We study the asymptotic boundary of the liquid region of large random lozenge tiling models defined by uniformly random interlacing particle systems. In particular, we study a non-phase separating part of the boundary, i.e., a part of the boundary that does not border to a frozen phase. This is called the singular part of the boundary. We prove that isolated components of this boundary are lines and classify four different cases. Moreover, we show that the singular part of the boundary can have infinite one-dimensional Hausdorff measure. This has implications to the study of the free boundary problem arising in the variational problem studied by Kenyon and Okounkov and in a related work by De Silva and Savin.
Nous étudions la limite asymptotique de la région liquide de grands modèles aléatoires de tuiles rhombiques définies par des systèmes de particules uniformément et aléatoirement entrelacés. En particulier nous étudions une partie séparatrice, non phasée, de la limite, i.e. la partie de la limite qui ne touche pas une phase gelée. Cela s’appelle la partie singulière de la limite. Nous prouvons que les composantes isolées de cette limite sont des droites qui se classent en quatre cas différents. De plus, nous montrons que la partie singulière de la limite peut avoir une mesure de Hausdorff infinie et unidimensionnelle. Cela a des implications pour l’étude du problème de la limite libre découlant du problème variationnel étudié par Kenyon et Okounkov et un travail relié de De Silva et Savin.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3315
Keywords: Interlaced patterns, liquid region, boundary.
Mot clés : Motifs entrelacés, région liquide, frontière.
@article{AIF_2020__70_1_375_0, author = {Duse, Erik and Metcalfe, Anthony}, title = {Asymptotic {Geometry} of {Discrete} {Interlaced} {Patterns:} {Part} {II}}, journal = {Annales de l'Institut Fourier}, pages = {375--436}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {1}, year = {2020}, doi = {10.5802/aif.3315}, zbl = {1359.60021}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3315/} }
TY - JOUR AU - Duse, Erik AU - Metcalfe, Anthony TI - Asymptotic Geometry of Discrete Interlaced Patterns: Part II JO - Annales de l'Institut Fourier PY - 2020 SP - 375 EP - 436 VL - 70 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3315/ DO - 10.5802/aif.3315 LA - en ID - AIF_2020__70_1_375_0 ER -
%0 Journal Article %A Duse, Erik %A Metcalfe, Anthony %T Asymptotic Geometry of Discrete Interlaced Patterns: Part II %J Annales de l'Institut Fourier %D 2020 %P 375-436 %V 70 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3315/ %R 10.5802/aif.3315 %G en %F AIF_2020__70_1_375_0
Duse, Erik; Metcalfe, Anthony. Asymptotic Geometry of Discrete Interlaced Patterns: Part II. Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 375-436. doi : 10.5802/aif.3315. https://aif.centre-mersenne.org/articles/10.5802/aif.3315/
[1] Double obstacle problems with obstacles given by non- Hamilton–Jacobi equations, Arch. Ration. Mech. Anal., Volume 206 (2012) no. 3, pp. 779-819 | DOI | MR | Zbl
[2] Weak- and BMO, Ann. Math., Volume 113 (1981) no. 3, pp. 601-611 | DOI | MR | Zbl
[3] Équivalence de deux inéquations variationnelles, Arch. Ration. Mech. Anal., Volume 41 (1971), pp. 254-265 | DOI | Zbl
[4] The free boundary for elastic-plastic torsion problems, Trans. Am. Math. Soc., Volume 252 (1979), pp. 65-97 | DOI | MR | Zbl
[5] A variational principle for domino tilings, J. Am. Math. Soc., Volume 14 (2001), pp. 297-346 | DOI | MR | Zbl
[6] The Cusp–Airy process, Electron. J. Probab., Volume 21 (2016), 57, 50 pages | MR | Zbl
[7] Asymptotic geometry of discrete interlaced patterns: Part I, Int. J. Math., Volume 26 (2015) no. 11, 1550093, 66 pages | MR | Zbl
[8] Universal edge fluctuations of discrete interlaced particle systems, Ann. Math. Blaise Pascal, Volume 25 (2018) no. 1, pp. 75-197 | DOI | MR | Zbl
[9] Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, 2009
[10] Bounded Analytic Functions, Graduate Texts in Mathematics, 236, Springer, 2006 | Zbl
[11] Limit shapes and the complex Burgers equation, Acta Math., Volume 199 (2007) no. 2, pp. 263-302 | DOI | MR | Zbl
[12] Dimers and amoebae, Ann. Math., Volume 163 (2006) no. 3, pp. 1019-1056 | DOI | MR | Zbl
[13] Measure and Category, Graduate Texts in Mathematics, 2, Springer, 1980 | MR | Zbl
[14] Asymptotics of random Lozenge tilings via Gelfand–Tsetlin schemes, Probab. Theory Relat. Fields, Volume 160 (2014) no. 3–4, pp. 429-487 | DOI | MR | Zbl
[15] Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field, Ann. Probab., Volume 43 (2015) no. 1, pp. 1-43 | DOI | MR | Zbl
[16] Well-distributed measurable sets, Am. Math. Mon., Volume 90 (1983) no. 1, pp. 41-42 | DOI | MR | Zbl
[17] Minimizers of convex functionals arising in random surfaces, Duke Math. J., Volume 151 (2010) no. 3, pp. 487-532 | DOI | MR | Zbl
[18] Convexity: An Analytic Viewpoint, Cambridge Tracts in Mathematics, 187, Cambridge University Press, 2011 | Zbl
[19] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1971 | Zbl
[20] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 | MR | Zbl
[21] Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, Princeton University Press, 1971 | Zbl
Cited by Sources: