On considère ici des quotients du plan hyperbolique par des groupes d’isométries convexes co-compacts . On s’intéresse au comportement des résonances du Laplacien où est un revêtement Galoisien de haut degré de . En combinant des techniques de formalisme thermodynamique et de théorie des représentations, on prouve, dans le régime de haut degré, de nouveaux théorèmes d’existence de résonances non-triviales près de l’axe pour deux familles de revêtements, les cas abéliens et le cas des congruences.
Let be a convex co-compact discrete group of isometries of the hyperbolic plane , and the associated surface. In this paper we investigate the behaviour of resonances of the Laplacian for large degree covers of given by where is a finite index normal subgroup of . Using techniques of thermodynamical formalism and representation theory, we prove two new existence results of sharp non-trivial resonances close to , in the large degree limit, for abelian covers and infinite index congruence subgroups of .
Révisé le :
Accepté le :
Publié le :
Keywords: Hyperbolic surfaces, Geometrically finite fuchsian groups, Laplace spectrum and resonances, Selberg zeta function, Representation theory, Transfer operators and thermodynamical formalism
Mot clés : Surfaces hyperboliques, groupes Fuchsiens géométriquement finis, Spectre du Laplacien et résonances, fonctions zêtas de Selberg, théorie des représentations, opérateurs de transfert et formalisme thermodynamique
Jakobson, Dmitry 1 ; Naud, Frédéric 2 ; Soares, Louis 3
@article{AIF_2020__70_2_523_0, author = {Jakobson, Dmitry and Naud, Fr\'ed\'eric and Soares, Louis}, title = {Large degree covers and sharp resonances of hyperbolic surfaces}, journal = {Annales de l'Institut Fourier}, pages = {523--596}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {2}, year = {2020}, doi = {10.5802/aif.3319}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3319/} }
TY - JOUR AU - Jakobson, Dmitry AU - Naud, Frédéric AU - Soares, Louis TI - Large degree covers and sharp resonances of hyperbolic surfaces JO - Annales de l'Institut Fourier PY - 2020 SP - 523 EP - 596 VL - 70 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3319/ DO - 10.5802/aif.3319 LA - en ID - AIF_2020__70_2_523_0 ER -
%0 Journal Article %A Jakobson, Dmitry %A Naud, Frédéric %A Soares, Louis %T Large degree covers and sharp resonances of hyperbolic surfaces %J Annales de l'Institut Fourier %D 2020 %P 523-596 %V 70 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3319/ %R 10.5802/aif.3319 %G en %F AIF_2020__70_2_523_0
Jakobson, Dmitry; Naud, Frédéric; Soares, Louis. Large degree covers and sharp resonances of hyperbolic surfaces. Annales de l'Institut Fourier, Tome 70 (2020) no. 2, pp. 523-596. doi : 10.5802/aif.3319. https://aif.centre-mersenne.org/articles/10.5802/aif.3319/
[1] isoperimetric inequalities for graphs, and superconcentrators, J. Comb. Theory, Ser. B, Volume 38 (1985) no. 1, pp. 73-88 | DOI | MR | Zbl
[2] Precise counting results for closed orbits of Anosov flows, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 1, pp. 33-56 | DOI | Numdam | MR | Zbl
[3] Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 1, pp. 81-120 | DOI | Numdam | MR | Zbl
[4] Euclidean algorithms are Gaussian, J. Number Theory, Volume 110 (2005) no. 2, pp. 331-386 | DOI | MR | Zbl
[5] Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008, xiv+472 pages | DOI | MR | Zbl
[6] The spectrum of hyperbolic surfaces, Universitext, Springer; EDP Sciences, 2016, xiii+370 pages (Appendix C by Valentin Blomer and Farrell Brumley) | DOI | MR | Zbl
[7] Spectral theory of infinite-area hyperbolic surfaces, Progress in Mathematics, 318, Birkhäuser, 2016, xiii+463 pages | DOI | MR | Zbl
[8] Symmetry reduction of holomorphic iterated function schemes and factorization of Selberg zeta functions, J. Spectr. Theory, Volume 6 (2016) no. 2, pp. 267-329 | DOI | MR | Zbl
[9] Fourier dimension and spectral gaps for hyperbolic surfaces, Geom. Funct. Anal., Volume 27 (2017) no. 4, pp. 744-771 | DOI | MR | Zbl
[10] Generalization of Selberg’s theorem and affine sieve, Acta Math., Volume 207 (2011) no. 2, pp. 255-290 | DOI | MR | Zbl
[11] On representations of integers in thin subgroups of , Geom. Funct. Anal., Volume 20 (2010) no. 5, pp. 1144-1174 | DOI | MR | Zbl
[12] On Zaremba’s conjecture, Ann. Math., Volume 180 (2014) no. 1, pp. 137-196 | DOI | MR | Zbl
[13] Free groups in lattices, Geom. Topol., Volume 13 (2009) no. 5, pp. 3021-3054 | DOI | MR | Zbl
[14] Hausdorff dimension of quasicircles, Publ. Math., Inst. Hautes Étud. Sci. (1979) no. 50, pp. 11-25 | DOI | MR | Zbl
[15] Markov maps associated with Fuchsian groups, Publ. Math., Inst. Hautes Étud. Sci. (1979) no. 50, pp. 153-170 | DOI | Numdam | MR | Zbl
[16] The spectral geometry of a tower of coverings, J. Differ. Geom., Volume 23 (1986) no. 1, pp. 97-107 | DOI | MR | Zbl
[17] All Fuchsian Schottky groups are classical Schottky groups, The Epstein birthday schrift (Geometry and Topology Monographs), Volume 1, Geometry and Topology Publications, 1998, pp. 117-125 | DOI | MR | Zbl
[18] Thermodynamic formalism and Selberg’s zeta function for modular groups, Regul. Chaotic Dyn., Volume 5 (2000) no. 3, pp. 281-312 | DOI | MR | Zbl
[19] Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Bras. Mat., Nova Sér., Volume 30 (1999) no. 2, pp. 199-221 | DOI | MR | Zbl
[20] On decay of correlations in Anosov flows, Ann. Math., Volume 147 (1998) no. 2, pp. 357-390 | DOI | MR | Zbl
[21] On the spectrum of towers, Proc. Am. Math. Soc., Volume 87 (1983) no. 2, pp. 322-329 | DOI | MR | Zbl
[22] Meromorphic continuation of selberg zeta functions with twists having non-expanding cusp (2017) (https://arxiv.org/abs/1709.00760) | Zbl
[23] Weak containment and induced representations of groups, Can. J. Math., Volume 14 (1962), pp. 237-268 | DOI | MR | Zbl
[24] A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, 1995, x+276 pages | MR | Zbl
[25] The zeta functions of Ruelle and Selberg. I, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 4, pp. 491-517 | DOI | Numdam | MR | Zbl
[26] Linear analysis and representation theory, Grundlehren der Mathematischen Wissenschaften, 198, Springer, 1973, ix+688 pages | MR | Zbl
[27] On the spectral gap for infinite index “congruence” subgroups of , Isr. J. Math., Volume 127 (2002), pp. 157-200 | DOI | MR | Zbl
[28] Representation theory and automorphic functions, Academic Press Inc., 1990, xviii+426 pages (translated from the Russian by K. A. Hirsch) | MR | Zbl
[29] Limit formulas for multiplicities in , Ann. Math., Volume 107 (1978) no. 1, pp. 133-150 | DOI | MR | Zbl
[30] Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal., Volume 129 (1995) no. 2, pp. 364-389 | DOI | MR | Zbl
[31] Scattering asymptotics for Riemann surfaces, Ann. Math., Volume 145 (1997) no. 3, pp. 597-660 | DOI | MR | Zbl
[32] Über das Spektrum des Laplace-Operators auf kompakten Riemannschen Flächen, Comment. Math. Helv., Volume 57 (1982) no. 4, pp. 627-647 | DOI | MR | Zbl
[33] On the critical line of convex co-compact hyperbolic surfaces, Geom. Funct. Anal., Volume 22 (2012) no. 2, pp. 352-368 | DOI | MR | Zbl
[34] Resonances and density bounds for convex co-compact congruence subgroups of , Isr. J. Math., Volume 213 (2016) no. 1, pp. 443-473 | DOI | MR | Zbl
[35] Homology and closed geodesics in a compact Riemann surface, Am. J. Math., Volume 110 (1988) no. 1, pp. 145-155 | DOI | MR | Zbl
[36] An introduction to harmonic analysis, Dover Publications, 1976, xiv+264 pages | MR | Zbl
[37] Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J., Volume 58 (1989) no. 3, pp. 795-821 | DOI | MR | Zbl
[38] Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math., Volume 163 (1989) no. 1-2, pp. 1-55 | DOI | MR | Zbl
[39] Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces. I, Commun. Pure Appl. Math., Volume 37 (1984) no. 3, pp. 303-328 | DOI | MR | Zbl
[40] Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces, Duke Math. J., Volume 166 (2017) no. 18, pp. 3425-3460 | DOI | MR | Zbl
[41] Fourier decay, renewal theorem and spectral gaps for random walks on split semi-simple Lie groups (2018) (https://arxiv.org/abs/1811.06484)
[42] Cayley graphs: eigenvalues, expanders and random walks, Surveys in combinatorics (Stirling, 1995) (London Mathematical Society Lecture Note Series), Volume 218, Cambridge University Press, 1995, pp. 155-189 | DOI | MR | Zbl
[43] Discrete groups, expanding graphs and invariant measures, Modern Birkhäuser Classics, Birkhäuser, 2010, iii+192 pages (with an appendix by Jonathan D. Rogawski) | DOI | MR | Zbl
[44] Quantitative spectral gap for thin groups of hyperbolic isometries, J. Eur. Math. Soc., Volume 17 (2015) no. 1, pp. 151-187 | DOI | MR | Zbl
[45] The thermodynamic formalism approach to Selberg’s zeta function for , Bull. Am. Math. Soc., Volume 25 (1991) no. 1, pp. 55-60 | DOI | MR | Zbl
[46] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987) no. 2, pp. 260-310 | DOI | MR | Zbl
[47] Closed geodesics in homology classes for convex co-compact hyperbolic manifolds, Proceedings of the Euroconference on Partial Differential Equations and their Applications to Geometry and Physics (Castelvecchio Pascoli, 2000), Volume 91 (2002), pp. 197-209 | DOI | MR | Zbl
[48] Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 1, pp. 116-153 | DOI | Numdam | MR | Zbl
[49] Precise asymptotics of the length spectrum for finite-geometry Riemann surfaces, Int. Math. Res. Not. (2005) no. 5, pp. 299-310 | DOI | MR | Zbl
[50] Density and location of resonances for convex co-compact hyperbolic surfaces, Invent. Math., Volume 195 (2014) no. 3, pp. 723-750 | DOI | MR | Zbl
[51] Bornes de Weyl fractales et résonances, Séminaire Bourbaki. Vol. 2015/2016. Exposés 1104–1119 (Astérisque), Volume 390, Société Mathématique de France, 2017, pp. 77-100 | MR | Zbl
[52] Eigenvalues of congruence covers of geometrically finite hyperbolic manifolds, J. Geom. Anal., Volume 25 (2015) no. 3, pp. 1421-1430 | DOI | MR | Zbl
[53] Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of , J. Am. Math. Soc., Volume 29 (2016) no. 4, pp. 1069-1115 | DOI | MR | Zbl
[54] The Chebotarov theorem for Galois coverings of Axiom A flows, Ergodic Theory Dyn. Syst., Volume 6 (1986) no. 1, pp. 133-148 | DOI | MR | Zbl
[55] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188, Société Mathématique de France, 1990 | Numdam | MR | Zbl
[56] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | DOI | MR | Zbl
[57] The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J., Volume 106 (2001) no. 2, pp. 321-390 (Appendix A by Charles Epstein) | DOI | MR | Zbl
[58] Geodesics in homology classes, Duke Math. J., Volume 55 (1987) no. 2, pp. 287-297 | DOI | MR | Zbl
[59] A thermodynamic formalism approach to the Selberg zeta function for Hecke triangle surfaces of infinite area, Commun. Math. Phys., Volume 337 (2015) no. 1, pp. 103-126 | DOI | MR | Zbl
[60] Symbolic dynamics, automorphic functions, and Selberg zeta functions with unitary representations, Dynamics and numbers (Contemporary Mathematics), Volume 669, American Mathematical Society, 2016, pp. 205-236 | DOI | MR | Zbl
[61] Homology and closed geodesics in a compact negatively curved surface, Am. J. Math., Volume 113 (1991) no. 3, pp. 379-385 | DOI | MR | Zbl
[62] Some applications of thermodynamic formalism to manifolds with constant negative curvature, Adv. Math., Volume 85 (1991) no. 2, pp. 161-192 | DOI | MR | Zbl
[63] Submersions and pre-images of sets of measure zero, Sib. Mat. Zh., Volume 28 (1987) no. 1, pp. 199-210 | MR | Zbl
[64] Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Am. Math. Soc., Volume 80 (1974), pp. 996-1000 | DOI | MR | Zbl
[65] Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr., Nouv. Sér. (2003) no. 95, vi+96 pages | DOI | Numdam | MR | Zbl
[66] Prime geodesic theorems, Ph. D. Thesis, Stanford University (USA) (1980) | MR
[67] Collected papers. I, Springer Collected Works in Mathematics, Springer, 2014, vi+711 pages (with a foreword by K. Chandrasekharan) | MR | Zbl
[68] Représentations linéaires des groupes finis, Hermann, 1978 | MR | Zbl
[69] Closed orbits in homology classes for Anosov flows, Ergodic Theory Dyn. Syst., Volume 13 (1993) no. 2, pp. 387-408 | DOI | MR | Zbl
[70] Trace ideals and their applications, Mathematical Surveys and Monographs, 120, American Mathematical Society, 2005, viii+150 pages | MR | Zbl
[71] Classical topology and combinatorial group theory, Graduate Texts in Mathematics, 72, Springer, 1993, xii+334 pages | DOI | MR | Zbl
[72] Group theory. I, Grundlehren der Mathematischen Wissenschaften, 247, Springer, 1982, xiv+434 pages (translated from the Japanese by the author) | MR | Zbl
[73] The theory of functions, Oxford University Press, 1939, x+454 pages | MR | Zbl
[74] Analogues of Artin’s factorization formulas in the spectral theory of automorphic functions associated with induced representations of Fuchsian groups, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 46 (1982) no. 6, pp. 1150-1158 | MR | Zbl
[75] Mathematical study of scattering resonances, Bull. Math. Sci., Volume 7 (2017) no. 1, pp. 1-85 | DOI | MR | Zbl
Cité par Sources :