We characterize bifurcation values of polynomial functions by using the theory of perverse sheaves and their vanishing cycles. In particular, by introducing a method to compute the jumps of the Euler characteristics with compact support of their fibers, we confirm the conjecture of Némethi–Zaharia in many cases.
Nous caractérisons les valeurs de bifurcation de fonctions polynomiales en utilisant la théorie des faisceaux pervers et leurs cycles évanescents. En particulier, en introduisant une méthode pour calculer les sauts de caractéristiques d’Euler à support compact de leurs fibres, nous confirmons la conjecture de Némethi–Zaharia dans de nombreux cas.
Accepted:
Published online:
Keywords: bifurcation values, perverse sheaves, vanishing cycles
Mot clés : valeurs de bifurcation, faisceaux pervers, cycles évanescents
@article{AIF_2020__70_2_597_0, author = {Takeuchi, Kiyoshi}, title = {Bifurcation values of polynomial functions and perverse sheaves}, journal = {Annales de l'Institut Fourier}, pages = {597--619}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {2}, year = {2020}, doi = {10.5802/aif.3320}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3320/} }
TY - JOUR AU - Takeuchi, Kiyoshi TI - Bifurcation values of polynomial functions and perverse sheaves JO - Annales de l'Institut Fourier PY - 2020 SP - 597 EP - 619 VL - 70 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3320/ DO - 10.5802/aif.3320 LA - en ID - AIF_2020__70_2_597_0 ER -
%0 Journal Article %A Takeuchi, Kiyoshi %T Bifurcation values of polynomial functions and perverse sheaves %J Annales de l'Institut Fourier %D 2020 %P 597-619 %V 70 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3320/ %R 10.5802/aif.3320 %G en %F AIF_2020__70_2_597_0
Takeuchi, Kiyoshi. Bifurcation values of polynomial functions and perverse sheaves. Annales de l'Institut Fourier, Volume 70 (2020) no. 2, pp. 597-619. doi : 10.5802/aif.3320. https://aif.centre-mersenne.org/articles/10.5802/aif.3320/
[1] Milnor number at infinity, topology and Newton boundary of a polynomial function, Math. Z., Volume 233 (2000) no. 4, pp. 679-696 | DOI | MR | Zbl
[2] On the topology of a generic fibre of a polynomial function, Commun. Algebra, Volume 28 (2000) no. 4, pp. 1767-1787 | DOI | MR | Zbl
[3] Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., Volume 92 (1988) no. 2, pp. 217-241 | DOI | MR | Zbl
[4] Invertible polynomial mappings via Newton non-degeneracy, Ann. Inst. Fourier, Volume 64 (2014) no. 5, pp. 1807-1822 | DOI | Numdam | MR | Zbl
[5] Sheaves in topology, Universitext, Springer, 2004 | DOI | Zbl
[6] Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not., Volume 2012 (2012) no. 15, pp. 3567-3613 | DOI | MR | Zbl
[7] Rational intersection cohomology of projective toric varieties, J. Reine Angew. Math., Volume 413 (1991), pp. 88-98 | DOI | MR | Zbl
[8] Introduction to toric varieties, Princeton University Press, 1993 | Zbl
[9] Sur la topologie des polynômes complexes, Acta Math. Vietnam., Volume 9 (1984) no. 1, pp. 21-32 | Zbl
[10] On the topology of polynomial mappings from to , Int. J. Math., Volume 22 (2011) no. 3, pp. 435-448 | DOI | MR | Zbl
[11] D-modules, perverse sheaves, and representation theory, Birkhäuser, 2008 | DOI | Zbl
[12] Sheaves on manifolds, Springer, 1990 | DOI | Zbl
[13] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31 | DOI | MR | Zbl
[14] On the zeta function of monodromy of a polynomial map, Compos. Math., Volume 95 (1995) no. 3, pp. 287-307 | Numdam | MR | Zbl
[15] Hypercohomology of Milnor fibres, Topology, Volume 35 (1996) no. 4, pp. 969-1003 | DOI | MR | Zbl
[16] Milnor fibers over singular toric varieties and nearby cycle sheaves, Tôhoku Math. J., Volume 63 (2011) no. 1, pp. 113-136 | DOI | MR | Zbl
[17] Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., Volume 268 (2011) no. 1-2, pp. 409-439 | DOI | MR | Zbl
[18] Monodromy at infinity of polynomial maps and Newton polyhedra, with Appendix by C. Sabbah, Int. Math. Res. Not., Volume 2013 (2013) no. 8, pp. 1691-1746 | DOI | MR | Zbl
[19] On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 4, pp. 681-689 | DOI | MR | Zbl
[20] Bifurcation set, -tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J., Volume 36 (2013) no. 1, pp. 77-90 | DOI | MR | Zbl
[21] Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer, 1988 | Zbl
[22] Non-degenerate complete intersection singularity, Hermann, 1997 | Zbl
[23] On the bifurcation set of complex polynomial with isolated singularities at infinity, Compos. Math., Volume 97 (1995) no. 3, pp. 369-384 | Numdam | MR | Zbl
[24] Singularities at infinity and their vanishing cycles, Duke Math. J., Volume 80 (1995) no. 3, pp. 771-783 | DOI | MR | Zbl
[25] Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace , J. Math. Soc. Japan, Volume 26 (1974) no. 2, pp. 241-257 | DOI | MR | Zbl
[26] Monodromies at infinity of non-tame polynomials, Bull. Soc. Math. Fr., Volume 144 (2016) no. 3, pp. 477-506 | DOI | MR | Zbl
[27] Asymptotic equisingularity and topology of complex hypersurfaces, Int. Math. Res. Not., Volume 1998 (1998) no. 18, pp. 979-990 | DOI | MR | Zbl
[28] Topology at infinity of polynomial mappings and Thom regularity condition, Compos. Math., Volume 111 (1998) no. 1, pp. 89-109 | DOI | MR | Zbl
[29] Polynomials and vanishing cycles, Cambridge University Press, 2007 | DOI | Zbl
[30] On the bifurcation set of a polynomial function and Newton boundary II, Kodai Math. J., Volume 19 (1996) no. 2, pp. 218-233 | DOI | MR | Zbl
Cited by Sources: