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MEAN CURVATURE IN THE LIGHT OF SCALAR
CURVATURE

by Misha GROMOV

Abstract. — We formulate several conjectures on mean convex domains in the
Euclidean spaces, as well as in more general spaces with lower bounds on their
scalar curvatures, and prove a few theorems motivating these conjectures
Résumé. — Nous formulons plusieurs conjectures sur les domaines à bords de

courbure moyenne positive dans l’espace euclidiens ainsi que dans des espaces plus
généraux de courbure scalaire minorée. Nous prouvons quelques théorèmes qui
étayent ces conjectures.

We think of scalar curvature as a Riemannin incarnation of mean cur-
vature(1) and we search for constraints on global geometric invariants of
n-spaces X with Sc(X) > 0 that would generalise those for smooth mean
convex domains X ⊂ Rn also called domains with mean convex boundaries
Y = ∂X, i.e. with mean.curv(∂Y ) > 0.(2)

And, as an unexpected bonus of this search, we find out that techniques
developed for the study of manifolds X with Sc(X) > σ > 0 yield new
results for hypersurfaces Y ⊂ Rn with mean.curv > µ > 0.

In what follows we briefly overview of what is known and what is un-
known in this regard.(3)

Keywords: mean curvature, scalar curvature.
(1)Throughout the paper, we use the standard normalisation, where the unit sphere
Sn−1 ⊂ Rn has mean.curv(Sn) = n − 1, the Ricci curvature of Sn is n − 1 and the
scalar curvature of Sn is n(n− 1).
(2)This is similar in spirit to parallelism between spaces X with positive sectional cur-
vatures and convex subsets in Rn, the best instance of which is Perelman’s double sided
bound on the product of the n Uryson widths of an X by const±1

n · vol(X).
(3)Part of this article is a slightly edited extract from my unfinished paper [8].
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1. Inscribed Balls and Distance Decreasing Maps

Let us recall classical comparison theorems between radii of balls in man-
ifolds X with lower bounds on their Ricci curvatures by ς and on the mean
curvatures of their boundaries by µ and the radii R = R(n, κ, µ) of the balls
B = Bn(κ, µ) with mean.curv(∂B) = µ in the standard (complete simply
connected) n-spaces Xn

κ with sectional curvatures κ = ς/(n− 1),(4) which
go back to the work by Paul Levy, S. B. Myers and Richard L. Bishop.
Let X be a (metrically) complete Riemannian n-manifold with a bound-

ary, denoted Y = ∂X, such that Ricci(X) > ς = (n− 1)κ, i.e. Ricci(X) >
ς · gX , and mean.curv∂(Y ) > µ.

For instance, X may be a smooth, possibly unbounded domain in the Eu-
clidean space Rn, that is a closed subset bounded by a smooth hypersurface
Y ⊂ Rn.

Inballn-Inequality. — The in-radius of X, that is

Radin(X) = sup
x∈X

dist(x, ∂X),

is bounded by the radius R = R(n, κ, µ) of the ball Bn(κ, µ) with

mean.curv(∂Bn(κ, µ)) = µ

in the standard n-spaceXn
κ of constant sectional curvature κ = ς/(n−1).(5)

Indeed, the normal exponential map to ∂Y necessarily develops conjugate
points on geodesic segments normal to ∂Y of length > R(n, κ, µ).

Inballn-Equality. — If Radin(X) = R = R(n, κ, µ), then X, assuming
it is connected, is isometric to an R-ball in Xn

κ .

This is proven by fiddling at the boundary points of the regions in ∂X,
where the maximal in-ball meets ∂X.

Sn−1-Extremality/Rigidity Corollary. — LetX ⊂ Xn
κ be a com-

pact connected domain with smooth connected boundary Y = ∂X.
Let the mean curvature of Y be bounded from below by µ > 0 and let

f : Y → Sn = Sn−1(κ, µ) = ∂Bn(κ, µ)

be a distance non-increasing map for the distances in Y ⊂ Xn
κ and in

Sn−1(κ, µ) ⊂ Xn
κ induced from that in the ambient (standard) space Xn

κ .

(4) If κ 6 0, then the standard balls may only have µ > (n− 1)
√
−κ.

(5) If no such ball exists, e.g. if κ>−1 and µ=−(n−1) then, by definition, R(n, ς, µ)=∞.
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Extrmn: Extremality of Sn−1. — If the map f is strictly distance
decreasing then f is contractible.

Rigdmn: Rigidity of Sn−1. — If f is non-contractible, then it is an
isometry.

Proof. — Use Kirszbraun’s theorem(6) and extend map f to a distance
non-increasing map F : X → B = Bn(κ, µ).
If f has non-zero degree then so does F , hence, the center of B is in the

image and the pullback of this center lies within distance > R(n, κ, µ) from
the boundary of X and the above Inballn-inequality and Inballn-equality
apply. �

Remarks.
(a) If X is isometrically realised by a domain in the Euclidean or in

the hyperbolic n-space and dist(x0, ∂X) > R, then the normal pro-
jection to the ball, X → Bx0(R) ⊂ X, is a distance non-increasing
map of degree 1.

(b) An essential drawback of Extrmn and Rigdmn is an appeal to the
extrinsic metric, that is the Euclidean distance function restricted
from Rn to Y and to Sn−1, rather than to the intrinsic metrics
in Y and Sn−1 associated with the Riemannian metrics/tensors
induced from Rn, where, observe, the intrinsic metric in Y may be
incomparably greater than the extrinsic one.

Yet, we shall it in the next section, Extrmn and Rigdmn remain valid
for the intrinsic metrics but the proof of these relies on Dirac operators on
manifolds with positive scalar curvatures with no direct approach in sight.
(The proof of the intrinsic Rigdmn is slightly more elaborate than that of
Extrmn.)

The following refinements(s) of the Inballn-inequality/equality in the
standard spaces of constant curvature, e.g. in Rn, must be also well known.
I apologies to the author(s) whose paper(s) I failed to locate on the web.

Inballn−1-Inequality. — Let X be a smooth domain with
mean.curv(∂X) > µ in the standard n-space Xn

κ with the sectional curva-
ture κ and let X contain a flat R-ball B of dimension (n − 1), that is an
R-ball in a totally geodesic hypersurface in Xn

κ .
If R > R(κ, µ) then, in fact, R = R(κ, µ) and X is equal to an R-ball

in Xn
κ .

(6) https://en.wikipedia.org/wiki/Kirszbraun_theorem

TOME 69 (2019), FASCICULE 7
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Proof. — Let B_̂(r) ⊃ B be the lens-like region between two spherical
caps of hight r 6 R and with the boundaries ∂B. If R > 1, the mean
curvatures of these caps are < µ; hence they do not meet ∂X which makes
the R-ball Bn(R) = B_̂(R) contained in Y and the above two “Inballn”
apply. �

Intersection Remark. — The above argument also shows that if X ⊂ Rn
with mean.curv(∂X) > n− 1 contains a flat (n− 1)-ball, Bn−1

x (r) ⊂ X, of
radius r < 1, then the distance from the center of this ball to the boundary
of X is bounded from below by dist(x, ∂X) > r2

2 . In words: If X is r-thin
at a point x ∈ X, then the intersections of X with hyperplanes passing
through x are at most

√
2r-thick at this point.

In fact, the same apply to intersections of X with arbitrary hypersur-
faces S ⊂ Rn where relevant constants now depend on the bounds on the
principal curvatures of S.

An instance of such an S, which we shall meet later in Section 3, is that
of the sphere S = Sn−1

x (1 + δ), x ∈ X, where the existence of an (n − 1)-
disc of radius r > 20

√
δ in S ∩X for this S and small δ > 0 necessities the

existence of a ball
Bnx′(2δ) ⊂ X ∩Bnx (1 + δ)

such that
dist(x′, x) = 1− δ.

Inballn−1 Mapping Corollary. — Let X ⊂ Rn be a bounded do-
main with smooth boundary Y = ∂X, such that mean.curv(∂X) > n − 1
and let Y+ ⊂ Y be the intersection of Y with the half subspace Rn+ =
{x1, . . . , xi, . . . , xn}x1>0 ⊂ Rn. Then
Y+ admits no proper distance decreasing map with non-zero degree to

the unit ball Bn−1(1) ⊂ Rn−1, where “distance decreasing” refers to the
Euclidean distance on Y+ ⊂ Rn and “proper” signifies that ∂Y+ → Sn−2 =
∂Bn−1(1).

Maximal Principle for Principal Curvatures. — The maximum
principle argument, which was used for the proof of the strict inball in-
equalities (but not their extremal equality cases!) and their corollaries for
hypersurfaces Y in Rn with mean.curv(Y ) > n − 1, trivially extends to
hypersurfaces Y ⊂ Rn, where the maxima of principal curvatures are > 1
at all points y ∈ Y , and the same applies to hypersurfaces in the standard
spaces Xn

κ with constant sectional curvatures κ for positive and negative κ
as well.

ANNALES DE L’INSTITUT FOURIER
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What is more interesting is the following, probably known, simple gener-
alisation of the above Inballn−1-mapping corollary derived with this “prin-
ciple”.

Sharp bound on the filling radius in codimension 2. — Let
Y n−1

0 ⊂ Rn be a smooth cooriented hypersurface with connected boundary
Zn−2 = ∂Y0, such that the maxima of the principal curvatures of Y0 satisfy

max.curv(Y0, y) > 1 for all y ∈ Y0.

Then Zn−2 bounds a submanifold(7) Y n−1
1 ⊂ Rn, i.e. ∂Y n−1

1 = Zn−2, such
that

distRn(y, Zn−2) 6 1 for all y ∈ Y n−1
1 .

Consequently, Zn−2 admits no distance decreasing map with non-zero
degree to the unit sphere Sn−2(1) ⊂ Rn−2 with non-zero degree, where
“distance decreasing” refers to the Euclidean distances restricted to Zn−2 ⊂
Rn and to Sn−2 ⊂ Rn−1.

Proof. — If Zn−2 doesn’t bound in its ρ-neighbourhood in Rn then, by
the Alexander duality there exists a simple curve C ⊂ Rn, with both ends
going to infinity in Rn, which is non-trivially linked with Z and such that

distX(Z,C) > ρ.

We claim that there is a point c ∈ C such that the ρ-sphere with the
center c, say Sn−1

c (ρ) is tangent to Y0 at some point y0 ∈ Y n−1
0 , where, this

sphere is locally positioned “inside” Y0 relative to the given coorientation
of Y0.
To see this let τ : Sn−1(ρ)×C → Rn be the map (tautologically) defined

via the identification of the sphere Sn−1(ρ) = Sn−2
0 (ρ) ⊂ Rn−1 with all

Sn−1
c (ρ) by parallel translations and let us assume this map is transversal

to Y0.
Then the τ -pullback of Y0,

Σ = τ−1(Y0) ⊂ Sn−1(ρ)× C

is a smooth hypersurface in Sn−1(ρ)×C, the projection of which to Sn−1(ρ)
has non-zero degree, namely the degree equal the linking number between
Zn−2 and C.

It follows, that there is a connected component, say Z0 ⊂ Z which sep-
arates the two ends of the cylinder Sn−1 × C, where one of the ends is
regarded as “internal” with respect to the coorientation of Y0 and the other
one as “external”.

(7)A priori, this Y0 may be singular, but it can be made smooth for codim(Y0) = 1.

TOME 69 (2019), FASCICULE 7
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Then we let (s, c)0 be the minimum point of the function (s, c) 7→ c ∈
C = R restricted to the “external” connected component of the complement
to Σ0 in the cylinder Sn−1(ρ)× C and observe that

τ((s, c)0) ∈ Y0 ∩ Sn−1
c (ρ)

serves as the desired “internal kissing point” of the sphere Sn−1
c (ρ) with Y0.

Finally, by the maximal principal, all principal curvatures of Y0 at this
“kissing point” are bounded by 1

ρ and the proof is concluded. �

Remark. — The above automatically generalises to the standard spaces
with constant curvatures and to many spaces with variable curvatures.
Also there is the following (rather trivial) version of this for subman-

ifolds Zn−k ⊂ Rn of codimensions k > 3: If Zn−k doesn’t bound in its
ρ-neighbourhood, and if Y n−k+1

0 ⊂ Rn has ∂Y n−k+1
0 = Zn−k, then there

exists a normal vector ν0 to Y0 at some point, such that all principal cur-
vatures in the direction of ν at this point are bounded by 1

ρ .

2. Manifolds with Lower Bounds on their Scalar
curvatures and on the Mean Curvatures of their

Boundaries

An essential link between positive mean and positive scalar curvatures
is furnished by an elementary observation [6] that the natural continuous
Riemannin metric on the double X ∪Y X of a domain ⊂ Rn with boundary
Y = ∂X with positive mean curvature can be approximated by smooth
metrics with positive scalar curvatures

This leads (see [12, Section 3.6 and 4.3]) to the following “intrinsic”
improvement of the above “extrinsic extremality” of the Euclidean spheres.

,→S
n−1

mn Sharp Bound on RadSn−1(Y ⊂ Rn). — Let Y ⊂ Rn be a
closed hypersurface and let f be a Lipschitz map of Y to the unit sphere,

f : Y → Sn−1 = Sn−1(1) ⊂ Rn.

If mean.curv(Y ) > n−1 and if f strictly decreases the lengths of the curves
in Y , then f is contractible.

In fact, this is a corollary to the following result derived in [11] from
Goette–Semmelmann’s estimates [2] for twisted Dirac operators.

,→S
n−1

Sc>0 Sharp Bound on RadSn−1(Y = ∂X)Sc(X)>0. — If a Rieman-
nin manifold Y serves as a boundary with mean curvature > n − 1 of a

ANNALES DE L’INSTITUT FOURIER
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compact Riemannian spin n-manifold X with non-negative scalar curva-
ture, then Y admits no non-contractible map f : Y → Sn−1 which strictly
decreases the lengths of curves in Y .

Rigidity of Spheres and Balls. — By using (a slightly generalised)
Alexandrov’s theorem on sphericity of closed hypersurfaces with constant
mean curvature in Rn, one can show that non-contractible maps of smooth
closed hypersurfaces Y ⊂ Rn with mean.curv(Y ) > n−1 to the unit sphere
Sn = Sn(1) ⊂ Rn+1,

f : Y → Sn−1,

which do not increase the length of curves, are isometric.
Moreover, compact Riemannian spin manifolds X with Sc(X) > 0, the

boundaries Y of which admit non-contractible length non-increasing maps
to Sn−1, are isometric to the unit balls Bn(1)Rn, but the proof of this
needs an additional bit of reasoning.

However, the following remains problematic.

Question 2.1. — Is there a direct elementary proof of ,→S
n−1

mn ?

Question 2.2. — Does ,→S
n−1

mn generalise to hypersurfaces Y in the
standard spaces Xn

κ with sectional curvatures κ 6= 0?

For instance, do minimal hypersurfaces Y ⊂ Sn with their intrinsic (in-
duces Riemannin) metrics have RadSn−1(Y ) 6 1?

Question 2.3. — Is the spin condition in ,→S
n−1

Sc>0 essential?

Question 2.4. — Is there a sharp version of the Inballn−1-mapping
corollary to the intrinsic metric in Y ?

Namely, let Y ⊂ Rn be a smooth closed hypersurface with mean curva-
ture > n − 1 and let Z ⊂ Y be a hypersurface, dim(Z) = n − 2, which
divides Y in two halves, say Y− ⊂ Y and Y+ ⊂ Y .
Does this Z = ∂Y− = ∂Y+ admit a non-contractible distance decreasing

map to Sn−2 = ∂Sn−1
− = ∂Sn−1

+ , where the distance in Z is induced from
the Riemannian distance in Y and the distance in Sn−2 is the intrinsic
spherical one (which is equal to the distance coming from the ambient
sphere Sn−1 ⊃ Sn−2)?

Notice in this regard that ,→S
n−1

mn implies a non-sharp version of this,
due to the following simple corollary of the extension property of Lipschitz
maps to Rn.

TOME 69 (2019), FASCICULE 7
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[Lip√n]. — Recall that 1-Lipschitz, i.e. distance non-increasing, maps
from subsets in metric spaces to the Euclidean space Rk with the sup-
metric,

f : A→ (Rk,distsup)

for

distsup((x1, . . . , xi, . . . , xk), (x′1, . . . , x′i, . . . , x′k)) = sup
i
|xi − x′i|

extend to 1-Lipschitz maps of the ambient spaces B ⊃ A,

F : B → (Rk,distsup).

Since the Euclidean (Pythagorean) metric in Rk satisfies,

distsup 6 distEucl 6
√
k · distsup,

1-Lipschitz maps
f : A→ Rk = (Rk,distEucl)

extend to
√
k-Lipschitz maps to R, and the same applies to maps to convex

subsets, e.g. balls in Rk.
Finally we notice that the unit Euclidean ball Bn−1 ⊂ Rn−1 admits a

π
2 -Lipschitz homeomorphism onto the hemisphere Sn−1

+ which keeps the
boundary sphere Sn−2 = ∂Sn−1

+ = ∂Bn−1 fixed.
Thus we conclude that 1-Lipschitz maps Z = ∂Y∓ → ∂Sn−1

∓ ⊂ Sn−1 of
non-zero degree extend to λ-Lipschitz maps Y → Sn−1 for λ = π

2
√
n− 1

which also have non-zero degrees.
In fact, this extension property together with ,→S

n−1

Sc>0 yield the following
(alas, non-sharp) bound on the (hyper)spherical radius RadSn−2(Z ⊂ Y ).

/→S
n−2

Sc>0 . — Let X be a compact n-dimensional Riemannian spin man-
ifold with boundary Y = ∂X, such that Sc(X) > 0 and mean.curv(Y ) >
n− 1.
If a closed hypersurface Z ⊂ Y homologous to zero in Y admits an ε-

Lipschitz map Z → Sn−2 = ∂Sn−1
± of non-zero degree, where “Lipschitz”

is understood for the distance associated with the Riemannian metric in Y
induced from X, then

ε >
2

π
√
n− 1

.

Remark/Example. — The “homologous to zero” condition is essential:
non-contractible curves in 2-tori Y ⊂ R3 with mean.curv(Y ) > 2 may be
uncontrollably long.

ANNALES DE L’INSTITUT FOURIER
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Now let us show that a combination of the above argument with that
used in the proof of the sharp bound in codimension 2 in Section 1 yields
the following.

Filling Radius Bound for Zn−2 ⊂ Rn. — Let Y ⊂ Rn be a smooth
closed (embedded without self-intersection!) connected hypersurface with
mean.curv(Y ) > n − 1 and let Z = Zn−2 ⊂ X be a closed (embedded
without self-intersection) hypersurface in Y .
If Z is homologous to zero in Y then it is homologous to zero in its

ρ-neighbourhood in Rn ⊃ Z for

ρ 6
π

2
n

n− 1 .

Proof. — If Z doesn’t bound in its ρ-neighbourhood in Rn then, by the
Alexander duality there exists a closed curve S ⊂ Rn, which is non-trivially
linked with Z and such that

distX(Z, S) > ρ.

Then the radial projections of Z to the ρ-spheres with the centers s ∈ S, say

fs : Z → Sn−1
s (ρ),

are distance decreasing, for the Euclidean distances restricted to Z and to
Sn−1
s while the resulting map from Z × S to the ρ-sphere, call it

f : Z × S → Sn−1(ρ) = Sn−1
0 (ρ),

has non-zero degree, since this degree is equal to the linking number be-
tween Z and S.
Then, using Kirszbraun theorem and an obvious π

2 -Lipschitz homeomor-
phisms from the unit ball onto the unit hemisphere, Bn → Sn±, one extends
this f to a π

2 -Lipschitz map

F : Y × S → Sn(ρ),

such that deg(F ) = deg(f) 6= 0, where, by using (the corresponding version
of) Lip√n and by making the curve S longer if necessary, one gets such an
F with

Lip(F ) 6 λ = π

2 .

Finally observe that Y ×S serves as the boundary of the manifold Xn+1,
that is the domain in Rn bounded by Y times S, where Sc(X) = 0 and
mean.curv(Y × S) = mean.curv(Y ) > n− 1 and that ,→S

n

Sc>0 implies that

ρ 6
λn

n− 1 ,

by which the proof is concluded. �

TOME 69 (2019), FASCICULE 7
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Remarks and Conjectures.
(a). — Our inequality with const = π

2
n
n−1 > 1 is not especially exciting

in view of the sharp estimate (where const = 1) available with the maxi-
mum principle. But the above argument applies to a class of spaces quite
different from Rn, where the scalar curvatures are bounded from below,
and which admit (exactly or approximately) contracting projections to the
balls, such, for instance as manifolds with Sc > −ε which are bi-Lipschitz
equivalent to Rn.

However, sharp filling inequalities in this kind of spaces remain conjec-
tural.

(b). — Let a hypersurface Z ⊂ Y = ∂X, where X is a compact Rieman-
nin manifold, divide Y into two halves, say Y+ and Y−, such that
[MN±(n−1)] mean.curv(Y+) > n− 1 and mean.curv(Y−) > −(n− 1).
Then one knows that Z bounds a stable hypersurface Ymin ⊂ X with
constant mean curvature n− 1 (called “µ-bubble” in [3]).(8)

If Sc(X) > 0, this yields — we show it somewhere else — alternative
proofs of non-sharp bounds on the (hyper)spherical radius and on the fill-
ing radius of Z provided the mean curvature of Y ⊃ Z satisfy the condi-
tion [MN±(n−1)], which is weaker than mean.curv(Y ) > n− 1.
(c). — Let X+ be a complete Riemannian n-manifold, which, for sim-

plicity’s sake, we assume having uniformly bounded local geometry, such
as X+ = Rn, for instance.
Let Z = Zn−2 ⊂ X+ be a smooth closed oriented submanifold which

bounds a cooriented submanifold Y0 = Y n−1
0 ⊂ X+ with mean.curv(Y0) >

n − 1. Does then Z bound a stable hypersurface Ymin ⊂ X+ with
mean.curv(Ymin) = n− 1?
(Intuitively, this Ymin could be obtained by an “inward deformation” of

Y0, where, in general, even if Y0 is compact, the bubble Ymin may somewhere
go to infinity; yet, this is ruled out by the “bounded geometry” condition
as in [13, 11.6]).
If this works, we would obtain bounds on filling (hyperspherical) radii

and filling volumes of Z, in manifolds X+ with Sc(X+) > σ, similar to the
bound in Rn obtained with the maximum principle.

But since minimal bubbles Ymin can intersect Y0 away from ∂Y0 = ∂Ymin,
the existence of these Vmin seems problematic.

(8) If n > 9, this Ymin may, a priori, have “stable singularities” but these can be rendered
harmless with the recent Schoen–Yau theorem in [19] and/or, possibly, using the work
by Lohkamp [16].

ANNALES DE L’INSTITUT FOURIER
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(d). — Let Z = Zn−2 ⊂ X+, e.g. for X+ = Rn be as above.
Can our bound on fill.rad(Z) be upgraded to such a bound for an (n−1)-

volume minimizing filling of Z that is a volume minimizing hypersurface,
say Y∗ ⊂ X+ with ∂Y∗ = Z?

Namely, is there a bound on supy∈Y∗ dist(y, Z) for our Z? in terms of the
lower bounds on the scalar curvature of X+ and on the mean curvature of
some Y ⊃ Z?
(Ideally we would like this “dist” to be associated with the Riemannin

metric in Y∗ rather than with that in X+.)

3. Back to Mean Convex Domains in Rn

The following may be known but I couldn’t find a reference.

Conjecture 3.1. — Let X be an (infinite!) mean convex domain X ⊂
Rn, i.e. mean.curv(∂X) > 0.

If the boundary ∂X is disconnected, then none of the connected compo-
nent of ∂X may have its mean curvature separated away from 0, i.e. infima
of the mean curvatures of all components are zero.

This is known in the case n = 3, where the following better result is
available.

Strong Half-space/Slab Theorem ([17]). — The only mean con-
vex domains, i.e. with mean.curv > 0, in R3 with disconnected boundaries
are slabs between parallel planes.

In fact, this easily follows from

Fischer Colbrie–Schoen Planarity Theorem. — Complete sta-
ble minimal surfaces in R3 are flat.

Warning. — The Euclidean spaces Rn for n > 4, contain mean convex
domains bounded by pairs of n-dimensional catenoids [14].

Mean convex domains X ⊂ R3, even with connected boundaries, are
subjects to strong geometric constrains.

G-Example. — If a mean convex X ⊂ R3 contains a plane, then, assum-
ing ∂X is non-empty and connected, Y is equal to a half-space.

This follows from the half-catenoid maximal principle that was originally
used by Hoffman and Meeks [14] to show that properly embedded minimal
surfaces Y ⊂ R3

+ are flat.

TOME 69 (2019), FASCICULE 7
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It may be unclear what to expect of general mean convex domains X ⊂
Rn but if the mean curvature is separated away from zero, then one expects
the following.

Conjecture 3.2. — If a domain X ⊂ Rn has mean.curv(∂X) > n− 1,
then there exists a continuous self-map R : X → X, such that

• the image R(X) ⊂ X has topological dimension n− 2;
• dist(x,R(x)) 6 constn for all x ∈ X, with the best expected

constn = 1.

Comments. — This is a baby version of the corresponding conjectural
bound on the Uryson width of complete (also non-complete?) n-manifolds
X with Sc(X) > n(n − 1): There exists a continuous map from X to an
(n−2) dimensional, say polyhedral, space, say ρ : X → Pn−2, such that the
diameters (also areas?) of the pullbacks of all points p ∈ P are bounded by

diam(ρ−1(p)) 6 constn,

possibly with constn = 1 (and constn = 4π in the case of areas).(9)

Ideally, one would like to have the above map R as the end result of a
homotopy, a kind of mean curvature flow, which would collapse X to P
and blow up the mean curvature at all points in the process.
Similarly, ρ may result from a Ricci kind of flow which would shrink X

to Pn−2 in finite time with a simultaneous blow up of the scalar curvature.

Exercices.
(a). — Let n = 3 and show that there exists a map f : ∂X → R3, such

that the image R(X) ⊂ X has topological dimension 1 and dist(x,R(x)) 6
100 for all x ∈ ∂X.
Hint. — Argue as in the proof of Corollary 10.11 in [7].
(b). — Let X be a complete n-manifold with disconnected boundary,

where mean.curv(∂X) > µ > 0. If n 6 7. Then, for all positive ν 6 µ, X
contains an n-submanifold Xν with a disconnected boundary which have
constant mean curvature mean.curv(∂Xν) = ν.

Remark. — This may be only of “negative” use for X ⊂ Rn, where it
may help to settle Conjecture 3.2, but it may be more relevant for domains
in the hyperbolic space Hn with the sectional curvature −1, where mean
convex domains of all kinds are abundant and where the counterpart of
Conjecture 3.2 refers to X ⊂ Hn with mean.curv(∂X) > n− 1. (Complete

(9)See [7] and [18] for the case n = 3.
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non-compact hypersurfaces with mean.curv = n− 1 in Hn, which have no
Euclidean analogues, look especially intriguing.)
Also it may be amusing to look at the Conjecture 3.2 from the position

of manifolds with Ricci > 0, where the natural guess is as follows.(10)

Conjecture 3.3. — If an X with Ricci(X) > 0 has disconnected
boundary with the mean curvature > −µ, then no connected component
of this boundary can have mean curvature > µ+ ε.

(This is, of course, obvious for compact X.)

Symmetrization.

Intersections of mean convex subsetsX in Riemannin manifolds are mean
convex with a properly defined generalised mean curvature and, more gen-
erally, the inequality mean.curv(∂X) > µ, is stable under finite and infinite
intersections of such domains for all −∞ < µ <∞.

This allows G-symmetrization of X’s under actions of isometry groups
G acting on the ambient manifold X∗ ⊃ X, e.g. for X∗ = Rn ⊃ X

X ; Xsym =
⋂
g∈G

g(X).

This suggests, for instance, the proof of the above G in some (all?) cases
by symmetrizationX ; Xsym ⊂ R3 whereXsym is equal to the intersection
of the copies of X obtained by rotations of X around the axis normal to
the hyperplane R2 ⊂ X.

Similarly, one can apply symmetrizations to mean convex domains X ⊂
Rn for n > 4 which contain hyperplanes and where definite results need
fast decay conditions on the mean curvatures of ∂X. For instance, one
shows with symmetrization — this must be classically known — that the
hyperplane Rn−1 ⊂ Rn admits no mean convex perturbations with compact
supports, which also can be derived, from non-existence of Zn-invariant
metrics with Sc > 0 on Rn.

In fact, such perturbations admit Zn−1-invariant extensions, more pre-
cisely invariant under the action of the group (isomorphic to Zn−1) gen-
erated by sufficiently large mutually normal translations. and at the same
time the metric in X can be perturbed to have the scalar curvature > 0.

(10)Another natural guess is that the answer to this, along with Conjecture 3.4, must
be known to right people.
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Then the metric on the double X ∪∂ X of X can be similarly made Zn-
invariant keeping Sc > 0.
We mentioned all this to motivate, albeit not very convincingly, the fol-

lowing.

Conjecture 3.4. — The only Zn−3-invariant mean convex domains in
Rn with disconnected boundaries are slabs between parallel hyperplanes.

Vague Question. — What could be a counterpart of the mean curva-
ture symmetrization for metrics with Sc > σ?

Stability of the Inballn-Inequality. — Let the boundary of a
smooth domain X ⊂ Rn have mean.curv(∂X) > n− 1− ε for ε > 0 and let
x1, x2 ∈ X satisfy dist(x1, ∂X) > 1, and dist(x2, ∂X) > r for 0 < r 6 1.
Then

either dist(x1, x2) 6 1− r + δ or dist(x1, x2) > 1 + r − δ,

where δ 6 δ(ε)→ 0 for ε→ 0.

Proof. — Symmetrize around the axes between x1 and x2. �

Corollary. — If ε is small, then the unit balls which are contained in
X can’t be continuously moved δ-far in X from their original positions.
Moreover, the part of Y = ∂X which lies δ close to the ball Bnx1

(1) ⊂ X
has only small holes, about

√
δ in size, which can be sealed by a small

perturbation of Y and thus lock Bnx1
(1) in the concentric ball of radius

1 + δ. This means, more precisely, the following.
There exists continuous self-mappings f = fε : X → X, ε > 0, such that
(1) f is supported (i.e. 6= Id) in a given arbiltrarilly small neighbour-

hood of the boundary Y = ∂X,
(2) f moves all points by a small amount for small ε,

dist(f(x), x) 6 δ(ε) −→
ε→0

0,

(3) the image f(Y ) ⊂ X “locks” all unit balls in X, that is every
point x ∈ X with dist(x, ∂X) > 1 is contained in a connected
component of the complement Rn \ f(Y ), where this components
itself is contained in the ball Bx(1 + δ), such that this δ is also
bounded by δ(ε) −→

ε→0
0.

Proof. — Confront the above with the intersection corollary from Sec-
tion 1 and conclude that if the unit ball Bx(1) is contained in X, then the
intersection ofX with the δ-greater concentric sphere S = Sn−1(1+δ) ⊂ Rn
contains no disc of radius > 20

√
δ
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Then collapse this intersection, call it

V = X ∩ S ⊂ S = Sn−1(1 + δ),

to its cut locus with respect to the boundary, denoted Σ ⊂ V , and then
extend the map V → Σ to the required map X → X. �

Stability in the Limit. — Given a domainX ⊂ Rn let ∆X be the distance
function to the boundary inside X extended by zero outside X,

∆X(x) = dist(x, ∂X) for x ∈ X and ∆X(x) = 0 for x ∈ Rn \X.

Say that a sequence of subsets Xi ⊂ Rn regularly converges if the func-
tions ∆Xi uniformly converge on compact subsets in Rn. Then the regular
limit X∞◦ of Xi is defined as the (open!) subset, where the limit function
limi→∞∆Xi is strictly positive.
(Observe that every sequence Xi contains a regularly convergent subse-

quence.)
Now, the existence of the above f : X → X (obviously) implies the

following.
If mean.curv(∂Xi) > µi −→

i→∞
n − 1, and Xi regularly converge to X∞◦ ,

then the connected components in X∞◦ of the points x ∈ X∞◦ where
dist(x, ∂X∞◦) = 1 are exactly open unit balls with the centers at these
points x.

Remark. — The non-inclusion dist(x1, x2) /∈ [1−r+δ, 1+r−δ] is sharp:
if dist(x1, x2) > 2, then, for all ε > 0, there are smooth domains X in Rn
with mean.curv(∂X) > n − 1 − ε, which contains both unit balls Bx1(1)
and Bx1(1), as we shall explain in Section 5.

Conjecture 3.5. — (11) Let Xi ⊂ Rn be a sequence of smooth do-
mains, such that all of them contain the unit ball B = Bn0 (1) and such
that

mean.curv(Xi) > µi → n− 1 for i→∞.
Then there exists a sequence of compact domains B′i with smooth bound-
aries S′i = ∂B′i, which approximate B from above, i.e.⋂

i

B′i = B,

and such that
voln−1(S′i ∩Xi)→ 0 for i→∞.

(11)This is motivated by an aspect of the Penrose conjecture explained to me by
Christina Sormani.

TOME 69 (2019), FASCICULE 7



3184 Misha GROMOV

Remark. — Similar stability/limit problem for Riemannin manifolds Xi

with Sc(Xi) > σ is discussed in [12, Section 4.5] in the spirit of the intrinsic
flat convergence of metrics [20].

Exercises.
(a). — Decide what are possibilities for the values of the distance be-

tween x1 and x2, in the case mean.curv(∂X) > 1 and dist(xi, ∂X) =
n−2
n−1 + εi, i = 1, 2.

(c). — (12) Let

X0 = Bn1(r1)×Bn2(r2) ⊂ Rn1+n2

and evaluate the maximal µ, for which there exists X ⊃ X0 with
mean.curv(X) > µ.

Hint/Remark. — G-Symmetrization where G is product of two orthog-
onal groups, G = O(n1) × O(n2), renders the problem 1-dimensional, the
analysis of which — I haven’t tried it myself — seems easy. But finding
this maximal µ for products of k balls,

X0 = Bn1(r1)× · · · ×Bnk(rn) ⊂ Rn1+···+nk ,

where k > 3, may be more difficult.
(d) (δ, µ)-regularisation. — Given a closed (i.e the closure of open) do-

main X in a complete Riemannin manifold X∗, let X±δ ⊂ X be the δ-
neighbourhood of the δ-sub-level ∆−1

X [, δ] ⊂ X, that is the union of the
δ-balls from X∗ which are contains in X.
Then let X±δ,µ be the intersection of all subsets in X∗ which contain

X±δ and have the mean curvatures of their boundaries > µ. Show that:
(1) the operation X 7→ X∓δ is idempotent, moreover,

(X∓δ)∓δ′ = X∓δ for δ′ 6 δ;

(2) if X is compact mean convex with a piecewise smooth boundary,
then the boundary ∂X∓δ is C1-smooth for small δ > 0 and

X±δ,µ = X±δ .

for µ� 1
δ .

Remark. — The operation X 7→ X∓δ with (relatively) large δ doesn’t
seem to preserve mean convexity even in Rn, for n > 3, where the apparent
example can be obtained — I didn’t check it all 100% — by a C∞-small

(12)This is a replacement to the erroneous-inequality from my “101-Questions” paper.
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perturbation of X0 = N × Rn−2 ⊂ Rn, where one of the angles of the
triangle N ⊂ R2 is very small.
This raises the problem of evaluating the maximal distance from X±δ,µ

to X±δ ⊂ X±δ,µ for µ-convex domains X, where this “maximal distance” is

sup
x∈X±δ,µ

dist(x,X±δ).

4. Being Thick in Many Directions

Start by observing that the products of the unit balls Bn1 = Bn1(1) ⊂
Rn1 by Euclidean spaces,

Bn1 × Rn2 ⊂ Rn1+n2

are mean curvature (weakly) extremal in Rn1+n2 if a domain X ⊂ Rn1+n2 ,
X 6= Rn, with mean.curv(∂X) > n1 − 1 contains Bn1(r)×Rn2 then r 6 1.
Proof. — Assume r > 1 and let 0 6 φ(x) < 1− r, x ∈ Rn1 , be a smooth

function with compact support, such that let φ(0) = r−1, while the norms
of the first and the second differential dφ and d2φ are much smaller then
r − 1.
Let xε ∈ Rn−1 ⊂ Rn1+n2 be a point where the distance function from

x ∈ Rn1 ⊂ Rn1+n2 to ∂X is ε-close to the minimum and let us parallel
transform φ to make xε = 0.

Let Ut ⊃ Bn1(1) × Rn2 , t > 0 be neighbourhoods of Bn1(1) × Rn2 ⊂
Rn1+n2 defined by

Ut =
⋃

x∈Rn2

Bn1((t+ 1)(φ(x) + 1)) ⊂ Rn1+n2 = Rn1 × Rn2

and observe that, for small ‖dφ‖ and ‖d2φ‖ their boundaries have mean
curvatures < 1.
If ε = ε(φ) > 0 is taken sufficiently small, then there exists a t > 0, such

that Ut ⊂ X and such that the boundary ∂Ut meets ∂X; this yields the
proof by an (obvious in this case) maximum principle argument. �

Remark. — In an earlier version of this paper we claimed strong ex-
tremality of Bn1(r)×Rn2 ifX ⊃ Bn1(r)×Rn2 and mean.curv(∂X) > n1−1
then X = Bn1(r)× Rn2 .

My (two different) arguments suggested for this purpose were erroneous,
and I am uncertain if the strong extremality holds for n1 > 2.
The (weak) extremality of Bn1×Rn2 motivates the following conjectural

bound on the macroscopic dimensions of the sets of (the centers of) large
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balls in X, where, recall, the macroscopic dimension of a metric space M
is the minimal dimension of a polyhedral space P , for which M admits
a continuous map ∆ : M → P , such that diamM (∆−1(p)) 6 d for some
constant d = d(M) <∞.

Conjecture 4.1. — Let a domain X ⊂ Rn satisfy

mean.curv(∂X) > n1 − 1 + ε

for n1 < n and ε > 0. Then the macroscopic dimension of the subset
X−1 ⊂ X of the points x ∈ X, such that dist(x, ∂X) > 1, satisfies:

macr.dim(X) < n− n1,

where the equality macr.dim(X) = n− n1 with ε = 0 is achieved only for

X0 = Bn1 × Rn−n1 .

Remarks.
(a) The case of n1 = n − 1. — Conjecture 4.1 in this case says that if

mean.curv(∂X) > n− 1−α for α < 1, then the diameters of all connected
components of the above subset X−1 ⊂ X are bounded by β 6 β(α) <∞.

This can be shown for α 6 αn ∼ 1
n by the argument used for proving

stability of the Inballn-inequality, where slightly better estimates on αn can
be, probably, obtained with symmetrization around k-planes containing
centers of suitable (k + 1)-tuples of unit balls in X.
(b). — The macroscopic dimension of Bn1 × Rn2 is equal to n2 by
Lebesgue’s Lemma. — A continuous map [0, 1]n→Rn necessary brings

a pair of points from opposite faces in the cube [0, 1]n to a single point in Rn.

There is a counterpart to Conjecture 6 in the context of Riemannian
manifolds (with and without boundaries) which express the idea that if the
scalar curvature of an n-dimensional manifold X is bounded from below by
n(n−1) then the space of “large” balls Bx(r) ⊂ X, say of radii r ≈ π, must
be small, where the size of a ball is evaluated in comparison with geodesic
balls in the unit sphere Sn.
A conceptually simple instance of this concerns maps of closed n-manif-

olds X to the unit sphere Sn, namely the space of distance decreasing maps
of non-zero degrees X → Sn, which we denote Lip1(X→◦6=0 ), and which we
endow with the metric associated in the usual way to the natural length
structure in the space of maps to Sn, where the length of a curve in this
space, that is a family of maps ft : X → Sn, is defined as the supremum
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of the lengths of the t-curves in Sn drawn by individual points x ∈ X,

length(ft) = sup
x∈X

length(ft(x)).

Conjecture 4.2. — If Sc(X) > n1(n1 − 1) + ε, ε > 0, then

macr.dim(Lip1(X→◦6=0 )) < n− n1.

The simplest instance of this conjecture concerns manifolds X with
Sc(X) > n(n − 1) − ε, where it says that all connected components of
the space Lip1(X→◦6=0 ) are bounded. In fact, when ε→ 0, one expects more
of this space, which we formulate as follows.

Conjecture 4.3 (Stability of Sn). — Let X be a closed orientable
Riemannin n-manifold, such that Sc(X) > n(n−1)−ε. Then the diameters
of the connected components of the quotient space of Lip1(X→◦6=0 ) under the
orthogonal group action on Sn satisfy:

diam(conn(Lip1(X→◦6=0 )/O(n))) 6 δ 6 δ(ε) −→
ε→0

0.

Digression

To get a feeling for our metric in Lip1(X→◦6=0 ) observe that such length
metrics are defined for spaces maps to all length metric spaces S and look
at a few examples.

(i) Continuous Maps. — If S is a compact locally contractible space and
Bn is the topological n-ball, then the space C(Bn → S) of continuous maps
Bn → S, n > 1, has finite diameter if and only if S has finite fundamental
group.
For instance

diam(C(Bn → Sm(1))) = diam(Sm(1)) = π for m > n.

Somewhat less obviously,

diam(C(Bn → Sn(1))) 6 3π,

which implies that the (infinite cyclic) universal covering of the space
C(Sm−1 → Sm(1)) also has diameter 6 3π.
More generally,

diam(C(Bn → S)) 6 n · const(S),

for all compact, say cellular, spaces S with finite fundamental groups and,
probably, the universal coverings of all connected components of the spaces
C(X → S) are similarly bounded by dim(X) · const(S).
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The above linear bound on diam(C(Bn → S)) is asymptotically matched
by a lower bound for most (all?) compact non-contractible spaces S.
For instance, it follows from 1.4 in [4] that

diam(C(Bn → S)) > n · const(S) with const(S) > 0

if S is the m-sphere Sm(1), m > 2, or, more generally, if the iterated
loop space Ωk(S) for some k > 1 has non-zero rational homology groups
Hi(Ωk(S);Q) for i from a subset of positive density in Z+.

(ii) Lipschitz maps. — Let X and S be metric spaces and Lipλ(X → S)
be the space of λ-Lipschitz maps with the above length metric which we
now denote distλ and where we observe that the inclusions

Lipλ1((X → S),distλ1) ⊂ Lipλ2((X → S),distλ2), λ1 6 λ2,

are distance decreasing.
The simplest space here, as earlier is where X is a ball, but now the

geometry of the ball is essential. For instance,

diamλ Lipλ(Bn(R)→ S)) 6 λR+ diam(S),

where Bn(R) is the Euclidean R-ball, where diamλ is the diameter mea-
sured with distλ and where, observe,

Lipλ1(Bn(R1)→ S) = Lipλ2(Bn(R2)→ S) for λ1R1 = λ2R2.

More interesting is the lower bound

diamcλ(Lipλ(Bn(R)→ S)) > const(S, c)λR,

which holds whenever the real homology Hi(S,R) does not vanish for some
i 6 n.
In fact,

diamcλ(Lipλ(Bn(R)→ S)) > diamcλ(Lipλ(Bi(R)→ S)) for n > i,

while evaluation f 7→ h(f) of a non-cohomologous to zero real i-cocycle h
at 1-Lipschitz maps f : Bi(R) → S (13) defines a C · Rn−1-Lipschitz map
from Lip1(Bi(R) → S)) to R for some C = C(S, c)). It follows that the
1-Lipschitz maps f with h(f) ≈ voli(Bi(R)) ≈ Rn – these exist by the
Hurewicz–Serre theorem for the minimal i where Hi(S,R) 6= 0 – are within
distance & R from the constant maps.

(13)Such an h in our case is a differential i-form on S and its “evaluation” is the integral
of this form over Bi mapped to S by f .
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Three Questions.
(1) Are the diameters

diamc(Lip1(Bn(R)→ S)))

bounded for a large fixed c and R → ∞ if Hi(S,R) = 0 for i =
1, 2, . . . , n.
(It is not hard to show that diam1(Lipλ(B1(R) → Sm(1))) 6

const · log(R).)
(2) What is the asymptotics of the diameters

diamc(Lip1(BnH(R)→ S)))

for the hyperbolic balls BnH(R) and R→∞?
(3) Let S be a Riemannian manifold homeomorphic to the connected

sum of twenty copies of S2 × S2. Are there 1-Lipschitz maps fR :
B4(R) → S, R → ∞, such that h(fR) > const ·R4 for a cocycle h
(e.g. a closed 4-form) which represents the fundamental cohomology
class [S] ∈ H4(S;R), and some const = const(S) > 0?

5. Thin Mean Convex

Start by observing that smooth domains V ⊂ Rn with mean.curv(∂V ) >
0 are diffeotopic to regular neighbourhoods of subpolyhedra P ⊂ U with
codim(P ) > 2.
In fact, if such a V is bounded, this follows by Morse theory applied to

a linear function on V ,(14) while an unbounded V can be exhausted by
bounded Vi ⊂ Y with min.curv(∂Vi) > 0.
Conversely, smooth submanifolds and, more general, piecewise smooth

polyhedral subsets of codimension > 2 in Rn possess arbitrary thin mean
convex neighbourhoods.
In fact, the “staircase” surgery construction for manifolds with positive

scalar curvature (see [1, 5]) applied to mean curvature allows an attachment
of such thin domains to thick ones, as follows.(15)

(14)Since the second fundamental form is nowhere strictly negative definite, local minima
of a generic linear function restricted to ∂V locally minimize this function on V ⊃ ∂V ;
therefore, all Morse cells/handles have dimensions 6 n− 2.
(15) It is worth remembering that the natural continuous Riemannian metrics on the
doubles of a smooth domain V ⊂ Rn with mean.curv(∂V ) > 0 admits arbitrarily fine
approximations by smooth metrics with Sc > 0. Thus all shapes and constructions you
encounter with mean.curv > 0 are also seen with Sc > 0.
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[ ��
�]. — Let X be a Riemannin manifold, V ⊂ X a smooth domain

and P ⊂ X a piecewise smooth polyhedral subset. Let φ(x), x ∈ X, be a
continuous function such that

• φ(x) 6 mean.curv(∂V, x) for all x ∈ ∂X;
• φ(x) < mean.curv(∂V, x) for all x ∈ ∂X ∩ P .

Given a neighbourhood U ⊂ X of the closure of the difference P \ V ,
there exists a smooth domain V ′ in X, such that

∗ U ⊃ V ′ ⊃ V ∪ P ;
∗ V ′ \ U = V \ U ;
∗ mean.curv(∂V ′, x) > φ(x) for all x ∈ ∂V ′.

Moreover, if P is transversal to the boundary ∂V then there is such a
V ′, whose intersection with U serves as a regular neighbourhood of V ∩ P
intersected with U . In particular, V ′ homotopy retracts to V ∪ P .

This shows that, unlike to what happens to “thick” mean convex do-
mains, there are few (if at all) global restrictions on the shapes of the
“thin” ones but there are plenty of local ones, where an essential point is
to understand which domains should be qualified as “very thin”. Below are
some definitions and observations which may clarify this point.

Thinmean>0. — Given a closed subset Y in a Riemannian n-manifold X,
define vol∂(Y ) as the infimum of the (n− 1)-volumes of the boundaries of
arbitrarily small neighbourhoods U ⊃ Y of Y in X, i.e.

vol∂(Y ) = lim inf
U→Y

voln−1(∂U).

Thus, vol∂(Y ) < α if and only there exist arbitrary small neighbourhoods
U ⊃ Y with voln−1(∂U) < α.
Observe that the so defined vol∂ is bounded by the (n− 1)-dimensional

Hausdorff measure,
vol∂(Y ) 6 mesn−1(Y ).

In particular, closed subsets Y ⊂ X with vanishing (n − 1)-dimensional
Hausdorff measure have vol∂(Y ) = 0 (but the converse, probably, is not
true). Next, write

mean.curv∂(Y ) > µ0

if for all ε > 0 all neighbourhoods U ′ ⊃ Y contain smaller smooth neigh-
bourhoods U ⊃ Y such that

mean.curv(∂U) > µ0 − ε
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Implication vol∂(Y ) = 0 ⇒ mean.curv∂(Y ) = ∞. — To show this let
µ = µ(x) be a continuous function on U ′ \ Y which is > µ0 for a given µ0
and which may blow up at Y .
Let U0 be a µ− bubble pinched between Y and U ′, i.e. U0 minimises the

following functional

U 7→ voln−1(∂U)−
∫
U

µ(x) dx.

If Y is compact and µ is sufficiently large near X such a µ-bubble U0
exists and

(1) the boundary ∂U0 is smooth away from a possible singular subset
Σ ⊂ ∂U0 of codimension > 7;

(2) mean.curv(∂U0, x) = µ(x) at the regular points x ∈ ∂U0;
(3) U0 can be approximated by domains U with smooth boundaries ∂U

such that mean.curv(∂U) > µ− ε for a given ε > 0.

(These (1) and (2) are standard results of the geometric measure theory
and (3) is an elementary exercise, see [9, 10] for details.(16) )
Probably, the implication vol∂(Y) = 0⇒ mean.curv∂(Y) =∞ remains

valid for all closed subsets in X, but the above argument, as it stands,
delivers the following weaker property in the non-compact case.
If X has uniformly bounded geometry(17) then every closed subsets Y ⊂

X with vol∂(Y ) = 0 is equal to the intersection of a decreasing family of
domains Uµ ⊂ X, µ→∞, where mean.curv(∂Uµ) > µ.

Remark. — The role of bounded geometry is to ensure a lower bound on
the volumes of balls in the µ-bubble away from Y where µ is small and, thus,
keep domains U which minimise the function U 7→ voln−1(∂U)−

∫
U
µ(x) dx

within an ε-neighbourhood of Y .

Exercises.

(a). — Let X be a Riemannian manifold isometrically acted upon by
a group G and let P ⊂ X be a G-invariant piecewise smooth polyhedral
subset of codimension 2.
Show that P admits a G-invariant arbitrarily small regular neighbour-

hoods with arbitrarily large mean curvatures of their boundaries.

(16) I apologise for referring to my own articles, but I could not find what is needed on
the web except for a 1987-paper by F. H. Lin [15], where only a special case is treated.
(17)This means that there exist ρ > 0 and λ > 0, such that all ρ-balls Bx(ρ) ⊂ X are
λ-bi-Lipschitz homeomorphic to a Euclidean ball.
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(b). — Show that every bounded smooth domain U0 ⊂ Rn, n > 3 con-
tains arbitrarily long simple curves (arcs) C ⊂ U , such that curvature(C) 6
const = const(U).
Construct such curves with regular neighbourhoods U ⊂ U0 which fill

almost all of U0 and such that the mean curvatures of the boundaries ∂U
tend to infinity.
Apply this successively to Ci ⊂ Ui−1 and obtain

U0 ⊃ U1 ⊃ · · · ⊃ Ui−1 ⊃ Ui ⊃ . . . .

such that

mean.curv(∂Ui)→∞ and vol(Ui) > const > 0.

Show that the intersection Y∞ = ∩iUi is a compact set such that
• Y has positive Lebesgue measure, voln(Y ) > 0;
• vol∂(Y∞) =∞;
• mean.curv∂(Y ) =∞;
• the topological dimension of Y is one.

(c). — Construct similar Y ⊂ Rn with dimtop = m for all m 6 n− 2.
(d). — Show that the function λ|sin t|, can be uniformly approximated,

for all λ > 0, by C2-functions ϕ(t) > 0, such that the hypersurface Hϕ ⊂
Rn+1, n > 2, obtained by rotating the graphs of ϕ(t) around the t-axis in
Rn+1 has mean.curv(Hϕ) > 0 and, moreover, Sc(Hϕ) > 0 if n > 3.

(e). — Construct Cantor (compact 0-dimensional) subsets Y in the plane
which are not intersections of locally convex subsets, i.e. disjoint unions of
convex ones.
(f). — Define “random” Cantor sets in Rn of positive measure, and show

for n > 2 that they are not intersections of smooth mean convex domains.
Then, do the same for Cantor sets in Rn with the Hausdorff dimensions
> n− 1.
Admission. — Frankly, I am not 100% certain as I haven’t seriously tried

to solve this exercise.
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