Bifurcation values of polynomial functions and perverse sheaves
[Les valeurs de bifurcation de fonctions polynomiales et faisceaux pervers]
Annales de l'Institut Fourier, Tome 70 (2020) no. 2, pp. 597-619.

Nous caractérisons les valeurs de bifurcation de fonctions polynomiales en utilisant la théorie des faisceaux pervers et leurs cycles évanescents. En particulier, en introduisant une méthode pour calculer les sauts de caractéristiques d’Euler à support compact de leurs fibres, nous confirmons la conjecture de Némethi–Zaharia dans de nombreux cas.

We characterize bifurcation values of polynomial functions by using the theory of perverse sheaves and their vanishing cycles. In particular, by introducing a method to compute the jumps of the Euler characteristics with compact support of their fibers, we confirm the conjecture of Némethi–Zaharia in many cases.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3320
Classification : 14F05, 14F43, 14M25, 32C38, 32S20
Keywords: bifurcation values, perverse sheaves, vanishing cycles
Mot clés : valeurs de bifurcation, faisceaux pervers, cycles évanescents

Takeuchi, Kiyoshi 1

1 Institute of Mathematics, University of Tsukuba 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571 (Japan)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2020__70_2_597_0,
     author = {Takeuchi, Kiyoshi},
     title = {Bifurcation values of polynomial functions and perverse sheaves},
     journal = {Annales de l'Institut Fourier},
     pages = {597--619},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {2},
     year = {2020},
     doi = {10.5802/aif.3320},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3320/}
}
TY  - JOUR
AU  - Takeuchi, Kiyoshi
TI  - Bifurcation values of polynomial functions and perverse sheaves
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 597
EP  - 619
VL  - 70
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3320/
DO  - 10.5802/aif.3320
LA  - en
ID  - AIF_2020__70_2_597_0
ER  - 
%0 Journal Article
%A Takeuchi, Kiyoshi
%T Bifurcation values of polynomial functions and perverse sheaves
%J Annales de l'Institut Fourier
%D 2020
%P 597-619
%V 70
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3320/
%R 10.5802/aif.3320
%G en
%F AIF_2020__70_2_597_0
Takeuchi, Kiyoshi. Bifurcation values of polynomial functions and perverse sheaves. Annales de l'Institut Fourier, Tome 70 (2020) no. 2, pp. 597-619. doi : 10.5802/aif.3320. https://aif.centre-mersenne.org/articles/10.5802/aif.3320/

[1] Artal Bartolo, Enrique; Luengo, Ignacio; Melle-Hernández, Alejandro Milnor number at infinity, topology and Newton boundary of a polynomial function, Math. Z., Volume 233 (2000) no. 4, pp. 679-696 | DOI | MR | Zbl

[2] Artal Bartolo, Enrique; Luengo, Ignacio; Melle-Hernández, Alejandro On the topology of a generic fibre of a polynomial function, Commun. Algebra, Volume 28 (2000) no. 4, pp. 1767-1787 | DOI | MR | Zbl

[3] Broughton, S. Allen Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., Volume 92 (1988) no. 2, pp. 217-241 | DOI | MR | Zbl

[4] Chen, Ying; Dias, Luis Renato G.; Takeuchi, Kiyoshi; Tibăr, Mihai Invertible polynomial mappings via Newton non-degeneracy, Ann. Inst. Fourier, Volume 64 (2014) no. 5, pp. 1807-1822 | DOI | Numdam | MR | Zbl

[5] Dimca, Alexandru Sheaves in topology, Universitext, Springer, 2004 | DOI | Zbl

[6] Esterov, Alexander; Takeuchi, Kiyoshi Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not., Volume 2012 (2012) no. 15, pp. 3567-3613 | DOI | MR | Zbl

[7] Fieseler, Karl-Heinz Rational intersection cohomology of projective toric varieties, J. Reine Angew. Math., Volume 413 (1991), pp. 88-98 | DOI | MR | Zbl

[8] Fulton, William Introduction to toric varieties, Princeton University Press, 1993 | Zbl

[9] Hà, Huy Vui; Lê, Dũng Tráng Sur la topologie des polynômes complexes, Acta Math. Vietnam., Volume 9 (1984) no. 1, pp. 21-32 | Zbl

[10] Hà, Huy Vui; Nguyen, Tat Thang On the topology of polynomial mappings from n to n-1 , Int. J. Math., Volume 22 (2011) no. 3, pp. 435-448 | DOI | MR | Zbl

[11] Hotta, Ryoshi; Takeuchi, Kiyoshi; Tanisaki, Toshiyuki D-modules, perverse sheaves, and representation theory, Birkhäuser, 2008 | DOI | Zbl

[12] Kashiwara, Masaki; Schapira, Pierre Sheaves on manifolds, Springer, 1990 | DOI | Zbl

[13] Kouchnirenko, A. G. Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31 | DOI | MR | Zbl

[14] Libgober, Anatoly S.; Sperber, Steven I. On the zeta function of monodromy of a polynomial map, Compos. Math., Volume 95 (1995) no. 3, pp. 287-307 | Numdam | MR | Zbl

[15] Massey, David B. Hypercohomology of Milnor fibres, Topology, Volume 35 (1996) no. 4, pp. 969-1003 | DOI | MR | Zbl

[16] Matsui, Yutaka; Takeuchi, Kiyoshi Milnor fibers over singular toric varieties and nearby cycle sheaves, Tôhoku Math. J., Volume 63 (2011) no. 1, pp. 113-136 | DOI | MR | Zbl

[17] Matsui, Yutaka; Takeuchi, Kiyoshi Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., Volume 268 (2011) no. 1-2, pp. 409-439 | DOI | MR | Zbl

[18] Matsui, Yutaka; Takeuchi, Kiyoshi Monodromy at infinity of polynomial maps and Newton polyhedra, with Appendix by C. Sabbah, Int. Math. Res. Not., Volume 2013 (2013) no. 8, pp. 1691-1746 | DOI | MR | Zbl

[19] Némethi, András; Zaharia, Alexandru On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 4, pp. 681-689 | DOI | MR | Zbl

[20] Nguyen, Tat Thang Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J., Volume 36 (2013) no. 1, pp. 77-90 | DOI | MR | Zbl

[21] Oda, Tadao Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer, 1988 | Zbl

[22] Oka, Mutsuo Non-degenerate complete intersection singularity, Hermann, 1997 | Zbl

[23] Parusiński, Adam On the bifurcation set of complex polynomial with isolated singularities at infinity, Compos. Math., Volume 97 (1995) no. 3, pp. 369-384 | Numdam | MR | Zbl

[24] Siersma, Dirk; Tibăr, Mihai Singularities at infinity and their vanishing cycles, Duke Math. J., Volume 80 (1995) no. 3, pp. 771-783 | DOI | MR | Zbl

[25] Suzuki, Masakazu Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace 2 , J. Math. Soc. Japan, Volume 26 (1974) no. 2, pp. 241-257 | DOI | MR | Zbl

[26] Takeuchi, Kiyoshi; Tibăr, Mihai Monodromies at infinity of non-tame polynomials, Bull. Soc. Math. Fr., Volume 144 (2016) no. 3, pp. 477-506 | DOI | MR | Zbl

[27] Tibăr, Mihai Asymptotic equisingularity and topology of complex hypersurfaces, Int. Math. Res. Not., Volume 1998 (1998) no. 18, pp. 979-990 | DOI | MR | Zbl

[28] Tibăr, Mihai Topology at infinity of polynomial mappings and Thom regularity condition, Compos. Math., Volume 111 (1998) no. 1, pp. 89-109 | DOI | MR | Zbl

[29] Tibăr, Mihai Polynomials and vanishing cycles, Cambridge University Press, 2007 | DOI | Zbl

[30] Zaharia, Alexandru On the bifurcation set of a polynomial function and Newton boundary II, Kodai Math. J., Volume 19 (1996) no. 2, pp. 218-233 | DOI | MR | Zbl

Cité par Sources :