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SCATTERING THEORY WITHOUT INJECTIVITY
RADIUS ASSUMPTIONS, AND SPECTRAL STABILITY

FOR THE RICCI FLOW

by Batu GÜNEYSU & Anton THALMAIER (*)

Abstract. — We prove a new integral criterion for the existence and com-
pleteness of the wave operators W±(−∆h, −∆g , Ig,h) corresponding to the unique
self-adjoint realizations of the Laplace–Beltrami operators −∆j , j = g, h, induced
by two quasi-isometric complete Riemannian metrics g and h on a noncompact
manifold M (without boundary). In particular, this result provides a criterion for
the absolutely continuous spectra of −∆g and −∆h to coincide. Our proof relies
on estimates that are obtained using a probabilistic Bismut type formula for the
gradient of a heat semigroup. Unlike all previous results, our integral criterion only
requires some lower control on the Ricci curvatures and some upper control on the
heat kernels, but no control on the injectivity radii. As a consequence, we obtain
a stability result for the absolutely continuous spectrum under the Ricci flow.
Résumé. — Nous démontrons un nouveau critère intégral pour l’existence et la

complétude des opérateurs d’onde W±(−∆h, −∆g , Ig,h) correspondant aux uniques
réalisations auto-adjointes des opérateurs de Laplace–Beltrami −∆j , j = g, h, in-
duits par deux métriques riemanniennes complètes quasi-isométriques g et h sur
une variété non-compacte (sans bord) M . En particulier, ce résultat fournit un cri-
tère pour que les spectres absolument continus de −∆g et −∆h coïncident. Notre
preuve repose sur des estimations obtenues à l’aide d’une formule probabiliste de
type Bismut pour le gradient d’un semigroupe de la chaleur. Contrairement aux ré-
sultats précédents, notre critère intégral nécessite seulement un certain contrôle des
bornes inférieures sur la courbure de Ricci et des bornes supérieures sur les noyaux
de la chaleur, mais aucun contrôle sur le rayon d’injectivité. En conséquence, nous
obtenons un résultat de stabilité pour le spectre absolument continu sous le flot de
Ricci.
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1. Introduction

As the (unique self-adjoint realization in L2(M, g) of the) Laplace–Belt-
rami operator −∆g > 0 on a noncompact geodesically complete Riemann-
ian manifold (M, g) typically contains some continuous spectrum, a natural
question that arises is to what extent one can control at least certain parts
of the continuous spectrum. A particular decomposition of the spectrum
spec(−∆g) is given (cf. [9, 16] and the appendix of this paper) by

spec(−∆g) =
⋃

j∈{ac,sc,pp}

specj(−∆g),

where
• specac(−∆g) denotes the absolutely continuous spectrum (cf. Ap-
pendix A),

• specsc(−∆g) the singular continuous spectrum,
• specpp(−∆g) the pure point spectrum,

so that
specc(−∆g) = specac(−∆g)

⋃
specsc(−∆g)

is the whole continuous spectrum. The absolutely continuous spectrum
corresponds to the quantum dynamics in the following sense: by definition,
specac(−∆g) is the spectrum of the restriction of −∆g to the closed sub-
space of L2(M, g) given by absolutely continuous states ψ corresponding
to −∆g. But for those ψ’s the RAGE theorem [9, 16] shows

lim
|s|→∞

1K exp(i s∆g)ψ = 0 in L2(M, g) for every compact K ⊂M .(1.1)

As by Schrödinger’s equation exp(i s∆g)ψ is the state at the time s given
that the initial state was ψ, property (1.1) shows that the quantum particle
eventually leaves every compact set, if the initial state was an absolutely
continuous one.
A perturbative approach to control spec(−∆g) is provided by the machin-

ery of 2-Hilbert-space scattering theory: namely, assume that h is another
Riemannian metric on M which is quasi-isometric to g and whose abso-
lutely continuous spectrum is known. Then, with the trivial identification
map

Ig,h : L2(M, g) −→ L2(M,h), f 7−→ f,

one can ask whether the 2-Hilbert-space wave operators

W±(−∆h,−∆g, Ig,h) = st-limt→±∞ exp(− i t∆h)Ig,h exp(i t∆g)πac(−∆g)
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SCATTERING THEORY AND SPECTRAL STABILITY 439

exist and are complete (cf. Section A for the precise definitions), the point
being that the latter property implies

specac(−∆g) = specac(−∆h),

and one has managed to transfer the known spectral information from −∆h

to −∆g. The current state of the art concerning criteria for the existence
and completeness of the W±(−∆h,−∆g, Ig,h) is the main result from [7].
There, Hempel, Post and Weder prove the following result:

Theorem ([7]). — Assume that for both j ∈ {g, h} one has∫
γj(x)δg,h(x)dµj(x) <∞,(1.2)

where
• µj is the Riemannian volume measure,
• γj : M → [0,∞) is a certain explicitly given function which depends
in a monotonically decreasing way on a local lower bound of the
injectivity radius and in a monotonically increasing way on a local
lower bound on the Ricci curvature Ricj ,

• δg,h : M → [0,∞) denotes a certain zeroth order deviation of the
metrics from each other (cf. Section 2 below for the definition).

Then the wave operators

W±(−∆h,−∆g, Ig,h)

exist and are complete.

An important feature of this result is that no assumptions on the ge-
ometry of (M, g) and (M,h) are imposed, only the deviation of g from h

matters, as it should be in scattering theory. The above result has con-
siderably improved an earlier result by Müller and Salomonsen [8], where
instead of the zeroth order deviation, the authors had to weight their inte-
gral condition with a much stronger second order deviation, in addition to
assuming both metrics to have a C∞-bounded geometry.
Nevertheless, a certain drawback of the result from [7] is that injectivity

radii are very hard to calculate or even to control in general. In any case,
one needs a very detailed control on the sectional curvatures, to get some
control on the injectivity radius [3]. On the other hand, volumes of balls
are much more handy and equivalent under quasi-isometry, and in fact any
lower bound on the injectivity radius implies a lower bound on the volume
function by Bishop–Günther’s inequality.

In view of these remarks, our main result Theorem 2.2, which reads as
follows, provides a remarkable improvement:

TOME 70 (2020), FASCICULE 1



440 Batu GÜNEYSU & Anton THALMAIER

Theorem. — Assume that g and h are geodesically complete and quasi-
isometric Riemannian metrics on M such that there exists s > 0 such that
for both j ∈ {g, h} one has∫

αj(x, s)βj(x)δg,h(x)dµj(x) <∞,

where αj( · , s) : M → [0,∞) is a local upper bound on the heat kernel on
(M, j) at the time s > 0 and βj : M → [0,∞) is a certain explicitly given
local lower bound on Ricj . Then the wave operators

W±(−∆h,−∆g, Ig,h)

exist and are complete.

Again, no assumptions on the geometry of (M, g) are (M,h) are imposed.
While Theorem 2.2 can be expected to be disjoint from that of [7] in gen-
eral, under global lower Ricci bounds it can be brought into a form which
indeed is much more general and handy then the induced result from [7]
in the sense of the above remarks. In fact, assuming that both Ricci curva-
tures are bounded from below by constants, one can use Li–Yau type heat
kernel estimates and Theorem 2.2 boils down to give the following criterion
(cf. Corollary 2.3 below):

Theorem. — Assume that g and h are geodesically complete and quasi-
isometric Riemannian metrics on M with Ricj bounded from below by a
constant for both j ∈ {g, h} and∫

µj(x, 1)−1δg,h(x)dµj(x) <∞ for some j ∈ {g, h},

where µj(x, 1) denotes the volume of the geodesic ball with radius 1 cen-
tered at x with respect to (M, j). Then the wave operators

W±(−∆h,−∆g, Ig,h)

exist and are complete.

Note that if g and h are geodesically complete and quasi-isometric Rie-
mannian metrics on M with Ricj bounded from below by a constant for
both j ∈ {g, h}, then (1.2) requires control on some lower bounds of the
injectivity radii, while in our Corollary 2.3 this condition is replaced by
a more general and much more handy lower control on the volume func-
tion. The essential difference between our machinery and the one from [7]
is that we rely on parabolic techniques, while the authors of [7] use elliptic
estimates. In fact, our main tool is an L2 → L∞loc estimate for the gradient
of the heat semigroup that should be of an independent interest, which
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is valid on every geodesically complete Riemannian manifold, and which
relies on an explicit Bismut type probabilistic formula (cf. [1, 12] and the
proof of Theorem 2.5 below).
Finally, it is remarkable that the assumptions in Corollary 2.3 are explicit

enough to deduce the following stability of absolutely continuous spectra
under a Ricci flow, which seems to be first result of its kind (cf. Corol-
lary 2.4):

Theorem. — Let S > 0, κ ∈ R and assume that
• the family (gs)s∈[0,S] of Riemannian metrics on M evolves under a
Ricci type flow

∂sgs = κRicgs
, s ∈ [0, S];

• the initial metric g0 is geodesically complete;
• setting, for x ∈M ,

A(x) := sup
{
|Ricgs(v, v)|gs

: s ∈ [0, S], v ∈ TxM, |v|gs 6 1
}
,

one has

sup
x∈M

A(x) <∞,(1.3) ∫
µg0(x, 1)−1 sinh

(
(m/4)|κ|A(x)S

)
dµg0(x) <∞.(1.4)

Then one has specac(Hgs
) = specac(Hg0) for all s ∈ [0, S].

Note that assumption (1.3) is natural in this context: for example, a
typical short time existence result for Ricci flow by [10] Shi requires that
g0 is geodesically complete with bounded sectional curvatures, yielding a
solution (gs)s∈[0,S̃) of the Ricci flow equation

∂sgs = −2 Ricgs
, s ∈ [0, S̃),

which exists up to a time S̃ > 0 and satisfies

sup
s∈[0,S̃),x∈M

|Secgr (x)| <∞.

The latter finiteness clearly implies (1.3) for every S < S̃.

2. Main results

Let M be a smooth connected manifold of dimension m > 2. We stress
the fact that we understand all our spaces of functions on M (or more

TOME 70 (2020), FASCICULE 1
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generally, all our spaces of sections in vector bundles overM) to be complex-
valued. For example, Ω1

C∞(M) stands for the smooth complex-valued 1-
forms on M , that is, the smooth sections of T ∗M ⊗ C→M , and then

d : C∞(M) −→ Ω1
C∞(M)

stands for the complexification of the usual exterior derivative. It will be
convenient to set

M (M) :=
{
smooth Riemannian metrics on M

}
,

M̃ (M) :=
{
g ∈M (M) : g is geodesically complete

}
.

Given g ∈M (M) we denote by Ricg its Ricci curvature, and by µg the
Riemannian volume measure, by Bg(x, r) the open geodesic balls, and by
µg(x, r) := µg(Bg(x, r)) the volume function. The induced metric on T ∗M
will be denoted by g∗. Complexifications of these data will be denoted by
gC etc.

The complex Hilbert space L2(M, g) is given by µg-equivalence classes
of Borel functions f : M → C with

∫
|f |2dµg finite, and

〈ψ1, ψ2〉L2(M,g) =
∫
ψ1ψ2dµg.

The complex Sobolev space W 1,2
0 (M, g) ⊂ L2(M, g) is defined to be the

closure of C∞c (M) with respect to the scalar product

(2.1) 〈ψ1, ψ2〉W 1,2
0 (M,g) =

∫
ψ1ψ2dµg +

∫
g∗C(dψ1,dψ2)dµg,

ψ1, ψ2 ∈ C∞c (M).

Let Hg > 0 denote the Friedrichs realization of the Laplace–Beltrami
operator −∆g > 0 in L2(M, g), so that in particular one has Dom(

√
Hg) =

W 1,2
0 (M, g). We will also need the operator dg, which denotes the minimal

extension of the exterior differential d with respect to g. In other words,
dg is the closed unbounded operator from L2(M, g) to Ω1

L2(M, g) which is
defined by Dom(dg) = W 1,2

0 (M, g), and dgf := df , in the distributional
sense. In fact, one has Hg = d∗gdg. If g is geodesically complete, then Hg is
essentially self-adjoint on C∞c (M).

Given g, h ∈M (M), we can define a smooth vector bundle morphism

Ag,h : T ∗M ⊗ C −→ T ∗M ⊗ C,
g∗C(Ag,h(x)α, β) := h∗C(α, β) , α, β ∈ T ∗xM ⊗ C, x ∈M.
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The endomorphism Ag,h is fiberwise self-adjoint with respect to g∗C, in
view of

g∗C(Ag,h(x)α, α) ∈ R for all x ∈M , α ∈ T ∗xM ⊗ C.

In addition, Ag,h has fiberwise strictly positive eigenvalues.
We further define

δg,h : M −→ [0,∞),
δg,h(x) := 2 sinh

(
(m/4) max

λ∈spec(Ag,h(x))
|log(λ)|

)
.

The hyperbolic sine in the definition of δg,h is justified by the estimate (4.1)
below. The function δg,h measures a 0-th order deviation of the metrics
when we consider them as multiplicative perturbations of each other. We
have

dµh = ρg,hdµg
with a Radon–Nikodym density 0 < ρg,h ∈ C∞(M), where we record the
following simple facts:

ρh,g = 1/ρg,h, Ah,g = A −1
g,h , ρg,h = det(Ag,h)−1/2, δg,h = δh,g.(2.2)

We write g ∼ h, if h is quasi-isometric to g, that is, if there exists a
constant C > 1 such that

(1/C)g 6 h 6 Cg pointwise, as bilinear forms.

Let us see how these definitions work in the case of conformal perturbations:

Example 2.1. — Assume h = exp(−(4/m)φ)g for some smooth function
φ : M → R, that is, h is a conformal perturbation of g. Then one has

h∗ = exp((4/m)φ)g∗

and g ∼ h holds if and only if φ is bounded, and then one has

δg,h = 2 sinh(|φ|).

The scattering theory of conformal perturbations has been studied in detail
in [2].

So assume g ∼ h for the moment. Then there exists the trivial bounded
linear and bijective identification operator

Ig,h : L2(M, g) −→ L2(M,h), f 7−→ f,

and one has

0 < inf ρg,h 6 sup ρg,h <∞, sup δg,h <∞.(2.3)

TOME 70 (2020), FASCICULE 1



444 Batu GÜNEYSU & Anton THALMAIER

Furthermore, the operator I∗g,h is given by the bounded multiplication op-
erator

I∗g,h : L2(M,h) −→ L2(M, g), I∗g,hf(x) = ρg,h(x)f(x).(2.4)

For every g ∈ M̃ (M), with

(P gs )s>0 := (exp(−sHg))s>0 ⊂ L (L2(M, g))

the heat semigroup defined by spectral calculus(1) , and (x, s) ∈M×(0,∞),
we define the finite quantities

Ψ1,g(x) := max
(

0, inf
{
C ∈ R : Ricg(v, v) > C|v|2g

for all y ∈ Bg(x, 1/2), v ∈ TyM
})
,

Ψ2,g(x) := π2(m+ 3) + π
√

Ψ1,g(x)(m− 1) + 4Ψ1,g(x),

Ψ3,g(x, s) := Ψ2,g(x)
(
1− exp(−Ψ2,g(x)s)

)−1
,

Ψ4,g(x, s) := sup
y∈M

P gs (x, y),

with P gs (x, y) the jointly smooth integral kernel of P gs . While it is well-
known [5] that Ψ4,g(x, s) < ∞ for all (x, s) ∈ M × (0,∞), one can even
prove [6]

sup
x∈K

Ψ4,g(x, s) <∞ for all s ∈ (0,∞), K ⊂M compact.

Here comes our main result:

Theorem 2.2. — Assume that g, h ∈ M̃ (M) satisfy g ∼ h and that
there exists s ∈ (0,∞) such that for both j ∈ {g, h} one has∫

Ψ3,j(x, s)Ψ4,j(x, s)δg,h(x)dµj(x) <∞.

Then the wave operators

W±(Hh, Hg, Ig,h) = st-limt→±∞ exp(i tHh) Ig,h exp(− i tHg)πac(Hg)

exist and are complete (cf. Theorem A.1 for the definition of completeness).
Moreover,

W± (Hh, Hg, Ig,h)
are partial isometries with initial space Ran πac(Hg) and final space

Ran πac(Hh), and one has specac(Hg) = specac(Hh).

(1) In the sequel, whenever a Borel equivalence class of L2-functions on (M, g) has a
smooth representative, we implicitly take the latter.
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Note that the assumptions and the conclusions of Theorem 2.2 are sym-
metric in (g, h). The ultimate definition of the functions Ψj,g/h is dictated
by the bound from Theorem 2.5 below.
In case the Ricci curvatures are bounded from below by constants, The-

orem 2.2 can be brought into the following convenient form:

Corollary 2.3. — Assume that g, h ∈ M̃ (M) satisfy the following
assumptions,

• g ∼ h,
• Ricj is bounded from below by a constant for both j ∈ {g, h},
• there exists j ∈ {g, h} with∫

µj(x, 1)−1δg,h(x)dµj(x) <∞.

Then the wave operators

W±(Hh, Hg, Ig,h) = st-limt→±∞ exp(i tHh)Ig,h exp(− i tHg)πac(Hg)

exist and are complete. Moreover, W±
(
Hh, Hg, Ig,h

)
are partial isometries

with initial space Ran πac(Hg) and final space Ran πac(Hh), and one has
specac(Hg) = specac(Hh).

Proof. — Firstly note that if one has∫
µj(x, 1)−1δg,h(x)dµj(x) <∞

for some j ∈ {g, h}, then by quasi-isometry the same is true for both
j ∈ {g, h}.

One trivially has
sup
x∈M

Ψ3,j(x, 1) <∞

and by a Li–Yau type heat kernel estimate [11] there exist a, b ∈ (0,∞),
which only depend on the lower Ricci bounds and m, such that for all
x ∈M one has

Ψ4,j(x, 1) 6 aµj(x, 1)−1 exp(b),
so that the claim follows from Theorem 2.2. �

Corollary 2.3 implies the following result concerning the stability of the
absolutely continuous spectrum of a family of metrics that evolve under a
Ricci flow, as long as the initial metric has a bounded Ricci curvature:

Corollary 2.4. — Let S > 0, κ ∈ R and assume that
• the family (gs)s∈[0,S] ⊂M (M) evolves under a Ricci type flow

∂sgs = κRicgs
, s ∈ [0, S];

TOME 70 (2020), FASCICULE 1
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• the initial metric g0 is geodesically complete;
• setting, for x ∈M ,

A(x) := sup
{
|Ricgs(v, v)|gs

: s ∈ [0, S], v ∈ TxM, |v|gs 6 1
}
,

one has

sup
x∈M

A(x) <∞,(2.5) ∫
µg0(x, 1)−1 sinh

(
(m/4)S |κ|A(x)

)
dµg0(x) <∞.(2.6)

Then one has specac(Hgs
) = specac(Hg0) for all s ∈ [0, S].

Proof. — Let s ∈ [0, S]. It is well-known that the Ricci flow equation
in combination with (2.5) imply gs ∼ g0, so that in particular all gs are
geodesically complete [15]. We give the simple proof for the convenience of
the reader. Set

A := sup
x∈M

A(x)

and assume x ∈M, v ∈ TxM . If κ > 0 we have

∂sgs(v, v) = κRicgs(v, v) 6 κAgs(v, v),
∂sgs(v, v) = κRicgs

(v, v) > −κAgs(v, v),

so that from Gronwall’s Lemma we get

gs(v, v) 6 exp(sAκ)g0(v, v),
gs(v, v) > exp(−sAκ)g0(v, v).

In case κ < 0 we have

∂sgs(v, v) = κRicgs(v, v) 6 −κAgs(v, v),
∂sgs(v, v) = κRicgs

(v, v) > κAgs(v, v),

again Gronwall gives the asserted quasi-isometries.
It remains to prove that for all s the integrability (2.6) implies∫

µg0(x, 1)−1δgs,g0(x)dµg0(x) <∞.

To this end, assume again κ > 0 first. Given x ∈M , α ∈ T ∗xM we have

∂sg
∗
0(Ag0,gs(x)α, α) = ∂sg

∗
s (α, α) = ∂sgs(α]s , α]s)

6 A(x)κgs(α]s , α]s) = A(x)κg∗s (α, α)
= A(x)κg∗0(Ag0,gs

(x)α, α)

and likewise

∂sg
∗
0(Ag0,gs(x)α, α) > −A(x)κg∗0(Ag0,gs(x)α, α),
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so that by Gronwall one has

|log(λ)| 6 A(x)κs 6 A(x)κS

for all λ ∈ spec(Ag0,gs(x)) = spec(Ag0,gs(x)|T∗xM ). The same proof gives in
case κ < 0 the inequality

|log(λ)| 6 −A(x)κs 6 −A(x)κS

for all λ ∈ spec(Ag0,gs
(x)) = spec(Ag0,gs

(x)|T∗xM ), showing altogether that

δgs,g0(x) 6 2 sinh
(
(m/4)S |κ|A(x)

)
,

and completing the proof. �

The operators

(P̂ gs )s>0 := (dgP gs )s>0 ⊂ L
(
L2(M, g),Ω1

L2(M, g)
)

will play a crucial role in proof of Theorem 2.2. In fact, the main ingredient
of the proof is the parabolic gradient bound for the jointly smooth integral
kernel

(0,∞)×M ×M 3 (s, x, y) 7−→ P̂ gs (x, y) ∈ T ∗xM

of P̂ gs from Theorem 2.5 below, which is certainly of an independent inter-
est. Note that (s, x, y) 7→ P̂ gs (x, y) is the uniquely determined smooth map
such that for all (s, x) ∈ (0,∞)×M , f ∈ L2(M, g) one has

P̂ gs f(x) =
∫
P̂ gs (x, y)f(y)dµg(y).

Theorem 2.5. — For every g ∈ M̃ (M), (s, x) ∈ (0,∞)×M one has∫ ∣∣P̂ gs (x, y)
∣∣2
g∗

dµg(y) 6 Ψ3,g(x, s)Ψ4,g(x, s).

Remark 2.6. — Note that by Riesz–Fischer’s duality theorem, the esti-
mate from Theorem 2.5 is equivalent to the following statement: For every
g ∈ M̃ (M), (s, x) ∈ (0,∞)×M , f ∈ L2(M, g) one has

∣∣P̂ gs f(x)
∣∣
g∗
6
√

Ψ3,g(x, s)Ψ4,g(x, s) ‖f‖L2(M,g) .

TOME 70 (2020), FASCICULE 1
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3. Proof of Theorem 2.5

Here we give the
Proof of Theorem 2.5. We can omit g in the notation. Let X(x) be a

Brownian motion on M starting from x and ζ(x) its maximal lifetime. Let
us first assume f is real-valued. Then, for v ∈ TxM one has the Bismut
type formula (cf. [4, Theorem 6.2], [13, Formula (6.2)], [12], [1])

dPsf(x)v = −E
[
f(Xs(x))1{s<ζ(x)}

∫ τ(x)∧s

0

(
Θr(x) ˙̀

r(v),dWr(x)
)]
,

where
• Θr(x), 0 6 r < ζ(x), is the Aut(TxM)-valued process defined by
the pathwise differental equation

d
drΘr(x) = −Ric//r(x)(Θr(x)), Θ0(x) = idTxM ,

with //r(x) : TxM → TXr(x)M , r < ζ(x), the stochastic parallel
transport along the paths of X(x), and

Ric//r(x) := //−1
r (x) ◦ RicXr(x) ◦//r(x) ∈ End(TxM)

where (by convention) Ricx(v) = Ric( · , v)] for v ∈ TxM .
• τ(x) < ζ(x) is the first exit time of X(x) from B(x, 1/2);
• W (x) is a Brownian motion in TxM ;
• `(v) is any adapted process in TxM with absolutely continuous

paths such that `0(v) = v, `τ(x)(v) = 0 and (for some ε > 0)

E

[(∫ τ(x)∧s

0
| ˙̀t(v)|2dt

)
1/2+1/ε

]
<∞.

In fact, the smooth representative of Psf(x) is given by

Psf(x) = E[f(Xs(x)1{s<ζ(x)}] =
∫
Ps(x, y)f(y)dµ(y).

By Cauchy–Schwarz we obtain

(3.1) |dPsf(x)v| 6
(
E
[
|f |2(Xs(x))1{s<ζ(x)}

])1/2
×

(
E

[(∫ τ(x)∧s

0

(
Θr(x) ˙̀

r(v),dWr(x)
))2

])1/2

.
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It is well-known how to estimate the second factor on the right by choosing
`(v) appropriately, e.g. [14, Section 4]. Namely, for |v| 6 1 one can achieve

(3.2) E

[(∫ τ(x)∧s

0

(
Θr(x) ˙̀

r(v),dWr(x)
))2

]
6 Ψ3(x, s).

Thus

|dPsf(x)v| 6
(
E
[
|f |2(Xs(x))1{s<ζ(x)}

])1/2√Ψ3(x, s)

=
(∫
|f(y)|2Ps(x, y)dµ(y)

)1/2√
Ψ3(x, s)

6
√

Ψ4(x, s)
√

Ψ3(x, s) ‖f‖L2(M) .

Using that complexifications are norm preserving and using Remark 2.6,
the latter bound completes the proof. �

4. Proof of Theorem 2.2

We start by noting that given a diagonizable linear operator A on a
finite dimensional linear space and a real-valued function f on the spectrum
of A, the linear operator f(A) can be defined using the projectors onto the
eigenspaces of A. In particular, this procedure does not depend on a scalar
product, but if A is self-adjoint with respect to some scalar product, then
the above definition of f(A) is consistent with the spectral calculus.

For example, if we are given g, h ∈M (M) and a point x ∈M , then

ρg,h(x)Ag,h(x) : T ∗xM ⊗ C −→ T ∗xM ⊗ C

is diagonizable. We define a function and a Borel section in T ∗M⊗C→M

by setting

Sg,h : M −→ R, Sg,h(x) := ρg,h(x)1/2 − ρg,h(x)−1/2,

Ŝg,h : M −→ End(T ∗M ⊗ C),

Ŝg,h(x) :=
(
ρg,h(x)Ag,h(x)

)1/2 − (ρg,h(x)Ag,h(x)
)−1/2

.

One has the elementary bounds (cf. [7, Lemma 3.3])

max
(
|Sg,h(x)| ,max spec

(
abs(Ŝg,h(x)

))
6 δg,h(x) for all x ∈M,(4.1)

where, in order to avoid a possible confusion with various fiberwise taken
operator norms, abs(Ŝg,h(x)) denotes the endomorphism

f(Ŝg,h(x)) : T ∗xM ⊗ C −→ T ∗xM ⊗ C
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defined by f(λ) = |λ|, yielding a decomposition

Ŝg,h(x) = abs(Ŝg,h(x)) sgn(Ŝg,h(x)) : T ∗xM ⊗ C −→ T ∗xM ⊗ C,

which is polar with respect to the restriction of gC to T ∗xM ⊗ C. We will
need the maximally defined multiplication operators

Sg,h;j : L2(M, j) −→ L2(M, j),

Sg,h;jf(x) = |Sg,h(x)|1/2f(x), j = g, h,

Ŝg,h;j : Ω1
L2(M, j) −→ Ω1

L2(M, j),

Ŝg,h;jα(x) = abs(Ŝg,h(x))1/2α(x), j = g, h,

Ug,h : L2(M, g) −→ L2(M,h),

Ug,hf(x) = sgn(Sg,h(x))ρg,h(x)−1/2f(x),

Ûg,h : Ω1
L2(M, g) −→ Ω1

L2(M,h),

Ûg,hα(x) = sgn(Ŝg,h(x))(ρg,h(x)Ag,h(x))−1/2α(x).

The operators Ug,h, Ûg,h are always unitary, and the operators Sg,h;j ,
Ŝg,h;j (j = g, h) are always self-adjoint and additionally bounded in case
g ∼ h.
The following technical result provides the link between Theorem 2.5

and the proof of Theorem 2.2. It is a variant of a decomposition formula
by Hempel–Post–Weder (cf. [7, Lemma 3.4]):

Lemma 4.1 (HPW formula). — Let g, h ∈M (M) be given with g ∼ h.
Then defining the bounded operator Tg,h,s : L2(M, g)→ L2(M,h) by

Tg,h,s :=
(
Ŝg,h;hP̂

h
s

)∗
Ûg,h Ŝg,h;gP̂

g
s −

(
Sg,h;hP

h
s

)∗
Ug,hSg,h;gP

g
s/2HgP

g
s/2,

the following formula holds for all s > 0, fh ∈ Dom(Hh), fg ∈ Dom(Hg),

〈fh, Tg,h,sfg〉L2(M,h)

=
〈
Hhfh, P

h
s Ig,hP

g
s fg
〉
L2(M,h) −

〈
fh, P

h
s Ig,hP

g
sHgfg

〉
L2(M,h) .

Proof. — Adding and subtracting the term〈
I−1
g,hP

h
s fh, HgP

g
s fg
〉
L2(M,g)
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we get〈
Hhfh, P

h
s Ig,hP

g
s fg
〉
L2(M,h) −

〈
fh, P

h
s Ig,hP

g
sHgfg

〉
L2(M,h)

=
〈
HhP

h
s fh, Ig,hP

g
s fg
〉
L2(M,h) −

〈
I−1
g,hP

h
s fh, HgP

g
s fg
〉
L2(M,g)

−
〈
Phs fh,

(
Ig,h − (I−1

g,h)∗
)
HgP

g
s fg
〉
L2(M,h)

=
〈
dhPhs fh,dhIg,hP gs fg

〉
Ω1

L2 (M,h) −
〈
dgI−1

g,hP
h
s fh,dgP gs fg

〉
Ω1

L2 (M,g)

−
〈
Phs fh,

(
Ig,h − (I−1

g,h)∗
)
HgP

g
s fg
〉
L2(M,h).

Using (2.2) and (2.4), the latter is

=
∫
h∗C

(
(1− ρ−1

g,hA
−1
g,h )dhPhs fh,dgP gs fg

)
dµh

−
∫
Phs fh(1− ρ−1

g,h)HgP
g
s fg dµh

=
∫
h∗C

(
sgn(Ŝg,h)(ρg,hAg,h)−1/2 abs(Ŝg,h)1/2 abs(Ŝg,h)1/2

× dhPhs fh,dgP gs fg
)

dµh

−
∫
Phs fh sgn(Sg,h) ρ−1/2

g,h |Sg,h|1/2 |Sg,h|1/2HgP
g
s fgdµh

=
∫
h∗C

(
dhPhs fh,

[
sgn(Ŝg,h)(ρg,hAg,h)−1/2 abs(Ŝg,h)1/2 abs(Ŝg,h)1/2

]†h
×dgP gs fg

)
dµh−

∫
Phs fh sgn(Sg,h) ρ−1/2

g,h |Sg,h|1/2 |Sg,h|1/2HgP
g
s fgdµh

=
∫
h∗C

(
dhPhs fh, abs(Ŝg,h)1/2 sgn(Ŝg,h)(ρg,hAg,h)−1/2 abs(Ŝg,h)1/2

× dgP gs fg
)

dµh −
∫
Phs fh|Sg,h|1/2 sgn(Sg,h)ρ−1/2

g,h |Sg,h|
1/2HgP

g
s fgdµh

=
〈
dhPhs fh, Ŝg,h;h Ûg,h Ŝg,h;gdgP gs fg

〉
Ω1

L2 (M,h)

−
〈
Phs fh, Sg,h;hUg,hSg,h;gHgP

g
s fg
〉
L2(M,h)

=
〈
fh, (dhPhs )∗ Ŝg,h;h Ûg,h Ŝg,h;g dgP gs fg

〉
L2(M,h)

−
〈
fh, P

h
s Sg,h;hUg,hSg,h;gP

g
s/2HgP

g
s/2fg

〉
L2(M,h),

proving the claimed formula. �

We can now give the actual proof of Theorem 2.2:
Proof of Theorem 2.2. — We are going to check the assumptions of

Belopol’skii–Birman’s Theorem (cf. Theorem A.1):
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Firstly, by g ∼ h, the operator I := Ig,h is well-defined and bounded, with
a bounded inverse I−1 = Ih,g. In view of (2.1), (2.2), (2.3), the assumption
g ∼ h also implies

IW 1,2(M, g) = W 1,2(M,h).

Next, we claim that (I∗I − 1)P gs is Hilbert–Schmidt (and thus compact)
for some s > 0. Indeed, by (2.4) the operator (I∗I − 1)P gs has the integral
kernel

[(I∗I − 1)P gs ] (x, y) = (ρg,h(x)− 1)P gs (x, y)

= ρ
−1/2
g,h sgn(Sg,h)|Sg,h|1/2 |Sg,h|1/2P gs (x, y),

so that using
∫
P gs (x, y)dµg(y) 6 1 we get the bounds

∫ ∣∣∣((I∗I − 1)P gs
)
(x, y)

∣∣∣2dµg(y)

6
∥∥∥ρ−1

g,h Sg,h

∥∥∥
∞
|Sg,h(x)|

∫
P gs (x, y)2dµg(y)

6
∥∥∥ρ−1

g,h Sg,h

∥∥∥
∞
|Sg,h(x)|Ψ4,g(x, s)

∫
P gs (x, y)dµg(y)

for some s > 0. Using (4.1) we arrive at the following Hilbert–Schmidt
estimate,

∫∫ ∣∣∣((I∗I − 1)P gs
)
(x, y)

∣∣∣2dµg(y)dµg(x)

.
∫
δg,h(x)Ψ4,g(x, s)dµg(x)

.
∫
δg,h(x)Ψ4,g(x, s)Ψ3,gdµg(x) <∞,

as Ψ4,j(x, s) > 1. Next, as the product of Hilbert–Schmidt operators is trace
class, the HPW formula shows that it remains to show that the operators
Ŝg,h;j P̂

j
s and Sg,h;jP

j
s are Hilbert–Schmidt, for j = g, h. To see this, as

Sg,h;jP
j
s has the integral kernel

[
Sg,h;jP

j
s

]
(x, y) = |Sg,h(x)|1/2 P js (x, y),
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it follows as above that∫∫ ∣∣∣ [Sg,h;jP
j
s

]
(x, y)

∣∣∣2dµj(y)dµj(x)

=
∫∫ ∣∣∣|Sg,h(x)|1/2P js (x, y)

∣∣∣2dµj(y)dµj(x)

6
∫
δg,h(x)Ψ4,j(x, s)dµj(x)

6
∫
δg,h(x)Ψ4,j(x, s)Ψ3,j(x, s)dµj(x) <∞.

Likewise, in order to prove the Hilbert–Schmidt property of Ŝg,h;jP̂
j
s , we

use Theorem 2.5:∫ ∣∣∣P̂ js (x, y)
∣∣∣2
j∗

dµj(y) 6 Ψ3,j(x, s)Ψ4,j(x, s),(4.2)

so that in view of (4.1) one has∫∫ ∣∣∣∣∣∣∣∣∣[Ŝg,h;j P̂
j
s ](x, y)

∣∣∣∣∣∣∣∣∣2
j∗

dµj(y)dµj(x)

=
∫∫ ∣∣∣∣∣∣∣∣∣abs(Ŝg,h(x))1/2P̂ js (x, y)

∣∣∣∣∣∣∣∣∣2
j∗

dµj(y)dµj(x)

.
∫
δg,h(x)

∫ ∣∣∣P̂ js (x, y)
∣∣∣2
j∗

dµj(y)dµj(x)

6
∫
δg,h(x)Ψ3,j(x, s)Ψ4,j(x, s)dµj(x),

where
∣∣∣∣∣∣∣∣∣[Ŝg,h;jP̂

j
s ](x, y)

∣∣∣∣∣∣∣∣∣2
j∗

denotes the fiberwise Hilbert–Schmidt norm.
This completes the proof. �

Appendix A. Belopol’skii–Birman theorem

We recall [9, 16] that given a self-adjoint operatorH in a Hilbert space H

with its operator valued spectral measure EH , one defines the H-absolutely
continuous subspace Hac(H) of H to be the space of all f ∈H such that
the Borel measure ‖EH(·)f‖2 on R is absolutely continuous with respect to
the Lebesgue measure. Then Hac(H) becomes a closed subspace of H and
the restriction Hac of H to Hac(H) is a well-defined self-adjoint operator.
The absolutely continuous spectrum specac(H) of H is defined to be the
spectrum of Hac.
We record a version of the abstract Belopol’skii–Birman theorem for two

Hilbert space scattering theory, which is well-suited for our purpose:
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Theorem A.1 (Belopol’skii–Birman). — For k = 1, 2, let Hk > 0 be
a self-adjoint operator in a complex Hilbert space Hk, where πac(Hk) de-
notes the projection onto the Hk-absolutely continuous subspace of Hk.
Assume that I ∈ L (H1,H2) is a bounded operator such that the follow-
ing assumptions hold:

• I has a two-sided bounded inverse;
• one has either

I Dom(
√
H1) = Dom(

√
H2) or I Dom(H1) = Dom(H2);

• the operator

(I∗I − 1) exp(−sH1) : H1 →H1 is compact for some s > 0;

• there exists a trace class operator T : H1 →H2 and a number s > 0
such that for all f2 ∈ Dom(H2), f1 ∈ Dom(H1) one has

〈f2, T f1〉H2
= 〈H2f2, exp(−sH2)I exp(−sH1)f1〉H2

− 〈f2, exp(−sH2)I exp(−sH1)H1f1〉H2
.

Then the wave operators

W±(H2, H1, I) = st-limt→±∞ exp(i tH2)I exp(− i tH1)πac(H1)

exist(2) and are complete, where completeness means that

(KerW±(H2, H1, I))⊥ = Ran πac(H1),

RanW±(H2, H1, I) = Ran πac(H2).

Moreover,
W±

(
H2, H1, I

)
are partial isometries with initial space Ran πac(H1) and final space
Ran πac(H2), and one has specac(H1) = specac(H2).

Proof. — In view of Theorem XI.13 from [9] and its proof, it remains
to show that for every bounded interval I the operator (I∗I − 1)E1(I) is
compact, and that there exists a trace class operator D ∈ J 1(H1,H2) such
that for every bounded interval I and all f1, f2 as above one has

〈ϕ,Df1〉H2
= 〈H2f2, E2(I)IE1(I)f1〉H2

− 〈f2, E2(I)IE1(I)H1f1〉H2
.

(2) st-limt→±∞ stands for the strong limit.
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However, using that for all self-adjoint operators A and all Borel functions
φ, φ′ : R→ C one has

φ(A)φ′(A) ⊂ (φ · φ′)(A),
Dom(φ(A)φ′(A)) = Dom((φ · φ′)(A)) ∩Dom(φ′(A)),

the required compactness becomes obvious, and furthermore it is easily
justified that

D := exp(sH2)E2(I)T exp(sH1)E1(I)
has the required trace class property. �
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