In this article we study polynomial logarithmic -forms on a projective space and characterize those that define singular foliations of codimension . Our main result is the algebraic proof of their infinitesimal stability when with some extra degree assumptions. We determine new irreducible components of the moduli space of codimension two singular projective foliations of any degree, and we show that they are generically reduced in their natural scheme structure. Our method is based on an explicit description of the Zariski tangent space of the corresponding moduli space at a given generic logarithmic form. Furthermore, we lay the groundwork for an extension of our stability results to the general case .
Dans cet article nous étudions des -formes logaritmiques polynomiales sur un espace projectif et nous caractérisons celles qui définissent des feuilletages singuliers de codimension . Notre principal résultat est la preuve algébrique de leur stabilité infinitésimale lorsque avec quelques hypothèses supplémentaires sur leurs degrés. Nous donnons des nouvelles composantes irréductibles des espaces de modules des feuilletages projectifs de codimension deux et de degré quelconque, et nous montrons que ces composantes sont génériquement réduites selon leur structure naturelle de schéma. Notre méthode est basée sur le calcul explicite de l’espace tangent de Zariski de l’espace de modules en une forme logarithmique générique. Nous posons aussi les bases pour l’extension de nos résultats de stabilité au cas général
Revised:
Accepted:
Published online:
Keywords: logarithmic forms, singular projective foliations, moduli spaces.
Mot clés : formes logarithmiques, feuilletages projectifs singuliers, espaces de modules.
@article{AIF_2020__70_1_171_0, author = {Gargiulo Acea, Javier}, title = {Logarithmic forms and singular projective foliations}, journal = {Annales de l'Institut Fourier}, pages = {171--203}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {1}, year = {2020}, doi = {10.5802/aif.3311}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3311/} }
TY - JOUR AU - Gargiulo Acea, Javier TI - Logarithmic forms and singular projective foliations JO - Annales de l'Institut Fourier PY - 2020 SP - 171 EP - 203 VL - 70 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3311/ DO - 10.5802/aif.3311 LA - en ID - AIF_2020__70_1_171_0 ER -
%0 Journal Article %A Gargiulo Acea, Javier %T Logarithmic forms and singular projective foliations %J Annales de l'Institut Fourier %D 2020 %P 171-203 %V 70 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3311/ %R 10.5802/aif.3311 %G en %F AIF_2020__70_1_171_0
Gargiulo Acea, Javier. Logarithmic forms and singular projective foliations. Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 171-203. doi : 10.5802/aif.3311. https://aif.centre-mersenne.org/articles/10.5802/aif.3311/
[1] Irreducible components of the space of holomorphic foliations, Math. Ann., Volume 299 (1994) no. 4, pp. 751-767 | DOI | MR | Zbl
[2] Irreducible components of the space of holomorphic foliations of degree two in , , Ann. Math., Volume 143 (1996) no. 3, pp. 577-612 | DOI | MR | Zbl
[3] Logarithmic foliations (2018) (https://arxiv.org/abs/1803.08894) | Zbl
[4] Geometry of the base locus for logarithmic forms (In preparation) | Zbl
[5] Stability of logarithmic differential one-forms, Trans. Am. Math. Soc., Volume 371 (2019) no. 9, pp. 6289-6308 | DOI | MR | Zbl
[6] Stability of holomorphic foliations with split tangent sheaf, Am. J. Math., Volume 130 (2008) no. 2, pp. 413-439 | DOI | MR | Zbl
[7] Stability of foliations induced by rational maps, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 4, pp. 685-715 | DOI | Numdam | MR | Zbl
[8] Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, 163, Springer, 1970, iii+133 pages | DOI | MR | Zbl
[9] Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser, 2008, x+523 pages (Reprint of the 1994 edition) | DOI | MR | Zbl
[10] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl
[11] Équations de Pfaff algébriques, Lecture Notes in Mathematics, 708, Springer, 1979, v+255 pages | DOI | MR | Zbl
[12] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004, xviii+387 pages | DOI | MR | Zbl
[13] Singular foliations and differential -forms, Ann. Fac. Sci. Toulouse, Math., Volume 9 (2000) no. 3, pp. 451-466 | DOI | Numdam | MR | Zbl
[14] Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 52, Springer, 2008, xiv+470 pages | DOI | MR | Zbl
[15] On a generalization of de Rham lemma, Ann. Inst. Fourier, Volume 26 (1976) no. 2, pp. 165-170 | DOI | Numdam | MR | Zbl
[16] Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl
Cited by Sources: