A geometric approach to Catlin’s boundary systems
Annales de l'Institut Fourier, Volume 69 (2019) no. 6, pp. 2635-2679.

For a point p in a smooth real hypersurface M n , where the Levi form has the nontrivial kernel K p 10 0, we introduce an invariant cubic tensor

τp3:Tp×Kp10×Kp10¯(Tp/Hp),

which together with Ebenfelt’s 3rd order tensor, constitutes the full set of the 3rd order invariants of M at p.

Next, in addition, assume M n to be (weakly) pseudoconvex. Then τ p 3 must identically vanish. In this case we further define an invariant quartic tensor

τp4:Tp×Tp×Kp10×Kp10¯(Tp/Hp),

and for every q=0,,n-1, an invariant submodule sheaf 𝒮 10 (q) of (1,0) vector fields in terms of the Levi form, and an invariant ideal sheaf (q) of complex functions generated by certain components and derivatives of the Levi form, such that the set of points of Levi rank q is locally contained in real smooth submanifolds defined by real parts of the functions in (q), whose tangent spaces have explicit algebraic description in terms of the quartic tensor τ 4 .

Most recently, the constructions of τ 3 and τ 4 inspired Raich and Harrington [35] to discover new related invariants in the non-pseudoconvex case and connect them with the closed range property for the ¯ operator.

Finally, we relate the introduced invariants with D’Angelo’s finite type, Catlin’s multitype and Catlin’s boundary systems.

Soit p un point d’une hypersurface M n , réelle et lisse, en lequel la forme de Levi possède un noyau non trivial, noté K p 10 0. On introduit alors un tenseur d’ordre 3, invariant

τp3:Tp×Kp10×Kp10¯(Tp/Hp),

qui, avec le tenseur d’ordre 3 d’Ebenfelt, fournit l’ensemble de tous les tenseurs d’ordre 3 invariants de M au point p.

Si, de plus, on suppose que M est pseudo-convexe, alors τ p 3 est identiquement nul. On définit alors un tenseur d’ordre 4, invariant

τp4:Tp×Tp×Kp10×Kp10¯(Tp/Hp).

On introduit également pour q=0,...,n-1, un faisceau de sous-modules invariant, noté 𝒮 10 (q), constitué de champs de vecteurs de type (1,0), construits à partir de la forme de Levi, ainsi qu’un faisceau d’idéaux invariant, noté (q), constitué de fonctions complexes construites à partir de certaines composantes et dérivées de la forme de Levi. L’ensemble des points dont la forme de Levi est de rang q est alors contenu localement dans des sous-variétés réelles et lisses définies par des parties rélles de fonctions dans (q), et dont les espaces tangents ont des descriptions algébriques explicites en termes du tenseur τ 4 .

Tout récemment, la construction de τ 3 et τ 4 a inspiré Raich et Harrington [35] qui ont découvert de nouveaux invariants associés à ces derniers dans le cas où M n’est pas pseudo-convexe et les ont reliés à la « closed range property » pour l’opérateur ¯.

Enfin, on fait le lien entre ces invariants définis plus haut et le type fini au sens de D’Angelo, le multitype au sens de Catlin et les « boundary systems » de Catlin.

Received:
Accepted:
Published online:
DOI: 10.5802/aif.3304
Classification: 32T25, 32T27, 32V05, 32V15, 32V35, 32W05, 32S60, 58K50
Keywords: Catlin multitype, subelliptic estimates, boundary systems, Levi form, pseudoconvexity, real hypersurfaces, invariant tensors, ideal sheaves
Mot clés : multitype de Catlin, estimée sous-elliptique, système bord, forme de Levi, pseudo-convexité, hypersurface réelle, tenseur invariant, faisceau idéal

Zaitsev, Dmitri 1

1 School of Mathematics Trinity College Dublin Dublin 2 (Ireland)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_6_2635_0,
     author = {Zaitsev, Dmitri},
     title = {A geometric approach to {Catlin{\textquoteright}s} boundary systems},
     journal = {Annales de l'Institut Fourier},
     pages = {2635--2679},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {6},
     year = {2019},
     doi = {10.5802/aif.3304},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3304/}
}
TY  - JOUR
AU  - Zaitsev, Dmitri
TI  - A geometric approach to Catlin’s boundary systems
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 2635
EP  - 2679
VL  - 69
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3304/
DO  - 10.5802/aif.3304
LA  - en
ID  - AIF_2019__69_6_2635_0
ER  - 
%0 Journal Article
%A Zaitsev, Dmitri
%T A geometric approach to Catlin’s boundary systems
%J Annales de l'Institut Fourier
%D 2019
%P 2635-2679
%V 69
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3304/
%R 10.5802/aif.3304
%G en
%F AIF_2019__69_6_2635_0
Zaitsev, Dmitri. A geometric approach to Catlin’s boundary systems. Annales de l'Institut Fourier, Volume 69 (2019) no. 6, pp. 2635-2679. doi : 10.5802/aif.3304. https://aif.centre-mersenne.org/articles/10.5802/aif.3304/

[1] Baracco, Luca; Khanh, Tran Vu; Pinton, Stefano; Zampieri, Giuseppe Hölder regularity of the solution to the complex Monge-Ampère equation with L p density, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4, 74, 8 pages | Zbl

[2] Bharali, Gautam; Stensønes, Berit Plurisubharmonic polynomials and bumping, Math. Z., Volume 261 (2009) no. 1, pp. 39-63 | DOI | MR | Zbl

[3] Biard, Séverine; Straube, Emil J. L 2 -Sobolev theory for the complex Green operator, Int. J. Math., Volume 28 (2017) no. 9, 1740006, 31 pages | MR | Zbl

[4] Bierstone, Edward; Milman, Pierre D. Ideals of holomorphic functions with C boundary values on a pseudoconvex domain, Trans. Am. Math. Soc., Volume 304 (1987) no. 1, pp. 323-342 | MR | Zbl

[5] Boas, Harold P. The Szegö projection: Sobolev estimates in regular domains, Trans. Am. Math. Soc., Volume 300 (1987) no. 1, pp. 109-132 | Zbl

[6] Boas, Harold P.; Straube, Emil J.; Yu, Ji-Ye Boundary limits of the Bergman kernel and metric, Mich. Math. J., Volume 42 (1995) no. 3, pp. 449-461 | MR | Zbl

[7] Catlin, David W. Global regularity of the ¯-Neumann problem, Complex analysis of several variables (Madison,1982) (Proceedings of Symposia in Pure Mathematics), Volume 41, American Mathematical Society, 1982, pp. 39-49 | DOI | MR | Zbl

[8] Catlin, David W. Boundary invariants of pseudoconvex domains, Ann. Math., Volume 120 (1984), pp. 529-586 | DOI | MR | Zbl

[9] Catlin, David W. Subelliptic estimates for the ¯-Neumann problem on pseudoconvex domains, Ann. Math., Volume 126 (1987), pp. 131-191 | DOI | MR | Zbl

[10] Catlin, David W. Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z., Volume 200 (1989) no. 3, pp. 429-466 | DOI | MR | Zbl

[11] Catlin, David W.; D’Angelo, John P. Subelliptic estimates, Complex analysis. Several complex variables and connections with PDE theory and geometry (Trends in Mathematics), Birkhäuser/Springer, 2010, pp. 75-94 | Zbl

[12] Çelik, Mehmet; Şahutoğlu, Sönmez On compactness of the ¯-Neumann problem and Hankel operators, Proc. Am. Math. Soc., Volume 140 (2012) no. 1, pp. 153-159 | DOI | MR | Zbl

[13] Charpentier, Philippe; Dupain, Yves Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form, Publ. Mat., Barc., Volume 50 (2006) no. 2, pp. 413-446 | DOI | Zbl

[14] Charpentier, Philippe; Dupain, Yves Geometry of pseudo-convex domains of finite type with locally diagonalizable Levi form and Bergman kernel, J. Math. Pures Appl., Volume 85 (2006) no. 1, pp. 71-118 | DOI | MR | Zbl

[15] Charpentier, Philippe; Dupain, Yves Extremal bases, geometrically separated domains and applications, Algebra Anal., Volume 26 (2014) no. 1, pp. 196-269 translation in St. Petersbg. Math. J. 26 (2015), no. 1, p. 139-191 | MR | Zbl

[16] Chen, Bo-Yong; Fu, Siqi Comparison of the Bergman and Szegö kernels, Adv. Math., Volume 228 (2011) no. 4, pp. 2366-2384 | DOI | Zbl

[17] Cho, Sanghyun A lower bound on the Kobayashi metric near a point of finite type in n , J. Geom. Anal., Volume 2 (1992) no. 4, pp. 317-325 | MR | Zbl

[18] Cho, Sanghyun Boundary behavior of the Bergman kernel function on some pseudoconvex domains in n , Trans. Am. Math. Soc., Volume 345 (1994) no. 2, pp. 803-817 | MR | Zbl

[19] Cho, Sanghyun Estimates of invariant metrics on pseudoconvex domains with comparable Levi form, J. Math. Kyoto Univ., Volume 42 (2002) no. 2, pp. 337-349 | MR | Zbl

[20] Christ, Michael; Fu, Siqi Compactness in the ¯-Neumann problem, magnetic Schrödinger operators, and the Aharonov-Bohm effect, Adv. Math., Volume 197 (2005) no. 1, pp. 1-40 | DOI | Zbl

[21] D’Angelo, John P. Subelliptic estimates and failure of semicontinuity for orders of contact, Duke Math. J., Volume 47 (1980) no. 4, pp. 955-957 | MR | Zbl

[22] D’Angelo, John P. Real hypersurfaces, orders of contact, and applications, Ann. Math., Volume 115 (1982), pp. 615-637 | DOI | MR | Zbl

[23] D’Angelo, John P. Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, CRC Press, 1993 | Zbl

[24] Diederich, Klas; Herbort, Gregor Pseudoconvex domains of semiregular type, Contributions to complex analysis and analytic geometry (Aspects of Mathematics), Volume E26, Vieweg & Sohn, 1994, pp. 127-161 | Zbl

[25] Ebenfelt, Peter New invariant tensors in CR structures and a normal form for real hypersurfaces at a generic Levi degeneracy, J. Differ. Geom., Volume 50 (1998) no. 2, pp. 207-247 | DOI | MR | Zbl

[26] Fornæss, John E.; McNeal, Jeffery D. A construction of peak functions on some finite type domains, Am. J. Math., Volume 116 (1994) no. 3, pp. 737-755 | DOI | MR | Zbl

[27] Fornæss, John E.; Sibony, Nessim Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J., Volume 58 (1989) no. 3, pp. 633-655 | MR | Zbl

[28] Freeman, Michael Local biholomorphic straightening of real submanifolds, Ann. Math., Volume 106 (1977) no. 2, pp. 319-352 | DOI | MR | Zbl

[29] Fu, Siqi; Jacobowitz, Howard The ¯-cohomology groups, holomorphic Morse inequalities, and finite type conditions, Pure Appl. Math. Q., Volume 6 (2010) no. 3, pp. 875-914 | MR | Zbl

[30] Fu, Siqi; Straube, Emil J. Compactness in the ¯-Neumann problem, Complex analysis and geometry (Columbus, 1999) (Ohio State University Mathematical Research Institute Publications), Volume 9, Walter de Gruyter, 2001, pp. 141-160 | MR | Zbl

[31] Ha, Ly Kim; Khanh, Tran Vu Boundary regularity of the solution to the complex Monge-Ampère equation on pseudoconvex domains of infinite type, Math. Res. Lett., Volume 22 (2015) no. 2, pp. 467-484 | Zbl

[32] Harrington, Phillip S. Compact and subelliptic estimates for the ¯-Neumann operator on C 2 pseudoconvex domains, Math. Ann., Volume 337 (2007) no. 2, pp. 335-352 | DOI | MR | Zbl

[33] Harrington, Phillip S. Property (P) and Stein neighborhood bases on C 1 domains, Ill. J. Math., Volume 52 (2008) no. 1, pp. 145-151 | DOI | MR | Zbl

[34] Harrington, Phillip S. Global regularity for the ¯-Neumann operator and bounded plurisubharmonic exhaustion functions, Adv. Math., Volume 228 (2011) no. 4, pp. 2522-2551 | DOI | MR | Zbl

[35] Harrington, Phillip S.; Raich, Andrew Boundary invariants and the closed range property for ¯ (2018) (https://arxiv.org/abs/1805.05793) | Zbl

[36] Henkin, Gennadi M.; Iordan, Andrei Compactness of the Neumann operator for hyperconvex domains with non-smooth B-regular boundary, Math. Ann., Volume 307 (1997) no. 1, pp. 151-168 | DOI | MR | Zbl

[37] Herbig, Anne-Katrin A sufficient condition for subellipticity of the ¯-Neumann operator, J. Funct. Anal., Volume 242 (2007) no. 2, pp. 337-362 | DOI | MR | Zbl

[38] Herbort, Gregor On the Bergman metric on bounded pseudoconvex domains an approach without the Neumann operator, Int. J. Math., Volume 25 (2014) no. 3, 1450025, 13 pages | MR | Zbl

[39] Kaup, Wilhelm; Zaitsev, Dmitri On local CR-transformation of Levi-degenerate group orbits in compact Hermitian symmetric spaces, J. Eur. Math. Soc., Volume 8 (2006) no. 3, pp. 465-490 | DOI | MR | Zbl

[40] Khanh, Tran Vu; Pinton, Stefano; Zampieri, Giuseppe Compactness estimates for b on a CR manifold, Proc. Am. Math. Soc., Volume 140 (2012) no. 9, pp. 3229-3236 | DOI | Zbl

[41] Khanh, Tran Vu; Raich, Andrew Local regularity of the Bergman projection on a class of pseudoconvex domains of finite type (2014) (https://arxiv.org/abs/1406.6532)

[42] Khanh, Tran Vu; Zampieri, Giuseppe Necessary geometric and analytic conditions for general estimates in the ¯-Neumann problem, Invent. Math., Volume 188 (2012) no. 3, pp. 729-750 | DOI | MR | Zbl

[43] Kohn, Joseph J. Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. Math., Volume 78 (1963), pp. 112-148 | DOI | MR | Zbl

[44] Kohn, Joseph J. Harmonic integrals on strongly pseudo-convex manifolds. II, Ann. Math., Volume 79 (1964), pp. 450-472 | DOI | MR | Zbl

[45] Kohn, Joseph J. Boundary behavior of ¯ on weakly pseudo-convex manifolds of dimension two, J. Differ. Geom., Volume 6 (1972), pp. 523-542 | DOI | MR | Zbl

[46] Kohn, Joseph J. Subellipticity of the ¯-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math., Volume 142 (1979) no. 1-2, pp. 79-122 | DOI | MR | Zbl

[47] Kolář, Martin The Catlin multitype and biholomorphic equivalence of models, Int. Math. Res. Not., Volume 2010 (2010) no. 18, pp. 3530-3548 | DOI | MR | Zbl

[48] McNeal, Jeffery D. Lower bounds on the Bergman metric near a point of finite type, Ann. Math., Volume 136 (1992) no. 2, pp. 339-360 | DOI | MR | Zbl

[49] McNeal, Jeffery D. Invariant metric estimates for ¯ on some pseudoconvex domains, Ark. Mat., Volume 39 (2001) no. 1, pp. 121-136 | DOI | MR | Zbl

[50] McNeal, Jeffery D. A sufficient condition for compactness of the ¯-Neumann operator, J. Funct. Anal., Volume 195 (2002) no. 1, pp. 190-205 | DOI | MR | Zbl

[51] McNeal, Jeffery D.; Varolin, Dror L 2 estimates for the ¯-operator, Bull. Math. Sci., Volume 5 (2015) no. 2, pp. 179-249 | DOI | Zbl

[52] Nagel, Alexander; Rosay, Jean-Pierre; Stein, Elias M.; Wainger, Stephen Estimates for the Bergman and Szegö kernels in 2 , Ann. Math., Volume 129 (1989) no. 1, pp. 113-149 | DOI | Zbl

[53] Nicoara, Andreea C. Direct proof of termination of the Kohn algorithm in the real-analytic case (2014) (https://arxiv.org/abs/1409.0963) | Zbl

[54] Raich, Andrew Compactness of the complex Green operator on CR-manifolds of hypersurface type, Math. Ann., Volume 348 (2010) no. 1, pp. 81-117 | DOI | MR | Zbl

[55] Raich, Andrew; Straube, Emil J. Compactness of the complex Green operator, Math. Res. Lett., Volume 15 (2008) no. 4, pp. 761-778 | DOI | MR | Zbl

[56] Şahutoğlu, Sönmez Strong Stein neighbourhood bases, Complex Var. Elliptic Equ., Volume 57 (2012) no. 10, pp. 1073-1085 | DOI | MR | Zbl

[57] Siu, Yum-Tong Multiplier ideal sheaves in complex and algebraic geometry, Sci. China, Ser. A, Volume 48 (2005), pp. 1-31 | MR | Zbl

[58] Siu, Yum-Tong Effective termination of Kohn’s algorithm for subelliptic multipliers, Pure Appl. Math. Q., Volume 6 (2010) no. 4, pp. 1169-1241 | MR | Zbl

[59] Siu, Yum-Tong New procedure to generate multipliers in complex Neumann problem and effective Kohn algorithm, Sci. China, Math., Volume 60 (2017) no. 6, pp. 1101-1128 | MR | Zbl

[60] Straube, Emil J. Plurisubharmonic functions and subellipticity of the ¯-Neumann problem on non-smooth domains, Math. Res. Lett., Volume 4 (1997) no. 4, pp. 459-467 | DOI | MR | Zbl

[61] Straube, Emil J. Aspects of the L 2 -Sobolev theory of the ¯-Neumann problem, Proceedings of the international congress of mathematicians (ICM). Volume II: Invited lectures, European Mathematical Society, 2006, pp. 1453-1478 | MR | Zbl

[62] Straube, Emil J. Lectures on the L 2 -Sobolev theory of the ¯-Neumann problem, ESI Lectures in Mathematics and Physics, European Mathematical Society, 2010 | Zbl

[63] Straube, Emil J. The complex Green operator on CR-submanifolds of n of hypersurface type: compactness, Trans. Am. Math. Soc., Volume 364 (2012) no. 8, pp. 4107-4125 | DOI | MR | Zbl

[64] Webster, Sidney M. The holomorphic contact geometry of a real hypersurface, Modern methods in complex analysis (Annals of Mathematics Studies), Volume 137, Princeton University Press, 1995, pp. 327-342 | MR | Zbl

[65] Yu, Ji-Ye Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J., Volume 43 (1994) no. 4, pp. 1271-1295 | MR | Zbl

Cited by Sources: