Volume 12 (2014) no. 8, pp. 1109-1156 | MR | Zbl
[10] Plateau-Stein manifolds., Cent. Eur. J. Math., Volume 12 (2014) no. 7, pp. 923-951 | MR | Zbl
[11] Scalar Curvature of Manifolds with Boundaries: Natural Questions and Artificial Constructions (2018) (https://arxiv.org/abs/1811.04311)
[12] Four Lectures on Scalar Curvature (2019) (https://arxiv.org/abs/1908.10612v3)
[13] Metric Inequalities with Scalar Curvature (2019) (http://www.ihes.fr/~gromov/PDF/Inequalities-July%202017.pdf) | Zbl
[14] The strong halfspace theorem for minimal surfaces., Invent. Math., Volume 101 (1990) no. 2, pp. 373-377 | DOI | MR | Zbl
[15] Approximation by smooth embedded hypersurfaces with positive mean curvature, Bull. Aust. Math. Soc., Volume 36 (1987), pp. 197-208 | MR | Zbl
[16] Minimal Smoothings of Area Minimizing Cones (2018) (https://arxiv.org/abs/1810.03157)
[17] Complete minimal surfaces in ., Publ. Mat., Barc., Volume 43 (1999) no. 2, pp. 341-449 | DOI | MR | Zbl
[18] Rigidity of min-max minimal spheres in three-manifolds., Duke Math. J., Volume 161 (2012) no. 14, pp. 2725-2752 | DOI | MR | Zbl
[19] Positive Scalar Curvature and Minimal Hypersurface Singularities (2017) (https://arxiv.org/abs/1704.05490)
[20] Scalar Curvature and Intrinsic Flat Convergence (2016) (https://arxiv.org/abs/1606.08949)
Cité par Sources :