On propose de nouvelles constructions des mesures du chaos multiplicatif gaussien (GMC) sous-critique et critique correspondant au champ libre gaussien 2D (GFF). Comme cas particulier, on retrouve la construction des mesures aléatoires par E. Aidekon, qui utilise des ensembles de boucles emboîtées invariantes par transformations conformes. Ainsi, on prouve sa conjecture selon laquelle certaines mesures basées sur le CLE emboîté sont égal en loi aux mesures de GMC pour le GFF. Nos constructions sont basées sur la théorie des ensembles locaux du GFF et permettent d’établir un lien fort entre les cascades multiplicatives et les mesures GMC. Ce lien nous permet d’adapter directement les techniques utilisées pour les cascades multiplicatives à l’étude des mesures de GMC pour le GFF. Comme exemple de ce principe on adapte l’argument de Seneta–Heyde pour construire la mesure critique de la GMC.
We provide new constructions of the subcritical and critical Gaussian multiplicative chaos (GMC) measures corresponding to the 2D Gaussian free field (GFF). As a special case we recover E. Aidekon’s construction of random measures using nested conformally invariant loop ensembles, and thereby prove his conjecture that certain CLE based limiting measures are equal in law to the GMC measures for the GFF. The constructions are based on the theory of local sets of the GFF and build a strong link between multiplicative cascades and GMC measures. This link allows us to directly adapt techniques used for multiplicative cascades to the study of GMC measures of the GFF. As a proof of principle we do this for the so-called Seneta–Heyde rescaling of the critical GMC measure.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3312
Keywords: Liouville measure, Gaussian free field, Gaussian multiplicative chaos, critical Gaussian multiplicative chaos, multiplicative cascades
Mot clés : Mesure de Liouville, champ libre gaussien, chaos multiplicatif gaussien, chaos multiplicatif critique, les cascades multiplicatives
Aru, Juhan 1 ; Powell, Ellen 1 ; Sepúlveda, Avelio 1
@article{AIF_2020__70_1_205_0, author = {Aru, Juhan and Powell, Ellen and Sep\'ulveda, Avelio}, title = {Liouville measure as a multiplicative cascade via level sets of the {Gaussian} free field}, journal = {Annales de l'Institut Fourier}, pages = {205--245}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {1}, year = {2020}, doi = {10.5802/aif.3312}, zbl = {07055622}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3312/} }
TY - JOUR AU - Aru, Juhan AU - Powell, Ellen AU - Sepúlveda, Avelio TI - Liouville measure as a multiplicative cascade via level sets of the Gaussian free field JO - Annales de l'Institut Fourier PY - 2020 SP - 205 EP - 245 VL - 70 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3312/ DO - 10.5802/aif.3312 LA - en ID - AIF_2020__70_1_205_0 ER -
%0 Journal Article %A Aru, Juhan %A Powell, Ellen %A Sepúlveda, Avelio %T Liouville measure as a multiplicative cascade via level sets of the Gaussian free field %J Annales de l'Institut Fourier %D 2020 %P 205-245 %V 70 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3312/ %R 10.5802/aif.3312 %G en %F AIF_2020__70_1_205_0
Aru, Juhan; Powell, Ellen; Sepúlveda, Avelio. Liouville measure as a multiplicative cascade via level sets of the Gaussian free field. Annales de l'Institut Fourier, Tome 70 (2020) no. 1, pp. 205-245. doi : 10.5802/aif.3312. https://aif.centre-mersenne.org/articles/10.5802/aif.3312/
[1] The extremal process in nested conformal loops (2015) (preprint available on the webpage of the author)
[2] Survival of branching random walks with absorption, Stochastic Processes Appl., Volume 121 (2011) no. 9, pp. 1901-1937 | DOI | MR | Zbl
[3] Seneta–Heyde rescaling for the branching random walk, Ann. Probab., Volume 42 (2014) no. 3, pp. 959-993 | DOI | Zbl
[4] First passage sets of the 2D continuum Gaussian free field, Probab. Theory Relat. Fields (2019) (online-first) | DOI | Zbl
[5] The first passage sets of the 2D Gaussian free field: convergence and isomorphisms (2018) (https://arxiv.org/abs/1805.09204) | Zbl
[6] Critical Liouville measure as a limit of subcritical measures, Electron. Commun. Probab., Volume 24 (2019), 18, 16 pages | MR | Zbl
[7] On bounded-type thin local sets of the two-dimensional Gaussian free field, J. Inst. Math. Jussieu, Volume 18 (2019) no. 3, pp. 591-618 | DOI | MR | Zbl
[8] An elementary approach to Gaussian multiplicative chaos, Electron. Commun. Probab., Volume 22 (2017), 27, 12 pages | MR | Zbl
[9] On a functional central limit theorem for random walks conditioned to stay positive, Ann. Probab. (1976), pp. 480-485 | DOI | MR | Zbl
[10] Liouville quantum gravity on the Riemann sphere, Commun. Math. Phys., Volume 342 (2016) no. 3, pp. 869-907 | DOI | MR | Zbl
[11] Critical Gaussian multiplicative chaos: convergence of the derivative martingale, Ann. Probab., Volume 42 (2014) no. 5, pp. 1769-1808 | DOI | MR | Zbl
[12] Renormalization of critical Gaussian multiplicative chaos and KPZ relation, Commun. Math. Phys., Volume 330 (2014) no. 1, pp. 283-330 | DOI | MR | Zbl
[13] Liouville quantum gravity and KPZ, Invent. Math., Volume 185 (2011) no. 2, pp. 333-393 | DOI | MR | Zbl
[14] Probability: theory and examples, Cambridge Series in Statistical and Probabilistic Mathematics, 31, Cambridge University Press, 2010, x+428 pages | DOI | MR | Zbl
[15] A general class of quantum fields without cut-offs in two space-time dimensions, Commun. Math. Phys., Volume 21 (1971) no. 3, pp. 244-255 | DOI | MR
[16] Liouville Quantum Gravity on the unit disk, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 54 (2018) no. 3, pp. 1694-1730 | DOI | MR | Zbl
[17] Uniqueness of critical Gaussian chaos, Electron. J. Probab., Volume 22 (2017), 11, 31 pages | MR | Zbl
[18] Sur le chaos multiplicatif, Ann. Sci. Math. Qué., Volume 9 (1985) no. 2, pp. 105-150 | MR | Zbl
[19] The asymptotic behavior of the probability of non-extinction of critical branching processes in a random environment, Theory Probab. Appl., Volume 21 (1976), pp. 791-804 | DOI | MR | Zbl
[20] Martingale convergence and the stopped branching random walk, Probab. Theory Relat. Fields, Volume 116 (2000) no. 3, pp. 405-419 | DOI | MR | Zbl
[21] A simple path to Biggins’ martingale convergence for branching random walk, Classical and modern branching processes (The IMA Volumes in Mathematics and its Applications), Springer, 1997 no. 84, pp. 217-221 | DOI | Zbl
[22] First order transition for the branching random walk at the critical parameter, Stochastic Processes Appl., Volume 126 (2016), pp. 470-502 | DOI | MR | Zbl
[23] The GFF and CLE(4) (2011) (slides and private communications)
[24] Liouville field theory: a decade after the revolution, Int. J. Mod. Phys. A, Volume 19 (2004) no. 17-18, pp. 2771-2930 | DOI | MR | Zbl
[25] Critical Gaussian chaos: convergence and uniqueness in the derivative normalisation, Electron. J. Probab., Volume 23 (2018), 31, 26 pages | MR | Zbl
[26] Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines, Commun. Math. Phys. (2018), pp. 1-28 | MR | Zbl
[27] Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity (2016) (https://arxiv.org/abs/1602.07323) | Zbl
[28] Gaussian multiplicative chaos revisited, Ann. Probab., Volume 38 (2010) no. 2, pp. 605-631 | DOI | MR | Zbl
[29] A contour line of the continuum Gaussian free field, Probab. Theory Relat. Fields, Volume 157 (2013) no. 1-2, pp. 47-80 | DOI | MR | Zbl
[30] Conformal radii for conformal loop ensembles, Commun. Math. Phys., Volume 288 (2009) no. 1, pp. 43-53 | DOI | MR | Zbl
[31] On thin local sets of the Gaussian free field, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 55 (2019) no. 3, pp. 1797-1813 | DOI | MR | Zbl
[32] On Gaussian Multiplicative Chaos, J. Funct. Anal., Volume 270 (2016) no. 9, pp. 3224-3261 | DOI | MR | Zbl
[33] Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab., Volume 44 (2016) no. 5, pp. 3474-3545 | DOI | MR | Zbl
[34] The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos - the phase, Electron. J. Probab., Volume 20 (2015), 104, 21 pages | MR | Zbl
[35] Topics on the GFF and CLE(4) (2015) (lecture notes available on his webpage)
Cité par Sources :