Extensions maximales et classification des tores lorentziens munis d’un champ de Killing
[Maximal extensions and classification of Lorentzian tori with a Killing field]
Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 67-168.

We define a family of model spaces for 2-dimensional Lorentzian geometry, consisting of simply connected inextendable Lorentzian surfaces admitting a Killing field. These spaces, called “universal extensions”, are constructed by an extension process and characterized by symmetry and completeness conditions. In general, these surfaces have a rich combinatorics and admit many quotient spaces and many divisible open sets. As applications, we show the existence of plenty (both topologically and geometrically) of Lorentzian surfaces with a Killing field. We also prove uniformisation results for the compact case and for the analytic case, which in particular allows us to give a classification of Lorentzian tori and Klein bottles with a Killing field.

Nous introduisons une famille d’espaces modèles pour la géométrie lorentzienne en dimension 2. Il s’agit de surfaces lorentziennes simplement connexes, inextensibles et possédant un champ de Killing. Désignées par « extensions universelles », elles sont construites par un procédé d’extension et caractérisées par certaines conditions de symétrie et de complétude. Ces surfaces possèdent généralement une combinatoire très riche, de nombreux quotients et de nombreux ouverts divisibles. Comme application, nous obtenons l’existence d’une grande diversité, tant topologique que géométrique, de surfaces lorentziennes munies d’un champ de Killing. Nous établissons aussi des résultats d’uniformisation pour le cas compact et pour le cas analytique, ce qui nous permet notamment de classer les tores lorentziens et les bouteilles de Klein possédant un champ de Killing.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3309
Classification: 53C50
Keywords: Lorentzian surfaces, Killing fields
Bavard, Christophe 1; Mounoud, Pierre 1

1 Univ. Bordeaux et CNRS, IMB, UMR 5251 F-33400 Talence (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_1_67_0,
     author = {Bavard, Christophe and Mounoud, Pierre},
     title = {Extensions maximales et classification des tores lorentziens munis d{\textquoteright}un champ de {Killing}},
     journal = {Annales de l'Institut Fourier},
     pages = {67--168},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.5802/aif.3309},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3309/}
}
TY  - JOUR
AU  - Bavard, Christophe
AU  - Mounoud, Pierre
TI  - Extensions maximales et classification des tores lorentziens munis d’un champ de Killing
JO  - Annales de l'Institut Fourier
PY  - 2020
DA  - 2020///
SP  - 67
EP  - 168
VL  - 70
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3309/
UR  - https://doi.org/10.5802/aif.3309
DO  - 10.5802/aif.3309
LA  - fr
ID  - AIF_2020__70_1_67_0
ER  - 
%0 Journal Article
%A Bavard, Christophe
%A Mounoud, Pierre
%T Extensions maximales et classification des tores lorentziens munis d’un champ de Killing
%J Annales de l'Institut Fourier
%D 2020
%P 67-168
%V 70
%N 1
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.3309
%R 10.5802/aif.3309
%G fr
%F AIF_2020__70_1_67_0
Bavard, Christophe; Mounoud, Pierre. Extensions maximales et classification des tores lorentziens munis d’un champ de Killing. Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 67-168. doi : 10.5802/aif.3309. https://aif.centre-mersenne.org/articles/10.5802/aif.3309/

[1] Bavard, Christophe; Mounoud, Pierre Sur les surfaces lorentziennes compactes sans points conjugués, Geom. Topol., Volume 17 (2013) no. 1, pp. 469-492 | DOI | Zbl

[2] Bourbaki, Nicolas Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV : Groupes de Coxeter et systèmes de Tits., Actualités Scientifiques et Industrielles, 1337, Hermann, 1968 | Zbl

[3] Edmonds, Allan L.; Kulkarni, Ravi S.; Stong, Robert E. Realizability of branched coverings of surfaces, Trans. Am. Math. Soc., Volume 282 (1984) no. 2, pp. 773-790 | DOI | MR | Zbl

[4] Ferrand, Jacqueline The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996) no. 2, pp. 277-291 | DOI | MR | Zbl

[5] Goldman, William M. Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987) (Contemporary Mathematics), Volume 74, American Mathematical Society, 1988, pp. 169-198 | DOI | MR | Zbl

[6] Gutiérrez, Manuel; Palomo, Francisco J.; Romero, Alfonso Lorentzian manifolds with no null conjugate points, Math. Proc. Camb. Philos. Soc., Volume 137 (2004) no. 2, pp. 363-375 | DOI | MR | Zbl

[7] Haefliger, André; Reeb, Georges Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseign. Math., Volume 3 (1957), pp. 107-125 | Zbl

[8] Matveev, Vladimir S. Pseudo-Riemannian metrics on closed surfaces whose geodesics flows admit nontrivial integrals quadratic in momenta, and proof of the projective Obata conjecture for two-dimensional pseudo-Riemannian metrics, J. Math. Soc. Japan, Volume 64 (2012) no. 1, pp. 107-152 | DOI | MR | Zbl

[9] Monclair, Daniel Isometries of Lorentz surfaces and convergence groups, Math. Ann., Volume 363 (2015) no. 1-2, pp. 101-141 | DOI | MR | Zbl

[10] Mounoud, Pierre; Suhr, Stefan On spacelike Zoll surfaces with symmetries, J. Differ. Geom., Volume 102 (2016) no. 2, pp. 243-284 | DOI | MR | Zbl

[11] Nomizu, Katsumi On local and global existence of Killing vector fields, Ann. Math., Volume 72 (1960), pp. 105-120 | DOI | MR | Zbl

[12] O’Neill, Barrett Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press Inc., 1983, xiii+468 pages | MR | Zbl

[13] Palais, Richard S. On the existence of slices for actions of non-compact Lie groups, Ann. Math., Volume 73 (1961), pp. 295-323 | DOI | MR | Zbl

[14] Penrose, Roger Gravitational collapse and space-time singularities, Phys. Rev. Lett., Volume 14 (1965), pp. 57-59 | DOI | MR | Zbl

[15] Piccione, Paolo; Zeghib, Abdelghani Actions of discrete groups on stationary Lorentz manifolds, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 5, pp. 1640-1673 | DOI | MR | Zbl

[16] Sánchez, Miguel Structure of Lorentzian tori with a Killing vector field, Trans. Am. Math. Soc., Volume 349 (1997) no. 3, pp. 1063-1080 | DOI | MR | Zbl

[17] Steenrod, Norman The Topology of Fibre Bundles, Princeton Mathematical Series, 14, Princeton University Press, 1951, viii+224 pages | MR | Zbl

[18] Wolf, Joseph A. Spaces of constant curvature, AMS Chelsea Publishing, 2011, xviii+424 pages | Zbl

Cited by Sources: