On considère le problème de rigidité du bord pour les variétés asymptotiquement hyperboliques. Nous montrons l’injectivité de la transformée en rayons X dans plusieurs cas et considérons le problème inverse non-linéaire qui consiste en la détermination de la métrique à partir de données au bord sur le flot géodésique.
We consider the boundary rigidity problem for asymptotically hyperbolic manifolds. We show injectivity of the X-ray transform in several cases and consider the non-linear inverse problem which consists of recovering a metric from boundary measurements for the geodesic flow.
Keywords: X-ray transform, boundary rigidity, asymptotically hyperbolic manifold
Mot clés : transformée en rayons X, rigidité du bord, variété asymptotiquement hyperbolique
Graham, C. Robin 1 ; Guillarmou, Colin 2 ; Stefanov, Plamen 3 ; Uhlmann, Gunther 4
@article{AIF_2019__69_7_2857_0, author = {Graham, C. Robin and Guillarmou, Colin and Stefanov, Plamen and Uhlmann, Gunther}, title = {X-Ray {Transform} and {Boundary} {Rigidity} for {Asymptotically} {Hyperbolic} {Manifolds}}, journal = {Annales de l'Institut Fourier}, pages = {2857--2919}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {7}, year = {2019}, doi = {10.5802/aif.3339}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3339/} }
TY - JOUR AU - Graham, C. Robin AU - Guillarmou, Colin AU - Stefanov, Plamen AU - Uhlmann, Gunther TI - X-Ray Transform and Boundary Rigidity for Asymptotically Hyperbolic Manifolds JO - Annales de l'Institut Fourier PY - 2019 SP - 2857 EP - 2919 VL - 69 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3339/ DO - 10.5802/aif.3339 LA - en ID - AIF_2019__69_7_2857_0 ER -
%0 Journal Article %A Graham, C. Robin %A Guillarmou, Colin %A Stefanov, Plamen %A Uhlmann, Gunther %T X-Ray Transform and Boundary Rigidity for Asymptotically Hyperbolic Manifolds %J Annales de l'Institut Fourier %D 2019 %P 2857-2919 %V 69 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3339/ %R 10.5802/aif.3339 %G en %F AIF_2019__69_7_2857_0
Graham, C. Robin; Guillarmou, Colin; Stefanov, Plamen; Uhlmann, Gunther. X-Ray Transform and Boundary Rigidity for Asymptotically Hyperbolic Manifolds. Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 2857-2919. doi : 10.5802/aif.3339. https://aif.centre-mersenne.org/articles/10.5802/aif.3339/
[1] Renormalized area and properly embedded minimal surfaces in hyperbolic 3-manifolds, Commun. Math. Phys., Volume 297 (2010) no. 3, pp. 621-651 | DOI | MR | Zbl
[2] On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inverse Ill-Posed Probl., Volume 5 (1997) no. 6, pp. 487-490 | DOI | MR | Zbl
[3] Inversion formulas for the -dimensional Radon transform in real hyperbolic spaces, Duke Math. J., Volume 62 (1991) no. 3, pp. 613-631 | DOI | MR | Zbl
[4] Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 10, Springer, 1987, xii+510 pages | DOI | MR | Zbl
[5] Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds I: Resolvent construction at high energy, Commun. Partial Differ. Equations, Volume 41 (2016) no. 3, pp. 515-578 | DOI | MR | Zbl
[6] Theory of ordinary differential equations, McGraw-Hill, 1955, xii+429 pages | MR | Zbl
[7] Rigidity theorems in Riemannian geometry, Geometric methods in inverse problems and PDE control (The IMA Volumes in Mathematics and its Applications), Volume 137, Springer, 2004, pp. 47-72 | DOI | MR | Zbl
[8] Integral geometry and holography, J. High Energy Phys. (2015) no. 10, 175, 41 pages | DOI | MR | Zbl
[9] Pollicott–Ruelle resonances for open systems, Ann. Henri Poincaré, Volume 17 (2016) no. 11, pp. 3089-3146 | DOI | MR | Zbl
[10] Geodesic flow in certain manifolds without conjugate points, Trans. Am. Math. Soc., Volume 167 (1972), pp. 151-170 | DOI | MR | Zbl
[11] When is a geodesic flow of Anosov type? I, J. Differ. Geom., Volume 8 (1973), pp. 437-463 | DOI | MR | Zbl
[12]
(in preparation)[13] Conformal invariants, The mathematical heritage of Élie Cartan (Lyon, 1984) (Astérisque), Société Mathématique de France, 1985, pp. 95-116 | Numdam | MR | Zbl
[14] Riemannian geometry, Universitext, Springer, 1987, xii+248 pages | DOI | MR | Zbl
[15] Volume and area renormalizations for conformally compact Einstein metrics, The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999) (Supplemento ai Rendiconti del Circolo Matemàtico di Palermo), Volume 63 (2000), pp. 31-42 | MR | Zbl
[16] Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., Volume 87 (1991) no. 2, pp. 186-225 | DOI | MR | Zbl
[17] Riemannsche Geometrie im Großen, Lecture Notes in Mathematics, 55, Springer, 1975, vi+287 pages | MR | Zbl
[18] Lens rigidity for manifolds with hyperbolic trapped sets, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 561-599 | DOI | MR | Zbl
[19] Marked boundary rigidity for surfaces, Ergodic Theory Dyn. Syst., Volume 38 (2018) no. 4, pp. 1459-1478 | DOI | MR | Zbl
[20] Killing and conformal Killing tensors, J. Geom. Phys., Volume 106 (2016), pp. 383-400 | DOI | MR | Zbl
[21] The totally-geodesic Radon transform on constant curvature spaces, Integral geometry and tomography (Arcata, CA, 1989) (Contemporary Mathematics), Volume 113, American Mathematical Society, 1990, pp. 141-149 | DOI | MR | Zbl
[22] Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, 39, American Mathematical Society, 1994, xiv+611 pages | DOI | MR | Zbl
[23] On the microlocal analysis of the geodesic X-ray transform with conjugate points, J. Differ. Geom., Volume 108 (2018) no. 3, pp. 459-494 | DOI | MR | Zbl
[24] Volume comparison via boundary distances, Proceedings of the International Congress of Mathematicians. Volume II (2010), pp. 769-784 | MR | Zbl
[25] Riemannian manifolds with geodesic flow of Anosov type, Ann. Math., Volume 99 (1974), pp. 1-13 | DOI | MR | Zbl
[26] Riemannian geometry, De Gruyter Studies in Mathematics, 1, Walter de Gruyter, 1995, x+409 pages | DOI | MR | Zbl
[27] A note on Anosov flows of non-compact Riemannian manifolds, Proc. Am. Math. Soc., Volume 146 (2018) no. 9, pp. 3955-3959 | DOI | MR | Zbl
[28] Foundations of differential geometry. Vol I, Interscience Publishers, 1963, xi+329 pages | MR | Zbl
[29] Semiglobal boundary rigidity for Riemannian metrics, Math. Ann., Volume 325 (2003) no. 4, pp. 767-793 | DOI | MR | Zbl
[30] The geodesic ray transform on two-dimensional Cartan–Hadamard manifolds, Ph. D. Thesis, University of Jyväskylä (Finland) (2016) (https://arxiv.org/abs/1612.04800) | Zbl
[31] Tensor tomography on Cartan-Hadamard manifolds, Inverse Probl., Volume 34 (2018) no. 4, 044004, 27 pages | DOI | MR | Zbl
[32] Hodge Cohomology of Negatively Curved Manifolds, Ph. D. Thesis, Massachusetts Institute of Technology (USA) (1986) | MR
[33] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987) no. 2, pp. 260-310 | DOI | MR | Zbl
[34] The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4, A K Peters, 1993, xiv+377 pages | MR | Zbl
[35] Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces, Commun. Partial Differ. Equations, Volume 39 (2014) no. 3, pp. 452-511 | DOI | MR | Zbl
[36] Sur la rigidité imposée par la longueur des géodésiques, Invent. Math., Volume 65 (1981) no. 1, pp. 71-83 | DOI | MR | Zbl
[37] The geodesic ray transform on Riemannian surfaces with conjugate points, Commun. Math. Phys., Volume 337 (2015) no. 3, pp. 1491-1513 | DOI | MR | Zbl
[38] On a problem of reconstructing Riemannian metrics, Sib. Mat. Zh., Volume 22 (1981) no. 3, pp. 119-135 | MR
[39] Geodesic flows, Progress in Mathematics, 180, Birkhäuser, 1999, xiv+149 pages | DOI | MR | Zbl
[40] Tensor tomography on surfaces, Invent. Math., Volume 193 (2013) no. 1, pp. 229-247 | DOI | MR | Zbl
[41] Invariant distributions, Beurling transforms and tensor tomography in higher dimensions, Math. Ann., Volume 363 (2015) no. 1-2, pp. 305-362 | DOI | MR | Zbl
[42] Integral geometry of tensor fields on a manifold of negative curvature, Sib. Mat. Zh., Volume 29 (1988) no. 3, pp. 114-130 | DOI | MR | Zbl
[43] Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. Math., Volume 161 (2005) no. 2, pp. 1093-1110 | DOI | MR | Zbl
[44] Boundary rigidity and holography, J. High Energy Phys. (2004) no. 1, 034, 24 pages | DOI | MR | Zbl
[45] The scattering relation on asymptotically hyperbolic manifolds (2014) (https://arxiv.org/abs/1410.6842) | Zbl
[46] The semiclassical resolvent on conformally compact manifolds with variable curvature at infinity, Commun. Partial Differ. Equations, Volume 41 (2016) no. 8, pp. 1230-1302 | DOI | MR | Zbl
[47] The scattering operator on asymptotically hyperbolic manifolds, J. Spectr. Theory, Volume 9 (2019) no. 1, pp. 269-313 | DOI | MR | Zbl
[48] Integral geometry of tensor fields, Inverse and Ill-posed Problems Series, VSP, 1994, 271 pages | DOI | MR
[49] Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds, J. Geom. Anal., Volume 17 (2007) no. 1, pp. 147-187 | DOI | MR | Zbl
[50] Boundary rigidity and stability for generic simple metrics, J. Am. Math. Soc., Volume 18 (2005) no. 4, pp. 975-1003 | DOI | MR | Zbl
[51] Boundary and lens rigidity, tensor tomography and analytic microlocal analysis, Algebraic analysis of differential equations from microlocal analysis to exponential asymptotics, Springer, 2008, pp. 275-293 | DOI | MR | Zbl
[52] Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds, J. Differ. Geom., Volume 82 (2009) no. 2, pp. 383-409 | DOI | MR | Zbl
[53] The geodesic X-ray transform with fold caustics, Anal. PDE, Volume 5 (2012) no. 2, pp. 219-260 | DOI | MR | Zbl
[54] Boundary rigidity with partial data, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 299-332 | DOI | MR | Zbl
[55] Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge (2017) (https://arxiv.org/abs/1702.03638)
[56] Inverting the local geodesic X-ray transform on tensors, J. Anal. Math., Volume 136 (2018) no. 1, pp. 151-208 | DOI | MR | Zbl
[57] The inverse problem for the local geodesic ray transform, Invent. Math., Volume 205 (2016) no. 1, pp. 83-120 | DOI | MR | Zbl
[58] A proof of lens rigidity in the category of analytic metrics, Math. Res. Lett., Volume 16 (2009) no. 6, pp. 1057-1069 | DOI | MR | Zbl
Cité par Sources :