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TWO-GENERATOR ONE-RELATOR GROUPS AND
MARKED POLYTOPES

by Stefan FRIEDL & Stephan TILLMANN (*)

Dedicated to the memory of Tim Cochran

ABSTRACT. We use Fox calculus to assign a marked polytope to a “nice” group
presentation with two generators and one relator. Relating the marked vertices
to Novikov—Sikorav homology we show that they determine the Bieri-Neumann—
Strebel invariant of the group. Furthermore we show that in most (possibly all)
cases the marked polytope is an invariant of the underlying group and that in
those cases the marked polytope also determines the minimal complexity of all the
associated HNN-splittings.

RESUME. — Nous utilisons le calcul de Fox pour attribuer un polytope marqué
a presque chaque groupe a deux générateurs et une relation. En reliant les som-
mets marqués a ’homologie de Nivokov-Sikorav, nous démontrons que le polytope
marqué détermine 'invariant de Bieri-Neumann—Strebel du groupe. De plus nous
démontrons que trés souvent le polytope marqué est un invariant du groupe et
que si c’est le cas le polytope marqué détermine les complexités minimales des
scindements HNN du groupe.

1. Summary of results

In this paper, a (2, 1)-presentation is a group presentation m = (z,y|r)
with two generators and one relator. We refer to G, = (x,y)/{(r)) as the
group defined by the presentation. We say that a (2, 1)—presentation 7 is
nice if it satisfies the following conditions:

(1) r is a non-empty, cyclically reduced word, and
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832 Stefan FRIEDL & Stephan TILLMANN

(2) b1(Gr) =2.

Note that the abelianization of G is then necessarily isomorphic to Z2.
To a nice (2, 1)—presentation m = (z,y|r) we will associate a marked poly-
tope M, in Hy(G,;R). A marked polytope is a polytope together with a
(possibly empty) set of marked vertices. Now we give an informal outline
of the definition of M, (see also Figure 1), a formal definition is given in
Section 2.3.

Identify Hi(G,;Z) with Z? such that x corresponds to (1,0) and y cor-
responds to (0,1). Then the relator r determines a discrete walk on the
integer lattice in Hi(Gr;R), and the marked polytope M, is obtained
from the convex hull of the trace of this walk:

(1) Start at the origin and walk across Z? reading the word r from
the left.

(2) Take the convex hull C of the set of all lattice points reached by
the walk.

(3) Mark precisely those vertices of C that the walk passes through
exactly once.

(4) Consider the unit squares that are completely contained in C and
which touch a vertex of C. The set of vertices of M is defined as
the set of midpoints of all of these squares, and a vertex of M,
is marked precisely when all the corresponding vertices of C are
marked.

Figure 1 illustrates the construction of the marked polytope for the pre-
sentation

1 1 1 1 2

m = (z,y|yatyzty 2ty ey ey ey T ey ey ),

We expect that the marked polytope M, contains interesting informa-
tion about the group G ; an example of this is given by our first main result.
The Bieri-Neumann-Strebel invariant 3(G) of the finitely generated group
G is an open subset of the “sphere” S(G) := (Hom(G,R) \ {0})/R<q. (See
Section 4.1 for more details.) It turns out that M, determines the Bieri-
Neumann—Strebel invariant of G.. In order to state this result we need one
more definition. Given the polytope M in the vector space V, we say that
the homomorphism ¢ € Hom(V,R) pairs maximally with the vertex v if
¢(v) > ¢(w) for all vertices w # v.

THEOREM 1.1. — Let ™ = (x,y|r) be a nice (2, 1)—presentation. A non-
trivial class ¢ € H'(Gr;R) represents an element in ¥(Gy) if and only if
¢ pairs maximally with a marked vertex of M.
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(1) take path determined by the relator
yrtyr Yy~ a2y~ e 2y ey ey ey 2yt
marked vertex

unmarked vertex

.

N U

) o (4) take the marked
(2) take the convex hull (3) take the midpoints of all polytope corresponding

of the path defined in (1) Squares in the convex hull to the points in (3)
and mark the vertices that touch the vertices of (2)

that get hit only once and mark the midpoints
that correspond to marked vertices

Figure 1.1. Marked polytope M, for a presentation m

The well-versed reader might be excused for a sense of déja vu: the
theorem can be viewed as a reformulation of Brown’s algorithm [10, Theo-
rem 4.3] and it is closely related to [6, Theorem 7.3]. The key observation in
our proof is a reformulation of M, in terms of the Fox derivatives r, = %
and r, = g—;, leading to a straightforward proof of Theorem 1.1 using the
generalised Novikov rings of Sikorav [44].

The polytope we just introduced is an invariant of a nice (2, 1)-presenta-
tion. The obvious question is, to what degree is the polytope an invariant
of the underlying group. Before we discuss the question we want to make
the question more precise.

Let G be a group. A nice (2,1)-presentation for G consists of a nice
(2, 1)-presentation 7 together with an isomorphism ®: G — G,. We say
that two nice (2,1)-presentations (r,®) and (7,®) for G give rise to the
same polytope (up to translation) if the polytopes ®~*(P,) and &)’1(77;7)
agree in Hy(G;R) (up to translation by an element in H;(G;Z)). The same
terminology applies also to the marked polytopes. As usual in group theory,
when there is no danger of confusion we will suppress the choice of ® in
the notation.

In Lemma 2.5 we show that if we replace r by a cyclic permutation of r,
then the resulting marked polytope is a translate of the original marked
polytope. We suspect that this is the only indeterminacy. More precisely,
we propose the following conjecture.

TOME 70 (2020), FASCICULE 2



834 Stefan FRIEDL & Stephan TILLMANN

CONJECTURE 1.2. — IfG is a group admitting a nice (2, 1)—presentation
7, then up to translation the marked polytope M, C H;(G;R) is an in-
variant of G.

The difficulty in proving the conjecture is that to the best of our knowl-
edge there is no good theory which relates two (2, 1)—presentations of a
group. For example, Zieschang [53, p. 36] and also MacCool-Pietrowski [39]
showed that there exist (2,1)-presentations {x,y|r) and (z’,y’|r’) repre-
senting isomorphic groups, but such that no isomorphism is induced by an
isomorphism of the free groups (x,y) and (2’,y').

Now let G denote the class of all groups that are torsion-free and ele-
mentary amenable. Then G contains in particular all torsion-free solvable
groups. A group G is residually G if given any non-trivial element g € G,
there exists a homomorphism «: G — T’ with I' € G such that «a(g) is
non-trivial.

The following theorem gives strong evidence towards a positive answer
to Conjecture 1.2.

THEOREM 1.3. — Let G be a group admitting a nice (2, 1)—presentation
. If G is residually G, then the polytope M, C Hy(G;R) is an invariant
of the group G (up to translation).

It is natural to ask, which groups with a nice (2, 1)-presentation are in
fact residually G. We will argue that this condition is satisfied by most
torsion-free groups with a (2, 1)—presentation.

(1) We show in Lemma 6.1 that a group G satisfies the hypothesis of
the theorem if there exists [¢] € S(G) such that both [¢] and [—¢)]
lie in ¥(G). This is not as rare an occurrence as it might sound:
Dunfield and D. Thurston [17, Section 6] give strong evidence for
the conjecture that “most” groups with a nice (2, 1)—presentation
have this property.

(2) In [23] the authors and Kevin Schreve showed that if G is the fun-
damental group of an aspherical 3—manifold, then G is in fact resid-
ually G. The key ingredient in the proof is the fact that such groups
are “virtually special” in the sense of Haglund-Wise [26]. We re-
fer to [3] for detailed references for why these groups are virtually
special.

(3) In [52, Conjecture 1.9] Wise (see also [11, p. 2]) conjectured that
any hyperbolic group with a (2, 1)—presentation acts properly and
cocompactly on a CAT(0) cube complex. By Agol’s Theorem [1]
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a proof of this conjecture would imply that such groups are virtu-
ally special. In light of (2) it seems reasonable to us to think that
word hyperbolic torsion-free groups with a (2, 1)-presentation are
residually G.

Remark 1.4. — After this paper was finished, Conjecture 1.2 was proved
by the first author and Wolfgang Liick [22] under the hypothesis that G
satisfies the strong Atiyah Conjecture. We refer to [37, Chapter 10] for
an introduction to the Atiyah Conjecture. Peter Linnell [36] showed that
groups that are residually G satisfy the Atiyah Conjecture. This shows the
results of [22] give a new proof of Theorem 1.1.

As is perhaps to be expected, considering the authors’ background, the
motivation for introducing and studying the marked polytope M, comes
from 3-manifold topology. In [23] we show that for all, 3-manifolds such
that the fundamental group admits a nice (2, 1)—presentation, the polytope
M is dual to the unit ball of the Thurston norm [47] of the 3-manifold,
with the marked vertices dual to the fibered cones. However, the focus of
this paper is on the following group theoretic analogue of the Thurston
norm, which is of independent interest.

Given a group G and an epimorphism ¢: G — Z, define ¢(G, ¢) as the
minimal rank of a group along which we can split (G, ¢), i.e. along which
we can decompose G as an HNN-extension that corresponds to ¢. We refer
to Section 7.2 for details. We relate this quantity to the geometry of the
polytope M via the notion of thickness. Given the polytope P in the vector
space V, the thickness of P with respect to the homomorphism ¢: V' — R is

th(P, ¢) := max{p(p) — #(q) | p,q € P}.

In our setting, P = My, V = H;(G,;R) 2 R? and ¢: G — 7Z induces a
homomorphism V' — R denoted by the same letter.

THEOREM 1.5. — Let G be a group, which is residually G and has the
nice (2, 1)—presentation w. Then for every epimorphism ¢: G — Z we have

¢(G, ¢) = th(M, ¢) + 1.

It is straightforward to see that measuring thickness of a polytope gives
rise to a seminorm. Thus we obtain the following corollary.

TOME 70 (2020), FASCICULE 2



836 Stefan FRIEDL & Stephan TILLMANN

COROLLARY 1.6. — Let G be a group, which is residually G and has a
nice (2, 1)—presentation. Then

Hom(G;Z) — Zxo
¢ = C(G7 (b) -1

is a seminorm.

The results summarized thus far allow us to conclude the introduction
with the following corollary, which has a conceptually simple proof.

COROLLARY 1.7. — Let G be a group that has a nice (2, 1)—presentation
7. Then either G is isomorphic to Z? or there exists ¢ € H'(G;Z), which
does not lie in £(G).

Proof. — If there exists no ¢ € H'(G;Z) with the property that both
¥ and —¢ lie in 3(G), then we are clearly done. Now suppose such 1
exists. It follows from Lemma 6.1 that G is residually G, in particular G is
torsion-free.

If ¢(G,¢) =0, then G is a free group and X(G) is well-known to be the
empty set. If ¢(G,¢) = 1, then it follows from the definition of ¢(G,))
that Ker(¢) is a group of rank one. Since G is torsion-free it follows that
Ker(¢) = Z. Put differently, G is a semidirect product of Z with Z. Since
b1(G) = 2 we see that G = Z2. If ¢(G,) > 1, then it follows from
Lemma 6.1 and Theorem 1.5 that th(M,) > 0. This implies that M
does not consist of a single point. Since b;(G) = 2 and since M has ver-
tices which lie in Hy(G;Z)/torsion C H1(G;R) it follows that there exists
a ¢ € H'(G;Z) which does not pair maximally with a vertex of M. By
Theorem 1.1 this ¢ does not lie in X(G). O

The paper is organized as follows. In Section 2, we prove some basic facts
about marked polytopes and define the marked polytope associated to a
nice (2, 1)—presentation. In Section 3, it is shown how the marked polytope
is related to the Fox derivatives of the relators. The proof of Theorem 1.1 is
given in Section 4, an example in Section 5, and the proof of Theorem 1.3
in Section 6. In Section 7, we relate thickness of polytopes to complexity
of splittings and prove Theorem 1.5. We discuss the case of groups which
admit a (2, 1)—presentation but for which the abelianization is not equal
to Z2 in Section 8. Our paper is concluded with a list of open questions in
Section 9.

ANNALES DE L’INSTITUT FOURIER
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Convention

Given a ring R we mean by a module a left R-module, unless stated
otherwise. Furthermore, we view elements in R™ as row-vectors. A (k x 1)—
matrix over R induces a left R-module homomorphism R* — R! by right-
multiplication on row-vectors.
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2. The marked polytope of a (2,1)—presentation
2.1. Marked polytopes

Let V be a real vector space and Q = {Q1,...,Qr} C V be a finite set.
The (convex) hull of @ is the set

k

P(Q) = conv(Q) = {th@

i=1

k
Zt,;:l, ti>0}.
=1

A polytope in V is a subset of V' which is the hull of a finite non-empty
subset of V. For any polytope P there exists a unique smallest subset
V(P) C P, such that P is the hull of V(P). The elements of V(P) are
called the vertices of P.

A marked polytope is a polytope together with a (possibly empty) set of
marked vertices. Given a finite multiset Q = [@Q1,...,Qk] C V, we denote
by M(Q) the polytope P(Q), where we mark each vertex M(Q) that has
multiplicity precisely one in Q.

TOME 70 (2020), FASCICULE 2



838 Stefan FRIEDL & Stephan TILLMANN
2.2. The Minkowski sum of marked polytopes

Let V be a real vector space and let P and Q be two polytopes in V.
The Minkowski sum of P and Q is defined as the set

P+9Q:={p+q|pePandqec 9}

It is straightforward to see that P 4 Q is again a polytope. Furthermore,
for each vertex u of P+ Q there exists a unique vertex v of P and a unique
vertex w of Q such that u = v+ w. Conversely, for each vertex v of P there
exists a (not necessarily unique) vertex w of Q such that v +w is a vertex
of P+ Q.

If P, Q and R are polytopes with P+ Q = R, then we write P =R — Q.

Note that

P={peV|p+QCR}
in particular given polytopes Q@ and R, if the polytope R — Q exists, then
it is well-defined.

If M and N are two marked polytopes, then we define the (marked)
Minkowski sum of M and N as the Minkowski sum M + A with set of
marked vertices precisely those that are the sum of a marked vertex of M
and a marked vertex of N'. An example is given in Figure 2.1.

/

marked polytope M marked polytope N/ M+ N

Figure 2.1. Example of the Minkowski sum of two marked polytopes.

Now we consider marked polytopes in R? in more detail:

(1) We denote by X = [0,1] x {0} (resp. Y = {0} x [0,1]) the marked
polytope in R? with both vertices marked. This is a horizontal (resp.
interval of length one with marked endpoints.

(2) Given a polytope P in R? we let 29(P) be the minimal z-coordinate
of any point in P and z1(P) be the maximal z-coordinate of any
point in P. The definition of yo(P) and y; (P) is completely analo-
gous.

ANNALES DE L’INSTITUT FOURIER
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(3) We denote by z8(P) (resp. 3 (P)) the points on the vertical zo-slice
PN{xzp} x R of P with minimal (resp. maximal) y-value. Similarly
define z9(P) and z}(P), as well as y¥(P) with the roles of the x
and y—coordinates reversed. All the resulting points are vertices of
P. We refer to Figure 2.2 for an illustration.

i ul

1
"
g ——— |

~—_ .0 1
P Yo = Yo

Figure 2.2. The corner points z! (P) and y! (P).

LEMMA 2.1. — Let N be a marked polytope in R%. Suppose that for
i =0, 1 the following two conditions are satisfied:

(1) the difference in the y-coordinates of x?(N') and x}(N) is at least
one,

(2) if the difference in the y-coordinates of x9(N') and x} (N') is precisely
one, then either both 29(N') and x}(N) are marked or both are not
marked.

Then there exists a unique marked polytope M with M +Y = N.

The lemma is an elementary exercise in polytope theory, we therefore
merely outline the proof.

Sketch of the proof. — Throughout the proof we refer to Figure 2.3 for

an illustration. For ,j € {0,1} we write / = 27 (N) and y/ = 7 (NV).

We consider the parallelogram P = conv(zQ, z§ + (0,1),29, 29 + (0,1)).
It follows from the assumptions that P is contained in A. First suppose
that the closure of its complement in A consists of two polytopes. Denote
Py the polytope below P, and P; the polytope above P.

We denote by P; the polytope obtained by translating P; down by one,

and let M be the union of Py and Pj. It is straightforward to verify that

TOME 70 (2020), FASCICULE 2



840 Stefan FRIEDL & Stephan TILLMANN

a parallelogram of height one fits into A

Figure 2.3. Subtracting ).

as polytopes without marking, we have M + ) = A and that M is the
only polytope which has this property.

It remains to mark the appropriate vertices of M. For each vertex of M
there exists a vertex of ) such that the sum is a vertex of N'. Mark the
vertex of M if and only if the vertex of N is marked. Using the second
hypothesis, it follows that this marking of M is well-defined, i.e. indepen-
dent of the choice of the vertex of YV, and that it is the only marking for N’
which has the desired property.

This concludes the generic case. In the degenerate cases, either N' = P
or the complement of P consists of a single polytope and it is easy to adjust
the above arguments.

Finally the uniqueness of M is straightforward to verify, we leave this to
the reader. a

COROLLARY 2.2. — Let N be a marked polytope in R?. We suppose
that for i = 0,1 the following conditions are satisfied:

(1) the difference in the y-coordinates of z9(N') and z}(N) is at least
one,

(2) if the difference in the y-coordinates of x?(N') and z} (N) is precisely
one, then either both 29(N') and x}(N) are marked or both are not
marked.

(3) the difference in the z-coordinates of y)(N) and y}(N) is at least
one,

ANNALES DE L’INSTITUT FOURIER
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(4) if the difference in the z-coordinates of y{ (N) and y} (N) is precisely
one, then either both y?(N') and y} (N') are marked or both are not
marked.

Then there exists a unique marked polytope M with M+ X +Y = N.

Proof. — By our assumptions (1) and (2) we can apply Lemma 2.1 to
N Tt is straightforward to see that properties (3) and (4) are preserved and
we can apply the obvious version of Lemma 2.1 for subtracting X instead
of ). It is once again easy to see that the resulting marked polytope is
unique. O

2.3. The marked polytope of a nice (2,1)—presentation

Throughout the paper, given a nice (2, 1)-presentation 7 = (z,y|r) we
adopt the following notation:

(1) We denote by I(r) the length of r and given i € {0,...,I(r)} we
denote by r; the product of the first i letters appearing in r. More
precisely, we write r = g1g2 ... gi(r) With g1,..., g1 € {z1, T},
and given i € {0,...,I(r)} we define r; := g1 - ... g;.

(2) We denote e€: G, — Hi(Gr;Z) the obvious map and we view
H,(Gr;Z) as a subset of Hi(G;R).

(3) Given a finite multiset [g1, ..., gx| of elements in G, M(g1,..., k)
is the marked polyhedron M([e(g1), - - ., €(gr)]) in H1(Gr;R). A ver-
tex v is marked if there is precisely one g; with €(g;) = v.

Now we have the following lemma.

LEMMA 2.3. — Let m = (x,y|r) be a nice (2, 1)-presentation. We write
N =M(ro,...,1i(r)), X = M(e,z) and Y = M(e,y), where e denotes the
trivial element in G,. Then there exists a unique marked polytope M in
H,(Gr;R) with

MAX+Y=N.

In the following we denote by M, in Hi(Gr;R) the marked polytope of
Lemma 2.3. Given a (2, 1)-presentation m = (x,y |r) there exists a canon-
ical isomorphism H;(G,;R) — R? given by sending x to (1,0) and y to
(0,1). For illustration purposes we sometimes use this isomorphism to view
M as a polytope in R2. But we would like to stress that the definition of
M as a marked polytope in H1(Gr;R) does not involve the choice of an
isomorphism H;(G,;R) — R2.

TOME 70 (2020), FASCICULE 2



842 Stefan FRIEDL & Stephan TILLMANN

Proof. — We use the isomorphism H;(G,;R) — R? given by sending x
to (1,0) and y to (0, 1) to identify H;(Gr;R) with R%. Note that under this
identification the polytopes X = M(e,z) and Y = M(e,y) get identified
with the eponymous polytopes of Section 2.2. We will prove the lemma by
verifying that the conditions of Corollary 2.2 are satisfied.

We write | = I(r) and for i,5 € {0,1} we write # = 2J(N) and y/ =
yf (N). Note that [ > 1 since we assumed that 7 is not the empty word.
Now we view the indices for the 7;’s as being elements in Z;(,y. Given i € Z;
we say that the step at i is horizontal if €(r;11) — e(r;) = (£1,0). Similarly
we define a vertical step. We make the following observations:

(a) For each i € Z; the step is either horizontal or vertical.
(b) Since r is cyclically reduced we have €(r;12) # €(r;) for any 1.

CrLAIM 2.4. — Let i € 7.
(1) Ife(r;) = a8, then either e(r;_1) = xJ+(0,1) or e(riy1) = 23+(0, 1).
(2) If €(r;) = z}, then either e(r;—1) = z} + (0,—1) or e(rip1) =
zh + (0, —-1).

Partial proof of Claim 2.4. — We only prove the first statement, the other
statement is proved exactly the same way. If the step at ¢ is vertical, then
it follows from the definition of 23 and from (a) that e(r;41) = 3 + (0, 1).
If the step at 4 is horizontal, then by the definition of xJ we have €(r;41) =
x4+ (1,0). By (b) we now see that the step at i — 1 is vertical, which by
the definition of z implies that e(r;_1) = x3 + (0,1). This concludes the
proof of Claim 2.4. O

It follows immediately from the definitions that A/ satisfies Conditions (1)
and (2) of Corollary 2.2 for i = 0. Exactly the same argument shows that
the conditions are satisfied for ¢ = 1, and that also Conditions (3) and (4)
are satisfied. The lemma is thus a consequence of Corollary 2.2. O

If 7 = (x,y|r) is a nice (2,1)-presentation and if r' is a cyclic permu-
tation of the word r, then 7’ = (z,y|r’) is also a nice presentation which
presents the same group. Now we will relate M, and M.

LEMMA 2.5. — Let m = (x,y|r) be a nice (2,1)-presentation. Let ' be
a cyclic permutation of r. We denote by ' = (x,y|r’) the corresponding

presentation. Then M differs from M, by a translation by a vector in
Hi(Gr;2) = Hi(Gr32).

Proof. — We write [ = I(r) = I(+'). It is straightforward to see that
M(ry, ..., 7)) is a translate of M(ry,...,r;) by a vector in Hy(G;Z). The
lemma is an immediate consequence of this observation. O

ANNALES DE L’INSTITUT FOURIER
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We conclude this section with the following elementary lemma. We will
not make use of it in the paper and we leave the proof to the reader.

LEMMA 2.6. — Given any marked polytope M in R? with integer ver-
tices there exists a nice (2,1)-presentation m = (x,y|r) such that under
the canonical identification H,(Gr;R) = R? we have M, = M.

2.4. Relation of the two definitions of M,

Let m = (x,y|r) be a nice (2, 1)-presentation. We sketched a definition
for M, in the introduction and using a somewhat different language we
gave a more rigorous definition in Section 2.3.

We obtained both polytopes (without the marking) by the following pro-
cess:

(1) we first consider the polytope given by the points €(ro), ..., €(ry))
in H;(G;R) = R?,
(2) we then shrink the polytope by one in both the z-direction and the
y-direction.
In the introduction we were a little vague in how to assign markings, the
argument in Section 2.3 shows that this can be done in a coherent way.
The task of spelling out the details of why the two definitions are the same
is left to the reader.

3. Interpretation of M, in terms of Fox derivatives

In this section we will interpret the marked polytope M, in terms of Fox
derivatives. This point of view will be crucial in our proofs.

3.1. The marked polytope for elements of group rings

Let G be a group. Throughout the paper, given f € Z[G] and given
g € G we denote by f, the g-coefficient of f. Recall that we denote by
€: G — H1(G;Z) the obvious map. By a slight abuse of notation we denote
by € also the map given by e: G — H1(G;Z) — H1(G;R)

We write V = H;(G;R) and we denote by €: G — V the canonical map.
Given f # 0 € Z|G] we refer to

P(f) =P {elg)|g € G with fy #0}) CV
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as the polytope of f. We consider the multiset [|fq| - g|g € G] where the
notation | f,| - g means that g € G appears | f,|-many times in the multiset.
Then we refer to

M(f):=M([Ifgl-glgeG]) cV

as the marked polytope of f. We will also need the following definitions.
(1) For v € V we refer to
o= Y fag
g€e~1(v)

as the v-component of f.
(2) We say that an element r € Z[G] is a monomial if it is of the form
r = +g for some g € G.

Now we can formulate the following alternative definition of the marking
of the marked polytope M(f).

LEMMA 3.1. — Let G be a group and let f # 0 € Z[G]. A vertex v of
M(f) is marked if and only if f¥ is a monomial.

We will later on need the following lemma.

LEMMA 3.2. — Let G be a group and let f, g € Z|G|]. Then the following
hold:

(1) If for every vertex v of P(f) the element f¥ € Z[G] is not a zero
divisor, then
P(f-g9) =P(f)+Pg)
(2) If each vertex of M(f) is marked, then

M(f - g) = M(f)+ M(g).

Proof.

(1). — Let v be a vertex of P(f) and w be a vertex of P(g). By assump-
tion it follows that f¥ - g* # 0. It follows easily from the definitions that
P(f-9)=P(f)+Plg)

(2). — We use the characterization of marked vertices given by Lem-
ma 3.1. Since monomials are not zero divisors it follows from (1) that
P(f-g) = P(f) + P(g). Furthermore, our assumptions on f imply that
for any vertex v of M(f) and any vertex w of M(g) the product f¥ - g%
is a monomial if and only if ¢ is a monomial. The statement on marked
polytopes again follows easily from the definitions. O

ANNALES DE L’INSTITUT FOURIER



GROUPS AND MARKED POLYTOPES 845
3.2. Fox calculus

In the following we denote by F' the free group with generators x1, ..., k.
We denote by %: Z[F| — Z[F] the Fox derivative with respect to x;, i.e.
the unique Z-linear map such that

Ox;  Ox; . ., Ouww  Ou v
0z, 1, 0z, 0 for i # j and with 0z, ~ oz, +u8xi

We refer to [19] for details and more information on Fox derivatives. In the

for all u,v € F.

following, given u € Z[F| we often write
ou
P axz
We denote by a: Z[F] — Z the augmentation map which is the unique

Uy

Z-linear map with a(z;) =1 for ¢ = 1,..., k. The fundamental formula for
Fox derivatives (see [19, p. 551]) says that for any f € Z[F] we have

k
f=alf)-e=> felzi—1)
i=1
where e denotes the trivial element in F'. For example, if 7 = (x,y|r) is a
(2, 1)—presentation, then
r—a(r)-e=ry(z—1)+ry(y —1) € Z[(z,y)].

But «(r) = 1 since r is a word in = and y. Furthermore r = e € G. We
thus see that

(3.1) re(x—1) = —ry(y — 1) € Z[G,].
Given a finite presentation 7 = (x1,...,2x|r1,...,7) and given a word w
in xy,..., 2, we sometimes denote by % € Z|G] the image of % € Z[F)

under the projection map Z[F| — Z[G,]. Usually it should be clear from
the context what we mean by %.

3.3. Fox derivatives and 1-relator groups

The following theorem is due to Weinbaum [51] (see also [38, Proposi-
tion 11.5.29]).

THEOREM 3.3. — Let m = (x1,..., 2, |7) be a presentation where r is
a cyclically reduced word. If w is a proper, non-empty subword of r, then
w represents a non-trivial element in G.
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COROLLARY 3.4. — Let m = (x1,...,x|r) be a presentation. If r is
cyclically reduced, then the summands in

or 2
oy~ 2
i =1

represent distinct elements in Z[G].

Proof. — We write r = xf} 252 -... x5k with er,...,¢ € {—1,1}. Let
i € {1,...,k}. We denote by s the number of times z; appears among
Ty -3 Tm, - It follows immediately from the definition of the Fox deriva-

tive that there exist ny,...,ns € {—1,1} and 0 < n; < ng < -+ < ng <!

such that
or u
9z Z W
7 =1

where for j = 1,...,s the element w; is represented by the subword of r
consisting of the first n; letters appearing in r, i.e.

€n,

Wy = Tyy T Ty,
The words wy, ..., ws differ by a proper, non-empty subword of r. Thus
the desired statement follows from Theorem 3.3. O

3.4. Fox derivatives and the marked polytope for a nice
(2,1)—presentation

In this section, given a nice (2,1)-presentation ©# = (x,y|r) we will
express the marked polytope M in terms of the Fox derivatives r, and ry.
Throughout this section we will several times make use of the observation
that M(z —1) =X and M(y — 1) = ).

PROPOSITION 3.5. — Let m = (x,y|r) be a nice (2,1)—presentation.
Then

M(ry) =My +M(x—1) and M(ry) = Mz + M(y—1).

Proof. — We will only prove that M(r,) = M, + M(z — 1). The other
equality is proved completely analogously.

We denote by A the marked polytope we introduced in Lemma 2.3 which
is given by tracing out the word r. Recall that M is the unique marked
polytope with N' = M, + M(z — 1) + M(y — 1). By Lemma 2.1 it thus
suffices to show that M(ry)+M(y—1) =N = M+ M(z—1)+M(y—1).
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In a certain sense it is obvious that M(r,) + M(y — 1) = N. Indeed,
this follows from the observation that M(r,)+M(y—1) is given by all the
vertical edges traced out in the definition of /. We thus obtain the same
marked polytope. The remainder of this proof is taken up by making this
observation rigorous.

First we note that it is straightforward to verify that if the statement
holds for some r, then it also holds for any cyclic permutation of r. There-
fore we can take a cyclic permutation of r such that the resulting relator
starts with 2 or 2=!. Without loss of generality we can thus assume that
r=gxg™y™ . . .2 y™ where all the m; and n; are non-zero.

Now we note that

k m;—1
N=M U U Myt . gy
(il j=0
k n;—1
U U U ™y -xm"ly”’ilxm’iyj>.
i=1 j=0

As we are taking the convex hull we can leave out points which lie in the
interior of a segment connecting two other points. Thus we have

k
N =M ( U My g gy g

i=1
U U aMiy™ 33””1y”"1xm"y"7‘> .

Now we turn to M(r,) + M (y —1). We first note that for any n #0 € Z
we have
oy")
dy

It follows from this observation and from Lemma 3.2 that

(y-1)=y" -1

M(ry) + M(y — 1)
=M(ry-(y—1))

k m n m; g my a(ynl)
=M Zx Ly gy g oy (y—1)
i=1

=M ( My gty T (g 1)) .

i=1
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The same argument as in the proof of Corollary 3.4 shows that all the
summands are pairwise different in G . Thus it follows from Lemma 3.1
that

k
M (Z My . gy g™ (Y — 1))
i=1
k
=M < U l‘mlynl . xm,q,_lym,_lxmjyni

k
U U xmlynl . . xmi—lyni—lm7ni>
. s

1=1

but this is precisely N. Thus we showed that M(ry) + M(y—1) =N. O

4. The proof of Theorem 1.1
4.1. Basic properties of the Bieri-Neumann—Strebel invariant

Let G be a finitely generated group. The Bieri-Neumann—Strebel [5]
invariant ¥(G) of G is by definition a subset of S(G) := (Hom(G,R) \
{0})/Rso. We refer to [5] for the precise definition, but in order to give a
flavor of the invariant we recall three properties:

(1) An epimorphism ¢ € Hom(G,Z) represents an element in X(G) if
and only if it corresponds to an ascending HNN-extension. More
precisely, if and only if there exists an isomorphism

f:G = (At|A=1t"tp(A))

where A is a finitely generated group and ¢: A — A is a monomor-
phism, such that ¢ corresponds under f to the epimorphism given
by t — 1 and a — 0 for a € A. At this point it is perhaps worth
pointing out that at times in the literature an HNN-extension of the
form (A, t| A = tp(A)t~1) is also referred to as an ascending HNN-
extension. Nonetheless, it follows from the discussion on [5, p. 4506]
and the definition of ascending HNN-extension on [5, p. 465] that
our definition of ascending HNN-extension matches the definition
of [5].

(2) A homomorphism ¢ € Hom(G, Z) has the property that ¢ and —¢
represent elements in 3(G) if and only if Ker(¢) is finitely gener-
ated.
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(3) X(G) is an open subset of S(G).

Here the first two properties follow from [5, Proposition 4.3] (see also [10,
Corollary 3.2]) and the third one is [5, Theorem A].

4.2. Twisted homology groups

Let G be a finitely presented group and let X be a finite CW-complex
with G = m(X). We denote by X the universal cover of X. The deck
transformation group G acts on the left on X . Therefore the chain complex
C,(X) is a chain complex of free left Z[G]-modules.

If R is a ring and M is a (R,Z[G])-bimodule, then consider the chain
complex

C.(X; M) = M @z C-(X)

of left R-modules and the corresponding twisted homology groups
H,.(X; M) which are also left R-modules.

4.3. The chain complex corresponding to a presentation

Given a presentation m = (x1,...,zk|71,...,7) we denote by X, the
corresponding CW-complex with one O-cell, k 1-cells corresponding to the
generators and [ 2-cells corresponding to the relators. With appropriate
lifts of the cells of X to the universal cover X the complex C,(X) is then
given by

oy ory
dzq 7 Dwy, R
0= Z|Gy) ——" 5 7[G.]F ~———5 Z[G,] = 0

Here we recall that we always view vectors as row-vectors and that we
multiply by matrices on the right. This (somewhat confusing) convention
is forced on us by the fact that we consider left-modules. Also note that by

a slight abuse of notation we denote by g;? the image of the Fox derivative
J

in Z[{x1,...,2x)] in the group ring Z[r].
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4.4. Generalized Novikov-homology

In the following, given a group G and ¢ € Hom(G,R) we consider

for every C' € R there exist only finitely

Z[Gly = Z fq9 many g € G with ¢(g) > C and f; # 0,

geG
the Sikorav—Novikov completion [40, 44] of the group ring Z[G] with respect
to ¢. It is straightforward to verify that m is indeed a ring with the
obvious addition and the “naive” multiplication.
Given f € Z[G] we define

Ty(f) = Z fq9
9€G,d(g)=m
where m := max{#(g) | f; # 0}. Furthermore, given a ring R and r € R
we say that s € R is an left-inverse to r if sr = 1. We recall the following
well-known lemma. We leave the straightforward proof to the reader.

LEMMA 4.1. — Let G be a group and let ¢: G — R be a homomorphism.
Let f € Z[G]. If f has a left-inverse in Z|G)y, then Ty(f) has a left-inverse
in Z[G]. Conversely, if Ty(f) is a monomial, then f has a left-inverse in

——

Z|G), which is also a right-inverse.

A group G is called locally indicable if any finitely generated non-trivial
subgroup of G admits an epimorphism onto Z. If G is locally indicable,
then the proof of Theorem 13 in [29] shows that monomials are the only
elements in Z[G] that have a left-inverse. We thus obtain the following
variation on Lemma 4.1

LEMMA 4.2. — Let G be a locally indicable group and let ¢: G — R be
a homomorphism. Then f € Z|G] has a left-inverse in Z[G) if and only if
Ty(f) is a monomial.

One of the key ingredients in the proof of Theorem 1.1 is the following
theorem of Sikorav.

THEOREM 4.3. — Given a group G a non-zero homomorphism ¢ €
Hom(G,R) represents an element in ¥(G) if and only if

o — o —

Ho(GyZ[Gly) =0 and Hy(G;Z[Gl,) = 0.

Proof. — Given a finitely generated group G Bieri—Renz [6] introduce
an invariant (G, Z) that is also a subset of S(G). Let ¢ € Hom(G,R) be
a non-zero homomorphism. Then the following two statements hold:
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(1) By [6, p. 465] the homomorphism ¢ represents an element in 3(G, Z)
if and only if —¢ represents an element in X(G).

(2) The statements of [44, p. 86], [4, p. 953], [18, Section 3] and [21
Theorem 3.2] imply that ¢ represents an element in (G, Z) if and
only if

Hy(G; Z[G] ») =0 and Hy(G; Z[G] ») =0.
Together these two statements imply Theorem 4.3. |
The definitions of the Bieri-Neumann—Strebel invariant, the Bieri-Renz
invariant and generalized Novikov homology involve various choices and

conventions. In order to make sure that the signs are correct as stated in
the proof above we consider the Baumslag—Solitar group

B = {(a,t|t 'a*ta™?)

with ¢(t) = 1 und ¢(a) = 0. As we have seen in Section 4.1, ¢ corresponds to
an ascending HNN-extension, so in particular ¢ € X(B). We refer again to
the discussion in Section 4.1 for the definition of ascending HNN-extension
as in [5] and the relationship to the invariant ¥(B). In this case r, =
t71(1+a)—1 € Z[B]. An argument similar to the one provided in the proof

of Theorem 1.1 shows that r, is invertible in Z[B]¢ but it is not invertible in

—

Z|B]_ 4, which then implies that H; (B; Z[B] ) = 0 but Hy(B; Z[ 1-4) # 0.

4.5. The proof of Theorem 1.1

In this section we will finally give the proof of Theorem 1.1.

Proof of Theorem 1.1. — Let m = (x,y|r) be a nice (2, 1)-presentation.
We write G = G. Let ¢ € Hom(G, R) be a non-zero homomorphism. It fol-
lows from the discussion in Section 4.3 that the chain complex Z/[G]\¢ ®z[q]
C.(X) is given by

0— Z[G]

L, ZIGT u ZIGl; — 0.

Note that we have ¢(x) # 0 or ¢(y) # 0. Wlthout loss of generality we
can assume that ¢(x) # 0. It follows from Lemma 4.1 that « — 1 has a left-

inverse in Z[G]s which is also a right-inverse. We denote it by (z —1)*
In particular this implies that Hy(G;Z[G]y) = 0.

CLAIM 4.4. — We have Hl(G;m) = 0 if and only if r, has a left-

—

inverse in Z[G).
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Proof of Claim 4.4. — We first suppose that Hy(G; Z/[@Q = 0. The row-
vector (—(y—1)(z—1)"1, 1) lies in the kernel of 9;. Since H;(G;Z|G]4) = 0
it follows that there exists an f € Z[G], with

Oof = (fre, fry) = (~(y— D@ -1, 1).

We thus showed that r, has a left-inverse in Z/-[GT¢>

Now we suppose that r, has a left-inverse r, Lin Z/[G]\aﬁ Let (u,v) €
Ker(9dy). This means that 0 = 9y (u,v) = u(z — 1) + v(y — 1). We set
f=wr;'. Tt then follows from (3.1) that

Oof = (fra, fry) = (—vry ' ry(y = (@ = 1)~ v)
= (~u(y - -7 )
= (u,v).

We thus showed that Hi(G;Z[G]y) = 0. This concludes the proof of
Claim 4.4. g

The claim and the discussion preceding the claim, together with Theo-
rem 4.3 imply that ¢ represents an element in ¥(G) if and only if r,, has a

left-inverse in Z[G]y. Now we have the following claim.

CLAIM 4.5. — The Fox derivative r, has a left-inverse in m if and
only if ¢ pairs maximally with a marked vertex of M(ry).

Proof of Claim 4.5. — We first suppose that G = G is torsion-free. It
follows from [8, 9] that G is locally indicable (see also [13, Theorem 4.2.9]
and [30]). It follows from Lemma 4.2 that ry, has a left-inverse in Z/[G]\(z, if
and only if Ty(r,) is a monomial. But this statement in turn is equivalent
to ¢ pairing maximally with a marked vertex of M(ry).

Now we consider the case that G has torsion elements. We will show that
M(ry) has no marked vertices and we will show that 7, does not have a
left-inverse in m

By [38, Theorem IV.5.2] the assumption that G has torsion elements
implies that r can be written as r = s™ where s is a cyclically reduced
word that can not be written as a proper power and with m > 2. An
elementary calculation shows that

0
ry:a—y(sm)z(l—l-s-l—“--i-sm_l)

0s
oy’
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Note that s is torsion, in particular it represents the trivial element in
H,(G;R). Since m > 2 it follows that for each vertex v of P(r,) the v-
component (ry,)? is the sum of at least m elements in G. This in turn
implies that no vertex of M(r,) is marked.

In order to proof the claim it remains to show that r, does not have a
left-inverse in Z/[-\G]¢ We write 7 := (x,y|s) and G := G=. By the above
s is not a proper power, which implies by [38, Theorem IV.5.2] that G is
locally indicable. It follows from b; (G) = 2 that s is homologically trivial in
H,(G;Z) which implies that Hy(G;Z) — Hi(G;Z) is an isomorphism. By
a slight abuse of language we denote the map H;(G;Z) = Hi(G;Z) LN/
again by ¢. The projecti/on\G — @ induces ring homomorphisms f: Z[G] —

—

Z[G) and f: Z|G]s — Z|G],. Since s is trivial in G we have

s = £ (s (5)

:f(1+8+---+sm_1)f(g;) :mf(g;)

In particular every coefficient of f(r,) € Z[G] is divisible by m > 2. Since
G is locally indicable it follows from Lemma 4.2 that f(r,) does not have

—

a left-inverse in Z[G],. But this implies that r, does not have a left-inverse
in Z[G]4. This concludes the proof of the Claim 4.5. O

Now the theorem is an immediate consequence of the following claim.

CrLAM 4.6. — Let ¢ € Hom(G;R) with ¢(x) # 0. Then ¢ pairs maxi-
mally with a marked vertex of M(ry) if and only if ¢ pairs maximally with
a marked vertex of M.

Proof of Claim 4.6. — By Proposition 3.5 we have M(r,) = M, +
M(z — 1). We first suppose that ¢ pairs maximally with a marked vertex
v of M, C Hi(G;R) = R2 If o(z) > 0, then 9 pairs maximally with
v+ (1,0) € M(ry) = Mz + M(z — 1). In particular v + (1,0) is a vertex
of M(ry), and as the sum of two marked vertices it is also marked. If
Y(x) < 0, then almost the same argument shows that v itself is the desired
marked vertex of M(r).

Now suppose that ¢ pairs maximally with a marked vertex w of M(r).
A slight variation on the argument above shows the following: if 1 (z) > 0,
then v — (1,0) is the desired marked vertex of M, and if ¢¥(z) < 0, then v
is again the desired marked vertex. This concludes the proof of Claim 4.6
and thus of Theorem 1.1. |
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5. Example

We consider again the example which was already studied by Brown [10,
Section 4]. Namely let

T = <x,y ‘ x_ly_lmy%c_ly_ley_lm_ly:E_lyxy_1>

A direct calculation shows that

rp = —a oyl e

+ x_ly_1xy2x_1y_lx_ly_lnyx_ly_lx

Yy ey a2y !

eyt ty ey e by

+x yilxy xr yilx yile y:L'f YzT.
By Corollary 3.4 all these terms represent distinct elements in G.. We sort
these terms according to their abelianizations. We see that

re = 2% -z Yy Leytely e
+ a7yt
Oy ey ey ey
+ 70 (1 a2y ey e — ey T Py T %y T e )

+aty (—rly T eyt ly T e ey T ey Ty ey e ).

Therefore the polytope corresponding to r, is spanned by (0,0), (-1, —1),
(0,-1),(—1,0) and (—1,1). Its vertices are (0,0), (—1,—1), (0,—1) and
(—1,1), among which (0,0), (—1,—1) and (0, —1) are marked and the vertex
(—1,1) is unmarked.

In Figure 5 we show how to obtain M(r;) and M, and we indicate the
set of all ¢’s which pair maximally with a marked vertex of M.

6. Proof of Theorem 1.3

We denote by G the class of all groups that are torsion-free and elemen-
tary amenable. Note that G is closed under taking subgroups and finite
direct products. We say that a group G is residually G if given any non-
trivial g € G there exists a homomorphism a: G — I' with " € G such that
a(g) is non-trivial.

For the reader’s convenience we recall the statement of Theorem 1.3.

ANNALES DE L’INSTITUT FOURIER



GROUPS AND MARKED POLYTOPES 855

subtract I

: i Or
terms appearing in g-

v‘v > T
0 rrrrrrrrr L
marked polytope M(%) marked polytope M
S(Gy) 1= (Hom(Gr, B)\ {0))/R* 4 ¥

Ay
v

¢’s which pair maximally with a marked vertex of M

Figure 5.1. The marked polytope of Brown’s example.

THEOREM 1.3. — Let G be a group which admits a nice (2, 1)—present-
ation m = (x,y|r). If G is residually G, then the polytope M, C Hy(G;R)
is an invariant of the group G (up to translation).

The following lemma gives a criterion for when the hypothesis in Theo-
rem 1.3 is satisfied.

LEMMA 6.1. — Let G be a group which admits a (2,1)—presentation .
If there exists a ¢ € S(G) such that both ¢ and —¢ lie in X(G), then G is
residually a torsion-free solvable group, in particular G is residually G.

The criterion from Lemma 6.1 applies to the example provided in Sec-
tion 5. Indeed, the homomorphism ¢: G, — Z defined by ¢(x) = 2 and
¢(y) = 1 has the property that ¢ pairs maximally with the marked ver-
tex (—1,—1) and —¢ pairs maximally with the marked vertex (0,—1). It
follows from Theorem 1.1 that both ¢ and —¢ represent elements in X(G).

Proof. — Let G be a group which admits a (2, 1)—presentation 7 and
suppose ¢ € Hom(G,R) is a homomorphism such that both ¢ and —¢
represent elements in X(G). It follows from the openness of ¥(G) that
without loss of generality we can assume that ¢ takes values in Z, i.e. that
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¢ € Hom(G,Z). Recall, see Section 4.1, that the existence of such a ¢
implies that Ker(¢) is a finitely generated group.

Since G admits a (2,1)-presentation it follows from [10, p. 487], see
also [4, Corollary B], that Ker(¢) is a free group. This implies that G is
isomorphic to a semidirect product Z x F' where F' is a free group. We then
consider the filtration

GHO>F>FM) @ o

where F(") denotes the n-th group in the derived series of F. Each suc-
cessive quotient is a free abelian group. Also note that each F(™ is char-
acteristic in F' and it is thus a normal subgroup of G. It follows that each
quotient G/F® is a torsion-free solvable group. Now the lemma follows
from the well-known fact that () F() is trivial. O

6.1. The Ore localization of group rings

Let T be a group which lies in G. It follows from [32, Theorem 1.4] that
the group ring Z[I'] is a domain, i.e. it has no non-zero element which
is a left or right zero-divisor. Since I' is in particular amenable it follows
from [14, Corollary 6.3] that Z[I'] satisfies the Ore condition. This means
that for any two non-zero elements z,y € Z[I'] there exist non-zero elements
P, q € Z[T'] such that zp = ygq.

Now we denote by K(T") the set of equivalence classes of pairs (p, ¢) where
p € Z[I'l and g € Z[I'] \ {0}. Here we say that two such pairs (p,¢) and
(p',¢') are equivalent if there exist non-zero z,y € Z[I'] with zp = yp’ and
rq = yq'. As usual we denote such an equivalence class by pg~!. Since Z[I']
is a domain it follows that the canonical map Z[I'] — K(T') is injective.
By [41, Section 4.4] we can extend the ring structure on Z[I'] to a ring
structure on K(I'), and with this ring structure, K(I') is actually a skew
field that contains Z[I'| as a subring.

Remark 6.2. — The Zero-Divisor Conjecture states that for any torsion-
free group the group ring Z[I'] is a domain. If this conjecture holds for all
torsion-free amenable groups, then throughout the paper we could work
with the class of torsion-free amenable groups instead of torsion-free ele-
mentary amenable groups.

6.2. Non-commutative Reidemeister torsion of presentations

Let G be a finitely presented group and let X be a finite CW-complex
with G = 71 (X). We denote by X the universal cover of X. Let ¢: G — T
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be a homomorphism to a group I' € G. The homomorphism ¢ equips Z[T']
and K(T') with the structure of a right Z[G]-module. Following the discus-
sion in Section 4.2 we can thus consider the chain complexes C¥ (X; Z[T]) :=
Z[T) @716 C+(X) and CF (X;K(T)) := K(I) @z Cu (X). If CF (X; K(I)) is
not acyclic, then we define the corresponding Reidemeister torsion 7(X, ¢)
to be zero. Otherwise we pick an ordering of the cells of X and for each
cell in X we pick a lift to X. This turns C¥ (X; K(I')) into a chain complex
of based K(I')-left modules. We then define

(X, ) € K1 (K(I)).

to be the Reidemeister torsion of the based chain complex C¥ (X;K(T)).

(Here, given a ring R the first K-group K;(R) is defined as the abelian-

ization of lim GL(n, R).) Now we write K(I')* = K(T') \ {0} and we denote
—

by K(T'))5, the abelianization of the multiplicative group K(I')*. The
Dieudonné determinant, see [42], gives rise to an isomorphism

Ky (K(T)) — K(I')5,

which we will use to identify these two groups. The invariant 7(X,¢) €
K(T)}, is well-defined up to multiplication by an element of the form +¢
with g € I'. Furthermore this invariant only depends on the homeomor-
phism type of X and the choice of ¢. We refer to [20, 28, 48] for details
and more precise references.

Example 6.3. — Given an oriented m-component link I C S3 we denote
by X1 = S3\ vL the exterior of L, i.e. the complement of an open tubular
neighborhood v L of L. We equip X, with a CW-structure. We denote by T’
the multiplicative free abelian group generated by t1,...,t,,. Furthermore
we denote by ¢: m1(X) — T the canonical epimorphism given by sending
the i-th oriented meridian to t;. Finally we denote by Ap(t1,...,t,) the
multivariable Alexander polynomial of L. It follows from [48] that

Ar(t) .
(X1, 0) = tf_ll , if L has one component,
Ap(t1,...,tm), if L has more than one component.

Thus the invariant 7(X,, ¢) for admissible homomorphisms to non-abelian
groups can be viewed as a non-commutative generalization of the Alexander
polynomial of a link. The first such invariants were introduced in [12] for
knots, in [27] for general 3—manifolds and in [34, 35] for plane algebraic
curves.
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In the following, given a presentation m and a homomorphism ¢: G, — T
to a group in G we write

T(7T7 90) = T(Xm 90)

where X is the 2-complex corresponding to the presentation 7.

6.3. The polytope group

Let V be a vector space. We denote by P(V') the set of all translation-
equivalence classes of polytopes in V. With the Minkowski sum this be-
comes an abelian monoid, where the identity element 0 is given by the
polytopes consisting of a single point. It is straightforward to show, see
e.g. [43, Lemma 3.1.8], that (V) has the cancellation property, i.e. for
P,Q,R e PB(V) with P+ Q=P + R we have Q =R.

We denote by &(V) the set of all equivalence classes of pairs (P, Q) €
PB(V)? where we say that (P, Q) ~ (P', Q') if P+ Q' = P’ + Q. Note that
(V) is an abelian group, and since B(V') has the cancellation property it
follows that the map

PV) = &(V)
P — (P,0)
is a monomorphism. We will use this monomorphism to identify (V') with
its image in &(V). As usual, given P and Q € P(V) we write P — Q =
(P, Q). With our conventions this is consistent with the definition of P — Q
given in Section 2.2.

Let T be a group in G. We write V' = H;(I';R). In Section 6.1 we saw
that Z[I'] is a domain. It follows from Lemma 3.2 that

P: Z[T]\ {0} = B(V)
f=P(f)

is a homomorphism of monoids. Since &(V') is commutative this extends
to a group homomorphism

P:KT)), — &(V)

which we also denote by P.
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6.4. The invariant 7 (7) for a (2,1)-presentation w

An admissible homomorphism for a group G is an epimorphism ¢: G —
I'to a group I' € G such that the projection map G — Hy(G;Z)/torsion fac-
tors through ¢. Note that ¢ induces an isomorphism H;(G;R) = H; (T'; R).
For the remainder of this paper, given an admissible homomorphism ¢: G —
T we will use ¢ to identify H;(G;R) with H;(T;R).

If # = (z,y|r) is a nice (2,1)—presentation and if ¢: G, — TI' is an
admissible homomorphism, then it follows in particular that ¢(x) and
©(y) are non-trivial, since they are already non-trivial in Hq([;Z) =
Hl(Gﬂ—; Z) = ZQ.

We will repeatedly make use of the following observation.

LEMMA 6.4. — If p1 and py are two admissible homomorphisms for G,
then the projection map G — G/ XKer(p1) NKer(yps) is also admissible.

We also need the following lemma.

LEMMA 6.5. — Let @ = (x,y|r) be a nice (2,1)-presentation. Let
¢: G — I be an admissible homomorphism. Then the following are equiv-
alent:

(1) o(rz) #0,
(2) @(ry) #0,
(3) 7(Xx, ) #0.
Furthermore, if any of the three equivalent statement holds, then

P(r(Xax, 0)) = Ple(r2)) = Plply — 1)) = Plp(ry)) — Ple(z — 1))
where the equality holds in &(H,(T;R)) = &(H1(X; R)).

Proof. — As remarked above, ¢(x) and ¢(y) are non-trivial. This implies
that @(x — 1) and p(y — 1) are invertible in K(T'). Now the Lemma 6.5 is
an immediate consequence of the definitions and Theorem 2.1 of [20] which
says in this context that

(X, 0) = p(ra)ply = 1)1 = p(ry)p(z — 1) O
Let H be a finitely generated free abelian group, e.g. H = Z? or H =
H,(G;Z)/torsion where G is some finitely generated group. Given (P, Q)
and (P, Q') in &(H ®R) we write (P, Q) < (P, Q') if there existsa v € H
such that v+P+ Q' C P’+ Q. Note that this descends to a partial ordering
on &(H ® R).
Now we have the following lemma, which is a straightforward conse-
quence of the definitions, of Proposition 3.5 and of Lemma 6.5. We leave
the details to the reader.
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LEMMA 6.6. — Let # = (z,y|r) be a nice (2,1)—presentation. Let

¢: Gr — I' be an admissible homomorphism. Then
P(T(X‘/n 50)) < PTF
as polytopes in Hi(I';R) = H1(G;R) = Hi(Gr;Z) @ R. If tp: G — T" is
an admissible homomorphism which factors through ¢, then
P(1( Xz, 9)) < P(7(Xn, 9))

as polytopes in H1(I';R) = Hi(I";R) = H1(G;R) = H1(Gr;Z) @ R.

We have the following corollary.

COROLLARY 6.7. — Let m = (z,y|r) be a nice (2,1)—presentation.
There exists an admissible ¢ such that for any other admissible homo-
morphism 1 we have

P(r(Xx,¥)) < P(7(Xx, 9)).

Proof. — Given a polytope P C R? we denote by £(P) := # (73 N Z2) the
number of lattice points. Note that for any v € Z? we have £(v+P) = ((P).
In the following we follow the usual convention and we identify Hi(Gr;Z)
with Z2. The following two statements are an immediate consequence of
Lemma 6.6

(1) If ¢: G — T is an admissible homomorphism, then
U(P(T(Xx,9))) < £(Pr).

(2) If ¢: G — I is an admissible homomorphism which factors
through ¢, then

L(P(T( X, 1)) < UP(T(Xx, ).

We pick an admissible homomorphism ¢ such that ¢(P(7(X,, ¢))) is maxi-
mal among all admissible homomorphism. This definition makes sense since
the values for ¢(P(7(X,,¥))) are bounded by the finite number £(P,) and
since there exists always at least one admissible homomorphism, namely
the abelianization homomorphism G, — Hy(Gr;7Z) = 7Z2.

We claim that ¢ has the desired property. So suppose that 1) is another
admissible homomorphism. We want to show that

P(r(Xax,¥)) < P(1(Xx, 0)).

We consider the homomorphism ¢: G, — Ker(¢) NKer(¢)) which is admis-
sible by Lemma 6.4. Since ¢ factors through ¢ it follows from Lemma 6.6
that

P(1(Xr,9)) < P(1(Xx, d)).
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On the other hand, by the choice of ¢ we have
U(P(T(Xx, ) < LP(T(Xx,9)))-

Since P(7(Xr,)) and P(7(X, ¢)) both have vertices in Hy(Gr;Z) = Z>
it follows that

P(7(Xx, 9)) = P(1(Xz, 9)).
The desired inclusion now follows from Lemma 6.6 which also says that
P(r(Xax,¢)) < P(1(Xx, 9)). O
Therefore, given a (2, 1)—presentation 7 it makes sense to define

T (7) = max{P(7(m, ¢)) | ¢ admissible homorphism} € P(H1(Gr;R)).

6.5. Proof of Theorem 1.3

Now we are ready to prove Theorem 1.3. We start out with the following
proposition.

PROPOSITION 6.8. — Let m and 7’ be (2, 1)—presentations. If f: G, —
G is an isomorphism and if G, = G, is torsion-free, then

f(T(m)) = T(x') € B(H1(Gw; R)).

Proof. — By [38, Proposition 11.1] the 2-complexes X, and X,/ corre-
sponding to the (2, 1)-presentations 7 and 7’ are aspherical. It follows that
f is induced by a homotopy equivalence f: X, — X,.. Since © and 7’
are presentations of torsion-free one-relator groups it follows from work of
Waldhausen [50, p. 249 and p. 250] that the Whitehead group of G = G
is trivial, which implies that f induces in fact a simple homotopy equiva-
lence f: X; — X.

For any admissible homomorphism ¢: G+ — I' the homomorphism ¢o f,
is an admissible homomorphism for G. Evidently all admissible homomor-
phism for G are of that form. Since f is a simple homotopy we have

[o(r( Xz, 00 f)) = 7(Xer, ).
Now the proposition is an immediate consequence of these observations and
the definitions. |

We also have following proposition.

PROPOSITION 6.9. — Let m = (x,y|r) be a nice (2,1)—presentation. If
G is residually G, then

T(7) = Pr € B(H1(Gx:R)).
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Proof. — Let m = (z,y|r) be a nice (2,1)-presentation. Denote by
Y: Gr — Hyi(Gy;Z)/torsion the canonical projection map, and assume
G is residually G. Recall that given any non-trivial g € G there exists a
homomorphism ¢: G, — T to a group in G such that ¢(g) is non-trivial.
Note that

Gr — G /| (Ker(p) NKer(y))

is an admissible homomorphism to a group in G such that the image of g
is non-trivial.

It follows from Lemma 6.4 that given any finite collection of elements
{9:} C G, there exists an admissible homomorphism ¢: G, — T' such
that the images ¢(g;) are pairwise distinct. We apply this to the set of
non-trivial elements appearing in r,, and as before we identify H;(I';R)
with Hy(m;R). We write V = H1(I'; R) = H1(G; R).

Since the ¢(g;) are pairwise distinct it follows immediately from the
definitions that

Pp(rz)) = Plrz) C V.

Also, note that y and ¢(y) represent the same non-trivial element in V. It
thus follows that

Plp(y—1)) =Py — 1).

Combining these two equalities with Proposition 3.5 we obtain that
P(r( X, ) = Pr.
If we combine this equality with Lemma 6.6 and Corollary 6.7 we see that
Pr=P(r(Xr,¢)) CT(r) C Pr.

It thus follows that 7 (7) = Px. O

Proof of Theorem 1.3. — Let G be a group which admits a nice (2,1)-
presentation and which has the property that G is residually G. Our as-
sumption implies in particular that the group G is residually a torsion-free
group, which in turn implies that G itself is torsion-free.

Let 7’ be another nice (2, 1)—presentation for G. We write V = H;(G;R).
It follows from Propositions 6.8 and 6.9 that P, = P € &(V). Since the
Bieri-Neumann—Strebel invariant is an invariant of the group G it follows
from Theorem 1.1 that P, and P, have the same marked vertices, i.e. we

have M = M. O
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7. Proof of Theorem 1.5

7.1. Thickness

We recall that given a polytope P in a vector space V' and a homomor-
phism ¢: V' — R we define the thickness of P with respect to ¢ as

th(P, ¢) = max{¢(p) — ¢(q) |p,q € P}.

Furthermore, we refer to

P = {3(p—q)|p,q € P}

as the symmetrization of P.

For future reference we record the following lemma. We will only use
the first part which is a straightforward consequence of the definitions. We
include the second part to facilitate a discussion later on. We leave the
elementary proof to the reader.

LEMMA 7.1. — Let P and Q be polytopes in a vector space V. Then
the following hold:
(1) If ¢: V — R is a homomorphism, then we have
th(P + Q,¢) = th(P,¢) + th(Q, ¢).
(2) We have
th(P, ¢) = th(Q, ¢) for all ¢ € Hom(V,R)
if and only if PY™ = Q™.

7.2. Splittings of groups

Let G be a finitely presented group and let ¢: G — Z be an epimorphism.
Let B be a finitely generated group. A splitting of (G, ) over B is an
isomorphism

f:G S (At | uw(B) =tBt™)
such that the following hold:
(1) A is finitely generated,
(2) B is a subgroup of A and p: B — A is a monomorphism,
(3) (pofH(x)=0foraec Aand (po f71)(t) = 1.
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It is well-known, see e.g. [7] or [46, Theorem B*], that any such pair (G, ¢)
admits a splitting over a finitely generated group. We define the splitting
complexity of (G, ¢) as

¢(G, ¢) = min{rank(B) | (G, ¢) splits over B},

where rank(B) is defined as the minimal number of generators of B.

In the following we will also consider the free splitting complexity
ct (G, 9). If (G, ¢) does not split over a free group, then we define ¢ (G, ¢) =
00, otherwise we define the free complexity to be

¢ (G, ¢) = min{rank(F') | (G, ¢) splits over a free group F'}.
By definition we have ¢(G, ¢) < ¢¢(G, ¢).

Example 7.2. — Let K be a knot in S3. It follows easily from the defi-
nitions and the Seifert—van Kampen theorem that

C(Ga ¢) < Cf(Ga ¢) <2 genuS(K)

where genus(K) denotes the minimal genus of a Seifert surface. In [24] it
was shown that the above inequalities are in fact equalities.

The following theorem is a slightly stronger version of Theorem 1.5.

THEOREM 7.3. — Let G be a group which admits a nice (2, 1)—presenta-
tion. If G is residually G, then for any epimorphism ¢: G — Z we have

C<G7¢) —-1= Cf(Ga d)) -1= th(Pﬂ»¢>'

The theorem is an immediate consequence of Propositions 7.4 and 7.10
which we will prove in the next two sections.

7.3. Upper bounds on the complexity of splittings

In this section we give an upper bound on c¢s(G, ¢). This result does
not require any extra assumptions on G. We are very grateful to Nathan
Dunfield for telling us about this proposition.

PROPOSITION 7.4. — Let G be a group which admits a nice (2,1)-
presentation. Then for any epimorphism ¢: G — Z we have

cr(G,¢) = 1 < th(Pr, ¢).

We first prove the following lemma.
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LEMMA 7.5. — Let G be a group which admits a nice (2, 1)—presentation
7. Let ¢: G — Z be an epimorphism. Then there exists a nice (2,1)—
presentation T = (x,y|r) for G with ¢(x) = 0, ¢(y) = 1, and that, up to
translation, gives rise to the same polytope as 7.

Proof. — Let G be a group which admits a nice (2, 1)-presentation 7.
Let ¢: G — Z be an epimorphism. Let 7 = (z,y]|r) be a nice (2,1)—
presentation together with an isomorphism ®: G — G,. By a slight abuse
of notation we denote the homomorphism ¢ o ®~1: G, — Z by ¢ as well.

We will prove the lemma by induction on |¢(x)|+ |¢(y)|. Without loss of
generality we can assume that |¢(z)| < |d(y)|. If |¢(z)| + |¢(y)| = 1, then
we are done. So suppose that |¢(z)| + |¢(y)| > 1. It suffices to prove the
following claim.

CLAIM 7.6. — There exists a nice (2,1)—presentation p = {(a,b|s) to-
gether with an isomorphism ¥: G — G, such that the following two state-
ments hold:

(1) the polytopes ®!(P,) and U1 (P,) are translates of each other in
Hl (G’ R>7
(2) we have |¢(a)| + |¢(b)] < |p(z)| + [6(y)]-

Proof of Claim 7.6. — Note that the assumption that ¢ is surjective
means that the ideal generated by ¢(x) and ¢(y) is all of Z. The assumption
that |¢(z)] + |¢(y)| > 1 thus implies that ¢(x) # 0.

Now we set € := 1 if ¢(z) and ¢(y) have opposite signs and e := —1 if
¢(x) and ¢(y) have the same signs.

Now we replace every occurrence of y in r by bx~

€

, we then replace
every occurrence of x by a and finally we reduce and cyclically reduce the
resulting word in a and b. We denote the resulting word by s. We denote
by p = {(a,b|s) the corresponding presentation.

We denote by ©: (z,y) — (a,b) the isomorphism of free groups given by
O(r) = a and O(y) = ba~¢. Evidently we have O(r) = wsw~! for some
word w. (The word w arises from the cyclical reduction.) Thus © induces
an isomorphism ©: G, — G,. We write ¥ = © o ®. The pair (p, ¥) is then
a nice (2, 1)-presentation for G. By a slight abuse of notation we denote the
homomorphism ¢ o U=1: G, — Z by ¢ as well. Note that |¢(a)| = |¢(x)]

and [¢(b)] = |6(y) + eb(x)] < |H(y)I- O

It remains to show that ©(P;) is a translate of P,. By the chain rule for
Fox derivatives, see [19, p. 552], we have

90(r) . (Or\ 90@) , (Or\ 90@) _(0r) b= _[(Or
ab _9<8x> aw o) T ~%a) T %)
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It follows easily from the product rule for Fox derivatives that 815—;1 =
—w™! %—15. If we apply the product rule to s = w=1O(r)w, and if we combine

it with the above two equalities we see that in the group ring of G, we have

s ow! _,00(r) . owt 0
%= b +w T + w @(r)iab =w @(a—y)

This implies that O(P(r,)) is a translate of P(s;). Evidently we have the
equality ©(P(xz — 1)) = P(a — 1). These two observations put together
imply that ©(P,) is a translate of P,. O

It is clear that Lemma 7.5 together with the following lemma proves

Proposition 7.4.

LEMMA 7.7. — Let G be a group and let ¢: G — Z be an epimorphism.
Suppose G admits a nice (2, 1)—presentation T = {(a, t|r) such that ¢(a) =0
and ¢(t) = 1. Then

cf(G,¢) — 1 < th(Pr, ¢).

Proof. — By Lemma 2.5 we can apply a cyclic permutation of the letters
in 7, we then can and will assume that r is of the form r = t™1a™ - t"2q™2 -
...-t™ka™ where all the m; and n; are non-zero. Given j € {1,...,k} we
write M; = my + --- + m;. We consider

d:=min{M,..., M} and D :=max{My,..., M;}.
Now we have the following claim.

CLAIM 7.8. — The pair (G, ¢) splits over a free group of rank D — d.
Proof of Claim 7.8. — Note that

r= (Mrat= M ((Magp= M) L (fMegym M)

It thus follows from Tietze transformations that the assignment z; — t*at™?
induces an isomorphism

(Tay- oy, t| Ty oo T T = tait™ fori=d,...,D—1) = (a,t|r).
We write A = (z4,...,zp |2y ... 2y} ). It follows from the Freiheitssatz,
see [38, Section IL.5], that xg4,...,2p_1 and x441,...,2Zp each generate a
free subgroup of A. Now we write B = (24,...,2p—_1) and we denote by

¢: B — A the injective map which is given by ¢(x;) = x;41 for ¢ =
d,...,D — 1. Note that

(Td, s Tp, t[Thp oo T Tt =tat fori=d,...,D—1)

= (A, t|p(B) =tBt™1).
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We thus showed that the pair (G, ¢) splits over the free group
B = <xda s axD—1>
of rank D — d. This concludes the proof of Claim 7.8. g

Now the lemma follows from the following claim.
Cram 7.9. — th(Pr,¢) =D —d — 1.
Proof of Claim 7.9. — We note that the Fox derivative r; is given by

O |
ry = ZHth’x”J’Ei(l+t+...+t|mi\)
i=1j=1
where ¢, = 1 if m; > 0 and ¢, = —t~! if m; < 0. It follows easily that

th(P(r:),$) = D —d — 1. Evidently we have th(P(x — 1), ¢) = 0. It follows
from Proposition 3.5 and the additivity of thickness, see Lemma 7.1(1),
that

th(Pr, ¢) = th(P(r¢), ¢) —th(P(x —1),¢) =D —d — 1.
This concludes the proof of Claim 7.9 and thus of the Lemma 7.7. ]

7.4. Lower bounds on the complexity of splittings

In this section we will prove the following proposition which gives us
lower bounds on ¢(G, ¢).

PROPOSITION 7.10. — Let G be a group which admits a nice (2,1)—
presentation. Suppose that G is residually G. Then for any epimorphism
¢: G — Z we have

c(G, ¢) = th(Pr, ¢) + 1.

This proposition is in fact a consequence of Proposition 6.9 and the
following proposition.

PROPOSITION 7.11. — Let G be a group which admits a nice (2,1)—
presentation. Let ¢: G — T' be an admissible homomorphism such that
T(Xx,¢) # 0 and such that ¢(x) and ¢(y) are non-trivial. Then for any
epimorphism ¢: G — Z we have

(G, ¢) 2 th(P(r(Xx, ¢)), 9)-

Remark 7.12. — This proposition is related to [24, Theorem 8.5] where
we gave lower bounds on the splitting complexity in terms of twisted Rei-
demeister torsion. The proposition is also related to the lower bounds on
the knot genus and Thurston norm which were obtained by Cochran and
Harvey [12, 27] in terms of degrees of higher-order Alexander polynomials.
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In the proof of Proposition 7.11 we will need several results from [12,
20, 27]. In order to state the results we need a few definitions. Let T" be a
group and let ¢: I' — Z be an epimorphism. We write IV = Ker(¢: T' — Z).
Given a Z[I']-left module M we define

dim¢(M) = dimK(F/) (K(F/) ®Z[F'] M) .

Example 7.13. — Let T" = (t) and let ¢ = id. As usual we identify the
group ring of I' = Z with Z[t*!]. Let A(t) be a k x k-matrix over Z[t*!]
with det(A(t)) # 0. We then have IV = {0} and

dimg, (Z[F [ ADZE)
— dimg (Q @z Z[EYF/ZIEE P A(t))
— dimg (QIF']* /QIEF A()) = deg(det(A(H)).
Here and throughout the paper recall that given a ring R we view elements
in R* as row-vectors and matrices act on R* by right multiplication.
We will need the following lemma.

LEMMA 7.14. — Let " be a group in G and let ¢: I' — Z be an epimor-
phism. We write I'' = Ker(¢). Let t € I' be an element with ¢(t) = 1. Let
A and B be matrices over Z[I"'] with k columns and | rows. Here k € N
and | € NU {oo}. Suppose that all but ¢ rows of B are zero. If

dimg (Z[[]*/Z[T)Y (A +tB)) < oo
then
dim, (Z[T)*/Z[T)(A+tB)) < c.

Proof. — Let T" be a group in G and let ¢: I' — Z be an epimorphism.
We write IV = Ker(¢). Let t € T’ be an element with ¢(¢) = 1. We write
K = K(I'V). We recall several facts and conventions established and col-
lected in [12, 20, 27]. First of all, by [27, Proposition 4.5] we can iden-
tify K(I') ®z;r Z[I'] with a twisted Laurent polynomial ring K[¢t*!] over
K = K(I"). For a Z[['-module M we have by definition that dimg(M) =
dimg (K[t*'] ®zr) M). We also note that by [45, Proposition I11.3.5] the
ring K[t*1] is flat over Z[['] since K[t*!] is a localization of Z[I].

Given 7 in N we denote by A; and T; the i x k-matrices which are given
by the first ¢ rows of A and B. Now we have the following claim.

CLAIM 7.15. — There exists an i such that the projection map
K[tETFE /KEE (A 4 tT) — K[t /K[EE) (A +tB)

is an isomorphism.

ANNALES DE L’INSTITUT FOURIER



GROUPS AND MARKED POLYTOPES 869

Proof of Claim 7.15. — For i € NU {oo} we consider
S; := the span over K[t¥!] of the first i rows of A+ tB.

(Since we view all modules as left modules we take of course the left-span
of the first i rows.) Note that S, Ss,... is an ascending chain of K[t*1]-
left submodules of K[t*!]*. Since K[t*!] is a principal ideal domain we
deduce from [33, Proposition 1.21] that the chain Sy, S, ... stabilizes. Put
differently, there exists an ¢ with S; = S;11 = ---. It thus follows that

S; = U;5; = S. This concludes the proof of Claim 7.15. O

We note that for a finitely generated K[tT!]-left module V we have
dimg (V) < oo if and only if V is a K[t*!]-torsion module. It follows from
the flatness of K[t*1] and the above claim that

dimg (Z[I)*/Z[T]/(A + tB))
— dimyc ((KI='] @) ZIT/ZITT (A + £B)))
= dimy (K[tF'* /K[t (A + tB))
= dimg (K[t /KE (A +tT3)) -
By assumption dimg (K[t*']*/K[t+1]"(A; 4+ tT})) is finite. By the above
this implies that the K[t*']-module K[til] JK[EENH(A; + tT;) is K[tF)-
torsion. It follows from [27, Proof of Proposition 9.1] that
dimg (K[ */KEE (A +tT3))
is bounded above by c. O
In the following lemma we calculate the dimension for a module presented

by a 1 x 1-matrix.

LEMMA 7.16. — Let I" be a group in G and let ¢: I' — 7Z be an epimor-
phism. Then given any non-zero element f of Z[I'| we have

dimg (Z[I']/Z[T]f) = the(P(f))-

Proof. — Let T" be a group in G and let ¢: I' — Z be an epimorphism.
We use some of the notation from the proof of Lemma 7.14. In particular
we pick ¢t € I with ¢(t) = 1 and we write K = K(I"). Furthermore we again
identify K(I') ®zr Z[I'] with a twisted Laurent polynomial ring K[t*].

By sorting the summands of f according to their ¢-values we can write
f= le.j:d fit* where f; € Z[I'] with f; # 0 and fp # 0. It follows easily

from the definitions that
tho(P(f) = D —d.
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On the other hand we can use the usual argument from commutative Lau-
rent polynomial rings with coefficients in a field to show that

dim g (K[t*])/K[t*])f) = D — d.
But as in the proof of Lemma 7.14 we have
dimy (K[t*]/K[t*]f) = dimg (Z[T]/Z[T] ). O

LEMMA 7.17. — Let k € Nand! € NU{oo}. Let T be a group in G and
let ¢: I' — Z be an epimorphism. Let

C. =0 2frf 1, 7y g zirp 2, 20 5 0

be a chain complex. If xy # 0 in Z[T'], then dimy(Ho(C')) is finite and
dim (H1(C.)) — dimg(Ho(C..)
= dimy (Z[T)*/Z[T)'T1) — dimy(Z[T]/Z[T) o).

This equality means in particular that either both sides are finite or both
are infinite.

Proof. — We again use the definitions and conventions from Lemma 7.14.
By the flatness of K[t*!] we have H; (K[t @z C.) = K[tF | @z Hi (Cs).
We thus have to show that Ho(C;K[t*!]) is a finite-dimensional K-vector
space and that

dimg (H:(C; K[t*])) — dimg (Ho(C; K[tF1]))

= dimg (K[tF* /K[t ) — dimg (K[t /K[ o).

We consider the following commutative diagram:

K[t @ C, = K[t*!)! K[t*!] @ K[t*1]* ﬂ K[t¥] — 0

S | |

W* = 00— K[til}k/K[tiqul 2> K[til]/K[tillxo — 0,

(To Tv)
—_—

where the vertical maps are given by the obvious projection maps. It is
straightforward to verify that the vertical maps induce isomorphisms be-
tween the homology groups in dimensions 1 and 0 of the chain complex
K[t*1] ®zir) C« on top and the chain complex W, on the bottom. Put
differently, we have

(7.1) Hy(K[t*') ®@zr) C) = Hy(W,) for i =0, 1.
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By assumption ¢ # 0 in K[t*1], in particular K[t*1]/K[t*!]x( is a finite-
dimensional K-vector space. This implies immediately that
Ho(C;K[E)) = K]/ (K[ @ K[EH1]%) (32)
is a finite-dimensional K-vector space. This also implies that
Hy(C;K[tFY) 2 Ker ( Czy: KR KT — K[til]/K[til]xo)

is finite-dimensional if and only if K[t*!]/K[tT!]T} is finite-dimensional.

Now we suppose that K[tT1]/K[t*!]T} is finite-dimensional. The bot-
tom sequence of the above commutative diagram is thus a map between
two finite-dimensional K-vector spaces. It thus follows that the difference
between the dimensions of the kernel and the cokernel equals the difference
between the dimensions of the vector spaces, i.e. we have

dimg (H1(W,)) — dimg (Ho(W.))
= dim g (K[t /K[ Ty — dim g (K[t /K[t o).

The Lemma 7.17 follows from (7.1). O

Proof of Proposition 7.11. — Let G be a group which admits a nice
(2, 1)-presentation. Furthermore, let ¢: G — Z be an epimorphism. We
write G’ = Ker(¢).

Let p: G — T be an admissible homomorphism such that 7(X,, @) # 0.
We denote the homomorphism

T — Hy(T';Z)/torsion <~ H;(G;Z)/torsion 2 Z

again by ¢. Furthermore we write IV = Ker(¢: I' — Z).

CrAaMm 7.18. — We have
the (P(7(Xr,¢))) = dimg (H1 (Xr; Z[I)) — dimg (Ho (X3 Z[T])).

Proof of Claim 7.18. — Now we consider the chain complex C¥ (X; Z[T'])
which with respect to the obvious bases is given by

(«P(x—l))
e(y—1)
—_—

Recall that we assume that ¢(z) is non-trivial, i.e. ¢(x — 1) is non-zero in
Z[T']. Thus we can apply Lemma 7.17 to the chain complex CY(X;Z[I'])
and we obtain that

0 s z[r] U= e), 72 Z[T] — .

dimg (Hy (X7 Z[T))) — dimy, (Ho(Xo: Z[T)
= dimy (Z[T)/Z[Tp(r,)) — dimg (ZIT)/Zp(x — 1))
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But by Lemma 7.16 the latter difference equals precisely

thy (P(e(ry))) — the(P(p(z — 1)) = thy(P(T(Xx, ¢)))-
This concludes the proof of Claim 7.18. (|
Now we write ¢ = ¢(G, ¢). Let

fiG S (At | u(B) =tBt™)

be a splitting of (G, ¢) over a finitely generated group B with rank c.
We pick a presentation (gi,...,gx|71,72,...) for A and we pick a finite
generating set x1,...,x. for B. Note that

(915 Gr,t| 71,72, ..., and p(b) = tbt~! for all b € B)
={(g1,... ,gk,t\7‘1,7"2,...,u(xl)fltxltfl, . ,u(xc)fltzctfly

We denote by I € NU{oo} the number of relators in the second presentation.
We denote by Y the 2-complex corresponding to this presentation of G. It
has one 0-cell, k 4+ 1 1-cells and I 2-cells. Also note that m(Y) = m1(X)
and we thus have

dimy(HY (X5; Z[)) = dimy (H? (Y; Z[I)) for i =0, 1.
In light of the previous claim it thus suffices to prove the following claim.

CrAam 7.19.
c—12>dimg(H(Y;Z[I)) — dimg (Ho(Y; Z[I)).

Proof of Claim 7.19. — We denote by M the matrix over Z[G] that is
given by all the Fox derivatives of the relators. We denote the first column
of M, corresponding to the Fox derivatives with respect to ¢, by My, and
we denote the matrix given by all the other columns by M;.

We make the following observations.

(1) The relators r1,r9,... are words in g1, ..., gg. The Fox derivatives
of the r; with respect to the g; thus lie in Z[G].
(2) For any i € {1,...,k} and j € {1,...,c} we have
0

_ _ 0 _ .0
99, (p(xy) " Htastt) = @(M(%) )+ plz;) 1t@%‘-

The same argument as in (1) shows that the first term lies in Z[G'],
and one can similarly see that the second term is of the form ¢ - g,
where g € Z[G'].
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Thus M; is of the form
My = Py +tQx,
where P; and (1 are matrices over Z[G'], and where all but the last ¢ rows
of Q1 are zero.
By a slight abuse of notation we denote ¢(t) € T' again by ¢. Now we
consider the chain complex CY (Y;Z[I']) with respect to the obvious bases:

w(t—1)
(s@(g;—l)>
1 e(Mo)®B(o(P)+tp(Q)) 2T @ Z[T]* e(gr—1)

Z[T] Z[T] — 0.

Note that ¢ is non-trivial in I" since ¢ factors through I". We can thus apply
Lemma 7.17 and we obtain that

dimg (H (V5 Z[T))) — dimg (Ho(Y; ZT)))
= dimg (Z[T]*/Z[T) (p(P) + t(Q))) — dimg (Z[T/Z[T)p(t — 1)).
By Lemma 7.14 we have
¢ > dimg (Z[T]*/Z[0) (9(P) + t(Q)))

and by Lemma 7.16 we have dimg(Z[I']/Z[I']¢(t — 1)) = 1. This concludes
the proof of Claim 7.19 and thus of Proposition 7.11. g

8. Groups which admit a (2,1)—presentation with b; =1

Throughout the paper we worked with nice (2, 1)—presentations, i.e. with
presentations m = (z, y|r) where r is non-empty and cyclically reduced and
with b1 (G,) = 2.

Now we will see that we can drop the condition b, (Gr) = 2 in almost all
cases. Before we state the next proposition we need to introduce two more
definitions.

(1) For m,n € Z the Baumslag—Solitar group B(m,n) is defined as
B(m,n) = (z,y|xy™z"" = y").

(2) We say a (2,1)-presentation 7 = (x,y | r) is simple if b1 (Gr) = 1, if
x defines a generator of Hj(7;Z)/torsion, if y represents the trivial
element in H;(7;Z)/torsion and if the presentation is not of the
form (x,y|y™) for some m € Z.

Now we can formulate the following proposition.
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PROPOSITION 8.1. — Let m = (x,y|r) be a (2,1)-presentation where r
is non-trivial and cyclically reduced. If 7 is simple and if G is not isomor-
phic to B(£1,n) for any n € Z, then there exists a unique marked polytope
M, such that

M+ M(z —1) = M(ry).

Proof. — By our hypothesis there exists an epimorphism ¢: 7 — Z with
¢(z) = 1 and ¢(y) = 0. We use this epimorphism to identify H;(Gr;R)
with R.

Note that M(z — 1) is an interval of length 1 where both end points
are marked. By Lemma 2.5 we can cyclically permute the relation r with-
out affecting the statement of the proposition. Since r is non-trivial and
since the presentation is simple we can thus assume that r is of the form
r=gxMy"™ . . .zg"ky" where mi,nq,..., Mg, N are non-zero. Our as-
sumptions on z and y imply that my +---+my = 0. Given i € {1,...,k}
we write

M;=mq+ - +my,
D = max{Mi,..., My} — min{M, ..., My}

It follows easily from the definitions that P(r,) is an interval of length D.

If D > 2, then we denote by M a marked interval in R with length D —1
where we mark the left (respectively right) vertex if and only if the left
(respectively right) vertex of M(r,) is marked. After possibly translating
M by an integer we then have M + M(z — 1) = M(ry).

Now we consider the case that D = 1. It follows that the m; are alter-
nating between 1 and —1. Since my + --- + my = 0 we deduce that k is
even. It follows easily from Corollary 3.4 that both end points of M(r,)
are not marked unless £ = 2 and at least one of n; or ny is equal to £1.
But this case does not occur, since such a group would be isomorphic to
a Baumslag—Solitar group of the form B(+1,n). Summarizing, we showed
that M(ry) is an interval of length one such that both end points are not
marked. In this case we take M to be the polytope which consists of a
single not marked point. It is clear that this M has the desired property
and that it is unique up to translation. O

For a (2, 1)—presentation as in Proposition 8.1 we now define M to be
the marked polytope that we found in that proposition.

Finally let # = (z,y|r) be any (2,1)-presentation where r is non-
trivial and cyclically reduced and with b1(G,) = 1. We can apply the
proof of Lemma 7.5 verbatim to m and we obtain a simple presentation
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7w’ = (a',y"| '), where r’ is non-trivial and cyclically reduced. If G, = G
is not isomorphic to B(+1,n), then we define M, := M.

Now it is straightforward to verify that the statements of Theorems 1.1,
1.3 and 1.5 also hold in this context. We leave the details to the reader.

Finally, note that it is not possible to find a marked polytope for the
Baumslag—Solitar groups B(+1,7n),n # £1 which satisfies the conclusions
of Theorems 1.1 and 1.5. Indeed, for Theorem 1.5 to hold the polytope
would have to consist of a single point. But the Bieri-Neumann—Strebel
invariant contains one epimorphism ¢: # — Z but not the other. So the
one vertex of the polytope would have to be marked and not marked at the
same time.

9. Conclusion, conjectures and questions

Given a group G with a nice (2, 1)—presentation = we used Fox calculus
to define a marked polytope M, that in particular determines the Bieri—
Neumann—Strebel invariant of G . We also showed that in many cases M
carries interesting further information on G. It remains an open problem to
relate the polyhedral structure of the polytope P, to properties of the group
G, and to extend the construction to more general classes of groups. We
conclude this paper with several conjectures and questions aimed at this.

CONJECTURE 9.1. — Up to translation the polytope P, is an invariant
of the underlying group G.

In order to avoid confusion we now phrase the conjecture more carefully.
Let G be a group. Suppose that there exist two nice (2, 1)—presentations 7
and 7 and isomorphisms ¢: G — G, and ®: G — Gx. Then the conjec-
ture is, that the polytopes ®~1(P;) and ®~1(P;) agree in Hy(G;R) up to
translation by an element in Hi(G;Z).

In Theorem 1.5 we proved that if G is residually a torsion-free elementary
amenable group, then the thickness of P, for any epimorphism ¢: G —
Z can be described purely in terms of G, and ¢. This does not give an
intrinsic definition of the polytope since by Lemma 7.1(2), the thickness
only determines the symmetrization of P,.

Question 9.2. — Is there an intrinsic definition of the polytope Pr?

The Bieri-Neumann—Strebel-invariant (G ) can be identified with an
open subset contained in the interior of the faces of P,. Moreover, the
set of all points in 3(G;) corresponding to homomorphisms with finitely
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generated kernel is symmetric and open. In this way, given an asymmetric
marked polytope, the vertices determine a natural subdivision of some of
the opposite faces, and hence a possibly finer polyhedral structure, with
some open regions corresponding to finite generation.

Question 9.3. — Does the polyhedral structure of the polytope P, con-
tain more information about G,?

Question 9.4. — Is it possible to assign to any finitely presented group a
marked polytope which satisfies the conclusions of Theorems 1.1 and 1.57
More modestly, one could ask for a marked polytope for groups with a
presentation of deficiency one.

Added in proof

Considerable progress towards answering the above question has recently
been made by Kielak [31].

If G is a group with a 2-dimensional Eilenberg—Maclane space of zero Eu-
ler characteristic, then the approach of Section 6.4 together with a variation
on Proposition 6.8 will assign to G a (possibly empty) polytope. However,
if G is not residually G, then it is unlikely that the polytope will have the
desired properties.

Over the last years a lot of effort has been put into understanding free-
by-cyclic groups, i.e. groups of the form Z x, F, where F' is a free group
and ¢: F — F' is an isomorphism. These groups have a presentation of
deficiency one, and they are residually G by Lemma 6.1. The construction of
Section 6.4 will then actually give a non-empty polytope which has already
been studied by Funke-Kielak [25]. It should be interesting to relate the
polytope to aspects of [15, 16] and [2]. For example, if ¢ € H'(G,;R) has
the property that both ¢ and —¢ lie in ¥(G), then both approaches “see”
the function 1 — 1 — rank(Ker(%)) in a neighborhood of ¢.

Finally, let 7 be a presentation such that each generator appears at least
twice in the relators. (Note that a nice (2, 1)—presentation is of that type.)
Given such a presentation m Turaev [49] defined a seminorm on H'(X,;R).
We conclude this paper with the following question.

Question 9.5. — Let G be a nice (2, 1)—presentation. Is the polytope P,
in H1(Gr;R) = Hi(X;R) dual to the unit norm ball of the norm defined
by Turaev [49] on H'(X,;R) = Hom(H;(X,;R),R)?
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