Nous utilisons le calcul de Fox pour attribuer un polytope marqué à presque chaque groupe à deux générateurs et une relation. En reliant les sommets marqués à l’homologie de Nivokov-Sikorav, nous démontrons que le polytope marqué détermine l’invariant de Bieri–Neumann–Strebel du groupe. De plus nous démontrons que très souvent le polytope marqué est un invariant du groupe et que si c’est le cas le polytope marqué détermine les complexités minimales des scindements HNN du groupe.
We use Fox calculus to assign a marked polytope to a “nice” group presentation with two generators and one relator. Relating the marked vertices to Novikov–Sikorav homology we show that they determine the Bieri–Neumann–Strebel invariant of the group. Furthermore we show that in most (possibly all) cases the marked polytope is an invariant of the underlying group and that in those cases the marked polytope also determines the minimal complexity of all the associated HNN-splittings.
Révisé le :
Accepté le :
Publié le :
Keywords: Finitely presented group, Novikov ring, BNS invariant, Sigma invariant, Fox calculus
Mot clés : groupe de présentation finie, anneau de Novikov, invariant de BNS, invariant Sigma, calcul de Fox
Friedl, Stefan 1 ; Tillmann, Stephan 2
@article{AIF_2020__70_2_831_0, author = {Friedl, Stefan and Tillmann, Stephan}, title = {Two-generator one-relator groups and marked polytopes}, journal = {Annales de l'Institut Fourier}, pages = {831--879}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {2}, year = {2020}, doi = {10.5802/aif.3325}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3325/} }
TY - JOUR AU - Friedl, Stefan AU - Tillmann, Stephan TI - Two-generator one-relator groups and marked polytopes JO - Annales de l'Institut Fourier PY - 2020 SP - 831 EP - 879 VL - 70 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3325/ DO - 10.5802/aif.3325 LA - en ID - AIF_2020__70_2_831_0 ER -
%0 Journal Article %A Friedl, Stefan %A Tillmann, Stephan %T Two-generator one-relator groups and marked polytopes %J Annales de l'Institut Fourier %D 2020 %P 831-879 %V 70 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3325/ %R 10.5802/aif.3325 %G en %F AIF_2020__70_2_831_0
Friedl, Stefan; Tillmann, Stephan. Two-generator one-relator groups and marked polytopes. Annales de l'Institut Fourier, Tome 70 (2020) no. 2, pp. 831-879. doi : 10.5802/aif.3325. https://aif.centre-mersenne.org/articles/10.5802/aif.3325/
[1] The virtual Haken conjecture, Doc. Math., Volume 18 (2013), pp. 1045-1087 (With an appendix by Agol, Daniel Groves, and Jason Manning) | MR | Zbl
[2] Digraphs and cycle polynomials for free-by-cyclic groups, Geom. Topol., Volume 19 (2015) no. 2, pp. 1111-1154 | DOI | MR | Zbl
[3] 3-manifold groups, EMS Series of Lectures in Mathematics, European Mathematical Society, 2015, xiv+215 pages | DOI | MR | Zbl
[4] Deficiency and the geometric invariants of a group, J. Pure Appl. Algebra, Volume 208 (2007) no. 3, pp. 951-959 (With an appendix by Pascal Schweitzer) | DOI | MR | Zbl
[5] A geometric invariant of discrete groups, Invent. Math., Volume 90 (1987) no. 3, pp. 451-477 | DOI | MR | Zbl
[6] Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv., Volume 63 (1988) no. 3, pp. 464-497 | DOI | MR | Zbl
[7] Almost finitely presented soluble groups, Comment. Math. Helv., Volume 53 (1978) no. 2, pp. 258-278 | DOI | MR | Zbl
[8] Equations over groups and groups with one defining relation, Usp. Mat. Nauk, Volume 35 (1980) no. 4, 183 pages | MR
[9] Equations over groups, and groups with one defining relation, Sib. Mat. Zh., Volume 25 (1984) no. 2, pp. 84-103 | MR
[10] Trees, valuations, and the Bieri–Neumann–Strebel invariant, Invent. Math., Volume 90 (1987) no. 3, pp. 479-504 | DOI | MR | Zbl
[11] Nonhyperbolic free-by-cyclic and one-relator groups, New York J. Math., Volume 22 (2016), pp. 755-774 | MR | Zbl
[12] Noncommutative knot theory, Algebr. Geom. Topol., Volume 4 (2004), pp. 347-398 | DOI | MR | Zbl
[13] Combinatorial group theory and fundamental groups, Algebra, VII (Encyclopaedia of Mathematical Sciences), Volume 58, Springer, 1993, p. 1-166, 233–240 | MR
[14] A-invariants and the Atiyah conjecture, Commun. Pure Appl. Math., Volume 56 (2003) no. 7, pp. 839-873 (Dedicated to the memory of Jürgen K. Moser) | DOI | MR | Zbl
[15] Dynamics on free-by-cyclic groups, Geom. Topol., Volume 19 (2015) no. 5, pp. 2801-2899 | DOI | MR | Zbl
[16] McMullen polynomials and Lipschitz flows for free-by-cyclic groups, J. Eur. Math. Soc., Volume 19 (2017) no. 11, pp. 3253-3353 | DOI | MR | Zbl
[17] A random tunnel number one 3-manifold does not fiber over the circle, Geom. Topol., Volume 10 (2006), pp. 2431-2499 | DOI | MR | Zbl
[18] Closed 1-forms in topology and geometric group theory, Usp. Mat. Nauk, Volume 65 (2010) no. 1, pp. 145-176 | DOI | MR
[19] Free differential calculus. I. Derivation in the free group ring, Ann. Math., Volume 57 (1953) no. 2, pp. 547-560 | DOI | MR | Zbl
[20] Reidemeister torsion, the Thurston norm and Harvey’s invariants, Pac. J. Math., Volume 230 (2007) no. 2, pp. 271-296 | DOI | MR | Zbl
[21] Novikov homology and non-commutative Alexander polynomials, J. Knot Theory Ramifications, Volume 26 (2017) no. 2, 1740013, 30 pages | DOI | MR | Zbl
[22] Universal -torsion, polytopes and applications to 3-manifolds, Proc. Lond. Math. Soc., Volume 114 (2017) no. 6, pp. 1114-1151 | DOI | MR | Zbl
[23] Thurston norm via Fox calculus, Geom. Topol., Volume 21 (2017) no. 6, pp. 3759-3784 | DOI | MR | Zbl
[24] Splittings of knot groups, Math. Ann., Volume 362 (2015) no. 1-2, pp. 401-424 | DOI | MR | Zbl
[25] Alexander and Thurston norms, and the Bieri–Neumann–Strebel invariants for free-by-cyclic groups, Geom. Topol., Volume 22 (2018) no. 5, pp. 2647-2696 | DOI | MR | Zbl
[26] Special cube complexes, Geom. Funct. Anal., Volume 17 (2008) no. 5, pp. 1551-1620 | DOI | MR | Zbl
[27] Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm, Topology, Volume 44 (2005) no. 5, pp. 895-945 | DOI | MR | Zbl
[28] Non-commutative multivariable Reidemester torsion and the Thurston norm, Algebr. Geom. Topol., Volume 7 (2007), pp. 755-777 | DOI | MR | Zbl
[29] The units of group-rings, Proc. Lond. Math. Soc., Volume 46 (1940), pp. 231-248 | DOI | MR | Zbl
[30] A short proof of a theorem of Brodskiĭ, Publ. Mat., Barc., Volume 44 (2000) no. 2, pp. 641-647 | DOI | MR | Zbl
[31] The Bieri–-Neumann-–Strebel invariants via Newton polytopes, Invent. Math., Volume 219 (2019) no. 3, pp. 1009-1068 | DOI | MR | Zbl
[32] Applications of a new -theoretic theorem to soluble group rings, Proc. Am. Math. Soc., Volume 104 (1988) no. 3, pp. 675-684 | DOI | MR
[33] A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer, 1991, xvi+397 pages | DOI | MR | Zbl
[34] Higher-order Alexander invariants of plane algebraic curves, Int. Math. Res. Not. (2006), 12976, 23 pages | DOI | MR | Zbl
[35] Obstructions on fundamental groups of plane curve complements, Real and complex singularities (Contemporary Mathematics), Volume 459, American Mathematical Society, 2008, pp. 117-130 | DOI | MR | Zbl
[36] Division rings and group von Neumann algebras, Forum Math., Volume 5 (1993) no. 6, pp. 561-576 | DOI | MR | Zbl
[37] -invariants: theory and applications to geometry and -theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 44, Springer, 2002, xvi+595 pages | DOI | MR | Zbl
[38] Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, Springer, 1977, xiv+339 pages | MR | Zbl
[39] On a conjecture of W. Magnus, Word problems: decision problems and the Burnside problem in group theory (Conf., Univ. California, Irvine, Calif. 1969) (Studies in Logic and the Foundations of Mathematics), Volume 71, North-Holland, 1973, pp. 453-456 | MR | Zbl
[40] Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR, Volume 260 (1981) no. 1, pp. 31-35 | MR | Zbl
[41] The algebraic structure of group rings, Pure and Applied Mathematics, John Wiley & Sons, 1977, xiv+720 pages | MR | Zbl
[42] Algebraic -theory and its applications, Graduate Texts in Mathematics, 147, Springer, 1994, x+392 pages | DOI | MR | Zbl
[43] Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and Its Applications, 44, Cambridge University Press, 1993, xiv+490 pages | DOI | MR | Zbl
[44] Homologie de Novikov associée à une classe de cohomologie réelle de degré un, Ph. D. Thesis, Orsay (France) (1987)
[45] Rings of quotients. An introduction to methods of ring theory, Grundlehren der Mathematischen Wissenschaften, 217, Springer, 1975, viii+309 pages | MR | Zbl
[46] Finitely presented soluble groups, Group theory, Academic Press Inc., 1984, pp. 257-314 | MR | Zbl
[47] A norm for the homology of -manifolds, wo papers: Genera of the arborescent links and A norm for the homology of 3-manifolds (Memoirs of the American Mathematical Society), Volume 339, American Mathematical Society, 1986, p. i-vi and 99–130 | MR | Zbl
[48] Introduction to combinatorial torsions, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2001, viii+123 pages (Notes taken by Felix Schlenk) | DOI | MR | Zbl
[49] A norm for the cohomology of 2-complexes, Algebr. Geom. Topol., Volume 2 (2002), pp. 137-155 | DOI | MR | Zbl
[50] Algebraic -theory of generalized free products. I, II, Ann. Math., Volume 108 (1978) no. 1, pp. 135-204 | DOI | MR | Zbl
[51] On relators and diagrams for groups with one defining relation, Ill. J. Math., Volume 16 (1972), pp. 308-322 | DOI | MR | Zbl
[52] Cubular tubular groups, Trans. Am. Math. Soc., Volume 366 (2014) no. 10, pp. 5503-5521 | DOI | MR | Zbl
[53] Über die Nielsensche Kürzungsmethode in freien Produkten mit Amalgam, Invent. Math., Volume 10 (1970), pp. 4-37 | DOI | MR | Zbl
Cité par Sources :