Nous démontrons un nouveau critère intégral pour l’existence et la complétude des opérateurs d’onde correspondant aux uniques réalisations auto-adjointes des opérateurs de Laplace–Beltrami , , induits par deux métriques riemanniennes complètes quasi-isométriques et sur une variété non-compacte (sans bord) . En particulier, ce résultat fournit un critère pour que les spectres absolument continus de et coïncident. Notre preuve repose sur des estimations obtenues à l’aide d’une formule probabiliste de type Bismut pour le gradient d’un semigroupe de la chaleur. Contrairement aux résultats précédents, notre critère intégral nécessite seulement un certain contrôle des bornes inférieures sur la courbure de Ricci et des bornes supérieures sur les noyaux de la chaleur, mais aucun contrôle sur le rayon d’injectivité. En conséquence, nous obtenons un résultat de stabilité pour le spectre absolument continu sous le flot de Ricci.
We prove a new integral criterion for the existence and completeness of the wave operators corresponding to the unique self-adjoint realizations of the Laplace–Beltrami operators , , induced by two quasi-isometric complete Riemannian metrics and on a noncompact manifold (without boundary). In particular, this result provides a criterion for the absolutely continuous spectra of and to coincide. Our proof relies on estimates that are obtained using a probabilistic Bismut type formula for the gradient of a heat semigroup. Unlike all previous results, our integral criterion only requires some lower control on the Ricci curvatures and some upper control on the heat kernels, but no control on the injectivity radii. As a consequence, we obtain a stability result for the absolutely continuous spectrum under the Ricci flow.
Révisé le :
Accepté le :
Publié le :
Keywords: spectral theory, scattering theory, Riemannian manifold, Bismut type derivative formulas.
Mot clés : théorie spectrale, théorie du scattering, variété riemannienne, formules de dérivées de type Bismut.
Güneysu, Batu 1 ; Thalmaier, Anton 2
@article{AIF_2020__70_1_437_0, author = {G\"uneysu, Batu and Thalmaier, Anton}, title = {Scattering theory without injectivity radius assumptions, and spectral stability for the {Ricci} flow}, journal = {Annales de l'Institut Fourier}, pages = {437--456}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {1}, year = {2020}, doi = {10.5802/aif.3316}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3316/} }
TY - JOUR AU - Güneysu, Batu AU - Thalmaier, Anton TI - Scattering theory without injectivity radius assumptions, and spectral stability for the Ricci flow JO - Annales de l'Institut Fourier PY - 2020 SP - 437 EP - 456 VL - 70 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3316/ DO - 10.5802/aif.3316 LA - en ID - AIF_2020__70_1_437_0 ER -
%0 Journal Article %A Güneysu, Batu %A Thalmaier, Anton %T Scattering theory without injectivity radius assumptions, and spectral stability for the Ricci flow %J Annales de l'Institut Fourier %D 2020 %P 437-456 %V 70 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3316/ %R 10.5802/aif.3316 %G en %F AIF_2020__70_1_437_0
Güneysu, Batu; Thalmaier, Anton. Scattering theory without injectivity radius assumptions, and spectral stability for the Ricci flow. Annales de l'Institut Fourier, Tome 70 (2020) no. 1, pp. 437-456. doi : 10.5802/aif.3316. https://aif.centre-mersenne.org/articles/10.5802/aif.3316/
[1] Li–Yau type gradient estimates and Harnack inequalities by stochastic analysis, Probabilistic approach to geometry (Advanced Studies in Pure Mathematics), Volume 57, Mathematical Society of Japan, 2010, pp. 29-48 | DOI | MR | Zbl
[2] Scattering theory of the Hodge-Laplacian under a conformal perturbation, J. Spectr. Theory, Volume 7 (2017) no. 1, pp. 235-267 | DOI | MR | Zbl
[3] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differ. Geom., Volume 17 (1982) no. 1, pp. 15-53 | DOI | MR | Zbl
[4] Heat equation derivative formulas for vector bundles, J. Funct. Anal., Volume 183 (2001) no. 1, pp. 42-108 | DOI | MR | Zbl
[5] Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009, xviii+482 pages | MR
[6] Covariant Schrödinger semigroups on Riemannian manifolds, Operator Theory: Advances and Applications, 264, Birkhäuser/Springer, 2017, xviii+239 pages | DOI | MR | Zbl
[7] On open scattering channels for manifolds with ends, J. Funct. Anal., Volume 266 (2014) no. 9, pp. 5526-5583 | DOI | MR | Zbl
[8] Scattering theory for the Laplacian on manifolds with bounded curvature, J. Funct. Anal., Volume 253 (2007) no. 1, pp. 158-206 | DOI | MR | Zbl
[9] Methods of modern mathematical physics. III : Scattering theory, Academic Press Inc., 1979, xv+463 pages | MR | Zbl
[10] Deforming the metric on complete Riemannian manifolds, J. Differ. Geom., Volume 30 (1989) no. 1, pp. 223-301 | DOI | MR | Zbl
[11] Heat kernel bounds on manifolds, Math. Ann., Volume 292 (1992) no. 1, pp. 149-162 | DOI | MR | Zbl
[12] On the differentiation of heat semigroups and Poisson integrals, Stochastics Stochastics Rep., Volume 61 (1997) no. 3-4, pp. 297-321 | DOI | MR | Zbl
[13] Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal., Volume 155 (1998) no. 1, pp. 109-124 | DOI | MR | Zbl
[14] A stochastic approach to a priori estimates and Liouville theorems for harmonic maps, Bull. Sci. Math., Volume 135 (2011) no. 6-7, pp. 816-843 | DOI | MR | Zbl
[15] Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, 2006, x+113 pages | DOI | MR | Zbl
[16] Lineare Operatoren in Hilberträumen. Teil II: Anwendungen, Mathematische Leitfäden, Teubner, 2003, 404 pages | DOI | MR | Zbl
Cité par Sources :