Logarithmic forms and singular projective foliations
Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 171-203.

In this article we study polynomial logarithmic q-forms on a projective space and characterize those that define singular foliations of codimension q. Our main result is the algebraic proof of their infinitesimal stability when q=2 with some extra degree assumptions. We determine new irreducible components of the moduli space of codimension two singular projective foliations of any degree, and we show that they are generically reduced in their natural scheme structure. Our method is based on an explicit description of the Zariski tangent space of the corresponding moduli space at a given generic logarithmic form. Furthermore, we lay the groundwork for an extension of our stability results to the general case q2.

Dans cet article nous étudions des q-formes logaritmiques polynomiales sur un espace projectif et nous caractérisons celles qui définissent des feuilletages singuliers de codimension q. Notre principal résultat est la preuve algébrique de leur stabilité infinitésimale lorsque q=2 avec quelques hypothèses supplémentaires sur leurs degrés. Nous donnons des nouvelles composantes irréductibles des espaces de modules des feuilletages projectifs de codimension deux et de degré quelconque, et nous montrons que ces composantes sont génériquement réduites selon leur structure naturelle de schéma. Notre méthode est basée sur le calcul explicite de l’espace tangent de Zariski de l’espace de modules en une forme logarithmique générique. Nous posons aussi les bases pour l’extension de nos résultats de stabilité au cas général q2

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3311
Classification: 14D20, 37F75, 14B10, 32S65
Keywords: logarithmic forms, singular projective foliations, moduli spaces.
Mot clés : formes logarithmiques, feuilletages projectifs singuliers, espaces de modules.
Gargiulo Acea, Javier 1

1 Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 1, Ciudad Universitaria Int. Guiraldes 2160 (C1428EGA) Ciudad de Buenos Aires (Argentina)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_1_171_0,
     author = {Gargiulo Acea, Javier},
     title = {Logarithmic forms and singular projective foliations},
     journal = {Annales de l'Institut Fourier},
     pages = {171--203},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.5802/aif.3311},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3311/}
}
TY  - JOUR
AU  - Gargiulo Acea, Javier
TI  - Logarithmic forms and singular projective foliations
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 171
EP  - 203
VL  - 70
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3311/
DO  - 10.5802/aif.3311
LA  - en
ID  - AIF_2020__70_1_171_0
ER  - 
%0 Journal Article
%A Gargiulo Acea, Javier
%T Logarithmic forms and singular projective foliations
%J Annales de l'Institut Fourier
%D 2020
%P 171-203
%V 70
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3311/
%R 10.5802/aif.3311
%G en
%F AIF_2020__70_1_171_0
Gargiulo Acea, Javier. Logarithmic forms and singular projective foliations. Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 171-203. doi : 10.5802/aif.3311. https://aif.centre-mersenne.org/articles/10.5802/aif.3311/

[1] Calvo-Andrade, Omegar Irreducible components of the space of holomorphic foliations, Math. Ann., Volume 299 (1994) no. 4, pp. 751-767 | DOI | MR | Zbl

[2] Cerveau, Dominique; Lins Neto, Alcides Irreducible components of the space of holomorphic foliations of degree two in ℂℙ(n), n3, Ann. Math., Volume 143 (1996) no. 3, pp. 577-612 | DOI | MR | Zbl

[3] Cerveau, Dominique; Lins Neto, Alcides Logarithmic foliations (2018) (https://arxiv.org/abs/1803.08894) | Zbl

[4] Cukierman, Fernando; Gargiulo Acea, Javier Nicolas; Massri, César Geometry of the base locus for logarithmic forms (In preparation) | Zbl

[5] Cukierman, Fernando; Gargiulo Acea, Javier Nicolas; Massri, César Stability of logarithmic differential one-forms, Trans. Am. Math. Soc., Volume 371 (2019) no. 9, pp. 6289-6308 | DOI | MR | Zbl

[6] Cukierman, Fernando; Pereira, Jorge Vitório Stability of holomorphic foliations with split tangent sheaf, Am. J. Math., Volume 130 (2008) no. 2, pp. 413-439 | DOI | MR | Zbl

[7] Cukierman, Fernando; Pereira, Jorge Vitório; Vainsencher, Israel Stability of foliations induced by rational maps, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 4, pp. 685-715 | DOI | Numdam | MR | Zbl

[8] Deligne, Pierre Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, 163, Springer, 1970, iii+133 pages | DOI | MR | Zbl

[9] Gelfand, Israel M.; Kapranov, Mikhail M.; Zelevinsky, Andrei V. Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser, 2008, x+523 pages (Reprint of the 1994 edition) | DOI | MR | Zbl

[10] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl

[11] Jouanolou, Jean-Pierre Équations de Pfaff algébriques, Lecture Notes in Mathematics, 708, Springer, 1979, v+255 pages | DOI | MR | Zbl

[12] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004, xviii+387 pages | DOI | MR | Zbl

[13] de Medeiros, Airton S. Singular foliations and differential p-forms, Ann. Fac. Sci. Toulouse, Math., Volume 9 (2000) no. 3, pp. 451-466 | DOI | Numdam | MR | Zbl

[14] Peters, Chris A. M.; Steenbrink, Joseph H. M. Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 52, Springer, 2008, xiv+470 pages | DOI | MR | Zbl

[15] Saito, Kyoji On a generalization of de Rham lemma, Ann. Inst. Fourier, Volume 26 (1976) no. 2, pp. 165-170 | DOI | Numdam | MR | Zbl

[16] Saito, Kyoji Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl

Cited by Sources: