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A GEOMETRIC APPROACH TO CATLIN’S
BOUNDARY SYSTEMS

by Dmitri ZAITSEV

Abstract. — For a point p in a smooth real hypersurface M ⊂ Cn, where the
Levi form has the nontrivial kernel K10

p 6= 0, we introduce an invariant cubic tensor

τ3
p : CTp ×K10

p ×K10
p → C⊗ (Tp/Hp),

which together with Ebenfelt’s 3rd order tensor, constitutes the full set of the 3rd
order invariants of M at p.

Next, in addition, assume M ⊂ Cn to be (weakly) pseudoconvex. Then τ3
p must

identically vanish. In this case we further define an invariant quartic tensor

τ4
p : CTp × CTp ×K10

p ×K10
p → C⊗ (Tp/Hp),

and for every q = 0, . . . , n−1, an invariant submodule sheaf S10(q) of (1, 0) vector
fields in terms of the Levi form, and an invariant ideal sheaf I(q) of complex
functions generated by certain components and derivatives of the Levi form, such
that the set of points of Levi rank q is locally contained in real smooth submanifolds
defined by real parts of the functions in I(q), whose tangent spaces have explicit
algebraic description in terms of the quartic tensor τ4.

Most recently, the constructions of τ3 and τ4 inspired Raich and Harrington [35]
to discover new related invariants in the non-pseudoconvex case and connect them
with the closed range property for the ∂̄ operator.

Finally, we relate the introduced invariants with D’Angelo’s finite type, Catlin’s
multitype and Catlin’s boundary systems.

Résumé. — Soit p un point d’une hypersurfaceM ⊂ Cn, réelle et lisse, en lequel
la forme de Levi possède un noyau non trivial, noté K10

p 6= 0. On introduit alors
un tenseur d’ordre 3, invariant

τ3
p : CTp ×K10

p ×K10
p → C⊗ (Tp/Hp),

qui, avec le tenseur d’ordre 3 d’Ebenfelt, fournit l’ensemble de tous les tenseurs
d’ordre 3 invariants de M au point p.

Si, de plus, on suppose que M est pseudo-convexe, alors τ3
p est identiquement

nul. On définit alors un tenseur d’ordre 4, invariant

τ4
p : CTp × CTp ×K10

p ×K10
p → C⊗ (Tp/Hp).

Keywords: Catlin multitype, subelliptic estimates, boundary systems, Levi form, pseu-
doconvexity, real hypersurfaces, invariant tensors, ideal sheaves.
2010 Mathematics Subject Classification: 32T25, 32T27, 32V05, 32V15, 32V35, 32W05,
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2636 D. Zaitsev

On introduit également pour q = 0, . . . , n−1, un faisceau de sous-modules invariant,
noté S10(q), constitué de champs de vecteurs de type (1, 0), construits à partir de
la forme de Levi, ainsi qu’un faisceau d’idéaux invariant, noté I(q), constitué de
fonctions complexes construites à partir de certaines composantes et dérivées de la
forme de Levi. L’ensemble des points dont la forme de Levi est de rang q est alors
contenu localement dans des sous-variétés réelles et lisses définies par des parties
rélles de fonctions dans I(q), et dont les espaces tangents ont des descriptions
algébriques explicites en termes du tenseur τ4.

Tout récemment, la construction de τ3 et τ4 a inspiré Raich et Harrington [35]
qui ont découvert de nouveaux invariants associés à ces derniers dans le cas où
M n’est pas pseudo-convexe et les ont reliés à la « closed range property » pour
l’opérateur ∂̄.

Enfin, on fait le lien entre ces invariants définis plus haut et le type fini au sens
de D’Angelo, le multitype au sens de Catlin et les « boundary systems » de Catlin.

1. Introduction

1.1. Overview for broader audience

In this brief overview we put this paper’s material in somewhat broader
context. The methods and tools introduced here may be of interest for gen-
eral systems of Partial Differential Equations (PDE), beyond the context of
the ∂̄-equations. An evidence for this is the recent breakthrough paper by
Siu [59] extending to general PDE systems the celebrated multiplier ideal
technique of Kohn [46].
In the study of PDE systems and their solutions, an important general

approach is that of the a priori estimates ‖u‖1 6 ‖u‖2, where ‖ · ‖1, ‖ · ‖2
is a pair of semi-norms and u is a test function. Finding a priori estimates
is typically a difficult problem whose solution in most cases relies on the
specific nature of the system, with very few general approaches known.
The multiplier ideal technique by Kohn [46] and the potential-theoretic
approach by Catlin [8, 9], are ones of the few known general approaches for
the ∂̄-Neumann problem, the boundary value problem for the ∂̄-equation
with Neumann boundary conditions, see recent expositions in [11, 51, 58,
59, 62].
In both approaches, understanding singularities of the Cauchy–Riemann

structure induced on the boundary by the ambient complex structure, is
of utmost importance. Our goal here is to develop new geometric invari-
ants to tackle this problem. A particular advantage of geometric invariants
comes from the freedom of using them in arbitrary coordinates, as well
as providing certain adapted coordinates, where the computations can be
significantly simplified.
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A GEOMETRIC APPROACH TO CATLIN’S BOUNDARY SYSTEMS 2637

The invariants introduced are tensors, ideal sheaves of functions and sub-
module sheaves of vector fields. The tensors arise from derivatives of the
Levi form, a fundamental invariant of the induced Cauchy–Riemann struc-
ture. However, only derivatives along certain special vector fields lead to
invariant tensors, as illustrated by examples in this paper. This observation
leads to the study of suitable submodule sheaves, where the vector fields
must belong, in order to define tensors.
While being a powerful tool for computations in arbitrary coordinates,

higher order tensors, as opposed to the Levi form, have the fundamental
limitation of not well-behaving across singularities, since they are defined
on kernels of varying dimension. In order to achieve some better behaviour
and control, more flexible objects are needed, such as ideal and submodule
sheaves mentioned above. In this paper we introduce invariant ideal sheaves
generalizing functions in Catlin’s boundary systems [8], whereas the invari-
ant tensors control the transversality and nondegeneracy property of those
functions.

1.2. Specialized overview

In more special terms, the goal of this paper is to introduce new geo-
metric invariants giving insight into some techniques developed by Catlin
in his celebrated papers [8, 9], following previous foundational work by
Kohn [43, 44, 45, 46] on the ∂̄-Neumann problem. In particular, we intro-
duce new invariant ideal sheaves containing functions arising in Catlin’s
boundary systems, and new invariant tensors permitting to simplify the
iterative construction of the boundary systems by more direct computa-
tions of the tensors’ kernels. The obtained geometric approach may lead to
sharper subelliptic estimates, as well as to advance our understanding of the
Kohn’s multiplier ideal sheaves [46], in view of their relation with Catlin’s
technique, as indicated by Siu [57, 58, 59] (see also Nicoara [53]). Further-
more, in his recent fundamental work [59], Siu proposed new techniques
for generating multipliers for general systems of partial differential equa-
tions, also including a new procedures even for the case of the ∂̄-Neumann
problem.

1.3. Conditions of property (P) type

The importance of having a better understanding is further underlined
by the role played by the Catlin’s potential-theoretic “Property (P)” type
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2638 D. Zaitsev

conditions (see e.g. [3, 30, 51, 61, 62] for recent surveys) that found vast
applications in multiple research areas such as:

(1) Compactness of the Kohn’s ∂̄-Neumann solution operator by Henkin
and Iordan [36], McNeal [50], Raich and Straube [55], Harring-
ton [32, 34], Çelik and Şahutoğlu [12]. The compactness was even
proved to be equivalent to Property (P) for Hartogs domains in C2

by Christ and Fu [20].
(2) Subelliptic estimates by Fornæss and Sibony [27], Straube [60],

Herbig [37], Harrington [32].
(3) Invariant metric estimates due to Catlin [10], Cho [17, 18, 19], Boas–

Straube–Yu [6], McNeal [49] and Herbort [38] and via subelliptic
estimates by McNeal [48].

(4) Stein neighborhood bases by Harrington [33] and Şahutoğlu [56].
(5) Estimates and comparison of the Bergman and Szegö kernels by

Boas [5], Nagel, Rosay, Stein and Wainger and [52], Boas–Straube–
Yu [6], Charpentier and Dupain [13, 14, 15] Chen and Fu [16],
Khanh and Raich [41].

(6) Holomorphic Morse inequalities and eigenvalue asymptotics for ∂̄-
Neumann Laplacian by Fu and Jacobowitz [29].

(7) Tangential ∂̄b and complex Green operator by Raich–Straube [55],
Raich [54], Straube [63], Khanh, Pinton and Zampieri [40].

(8) Construction of peak and bumping functions by Diederich and
Herbort [24], Fornæss and McNeal [26], by Yu [65], Bharali and
Stensønes [2], as well as some generalisations of Property (P) by
Khanh–Zampieri [42].

(9) Division problems for holomorphic functions with C∞ boundary
values by Bierstone and Milman [4], as an application of global
regularity, whose proof for smooth finite type boundaries relies on
Catlin’s method.

(10) Regularity of solutions to the complex Monge–Ampère equation by
Ha and Khanh [31] and Baracco, Khanh, Pinton and Zampieri [1].

For bounded pseudoconvex domains with real-analytic boundaries of fi-
nite type in Cn, Kohn’s [46] celebrated theory of subelliptic multipliers
provides an alternative approach to Catlin’s in establishing subelliptic es-
timates. The same approach also yields subelliptic estimates for smoothly
bounded domains of finite type in C2, that were already treated by Kohn
in his earlier paper [45]. However, for general smoothly bounded domains
of finite type, it remains open at the time of writing, whether the multiplier
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approach yields subelliptic estimates, with Catlin’s method being currently
the only available.

1.4. Submanifolds containing multitype level sets

A key geometric aspect of Catlin’s subelliptic estimates proof consists of
showing the existence of the so-called weight functions satisfying certain
boundedness and positivity estimates for their complex Hessians, that are
known as “Property (P)” type conditions (see e.g. [51, 3] for recent sur-
veys). A major difficulty when constructing such weight functions under
geometric conditions (such as finite type), is to keep the uniform nature
of the estimates across points of varying “degeneracy” for the underlying
geometry. A simple example of a degeneracy measure is the rank of the
Levi form of the boundary M := ∂D (where D is a domain in Cn). A
more refined measure is the Catlin multitype [8], see also Section 6. To
deal with points of varying multitype, Catlin developed his machinery of
boundary systems [8]. The main idea to gain control of the multitype level
sets is by including them locally into certain “containing submanifolds”. A
result of this type is the content of [8, Main Theorem, Part (2)], where a
containing submanifold is constructed by a collection of inductively chosen
boundary system functions that arise as certain carefully selected (vector
field) derivatives of the Levi form.
In this paper we focus on geometric invariants behind the containing

submanifold construction, with the goal to extend and simplify the bound-
ary system approach. Our main discovery is that at the 4th order level, the
boundary systems, as well as the type and the multitype, can be described
in terms of the new invariant objects, such as tensors, submodule and ideal
sheaves.
At the 4th order level, the multitype level sets boil down to simpler level

sets of the Levi (form) rank (see Proposition 6.3 for details). Recall that
Catlin’s boundary system functions [8] are constructed inductively with
every new equation depending on chosen solutions for previous ones. In
comparison, we here collect defining functions for the Levi rank level sets
into invariant ideal sheaves I(q) on M , for each Levi rank q. The sheaf
I(q) is generated by certain 1st order Levi form derivatives as described
in Theorem 2.1 below. In particular, arbitrary defining functions from I(q)
can be combined without any additional relations. Furthermore, additional
derivatives of the Levi form along arbitrary complex vector fields L3 (in
Theorem 2.1(5)), including transversal ones, are allowed for functions in
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I(q). In comparison, for a related boundary system function given by the
same formula, the outside vector field L3 would have to be in a special
subbundle inside the holomorphic tangent bundle. As a result, we obtain
richer classes of functions allowing for more flexibility and control for the
submanifolds containing Levi rank level sets (see Example 2.2), that may
potentially lead to sharper a priori estimates.
In parallel to the ideal sheaf I(q) construction, we introduce invariant

quartic tensors τ4, giving a precise control over differentials of the functions
in I(q). This is expressed in Theorem 2.1(2), where the tangent space of the
containing manifold S equals the real kernel of the tensor. Importantly, the
full tangent space of S (rather than only the tangential part) is controlled
here via the kernel of τ4, which means that vector fields transversal to the
complex tangent must also be allowed among tensor arguments. The tensors
are constructed in Lemma 4.14 as certain 2nd order Levi form derivatives,
where the Levi form is first evaluated along certain special vector fields and
then differentiated along all possible vector fields, including ones transversal
to the complex tangent. In comparison, only derivatives with respect to
(1, 0) and (0, 1) vector fields can appear in the boundary systems.

For reader’s convenience, we summarize the main results and construc-
tions in Theorem 2.1, leaving more detailed and general statements with
their proofs in the chapters following.

1.5. More details on invariant tensors and ideal sheaves

Our first step in defining invariant tensors is a byproduct result giving a
complete set of cubic invariants for a general real hypersurface M , without
pseudoconvexity assumption. This is achieved by constructing an invariant
cubic tensor τ3 obtained by differentiating the Levi form along vector fields
with values in the Levi kernel, see Lemma 3.4. Remarkably, to obtain ten-
soriality of the Levi form derivatives, it is of crucial importance to require
both vector fields inside the Levi form to take values in the Levi kernel as
explained in Example 3.1. This stands further, in remarkable contrast with
the cubic tensor defined by Ebenfelt [25] (by means of the Lie derivatives
of the contact form), where only one of the tensorial arguments needs to
be in the Levi kernel. On the other hand, Ebenfelt’s cubic tensor ψ3 does
not allow for transversal directions, in contrast to τ3. It turns out that the
pair (ψ3, τ

3) yields a complete set of cubic invariants, as demonstrated by
the normal form (of order 3) in Proposition 3.6 eliminating all other terms
that are not part of either of the tensors.

ANNALES DE L’INSTITUT FOURIER
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We also investigate the construction based on double Lie brackets (also
considered by Webster [64]). This approach, however, in order to yield a
tensor, has to require all vector fields to be in the complexified holomorphic
tangent bundle, leading only to a restriction of the cubic tensor τ3. Again,
the double Lie bracket construction is only tensorial when both vector
fields inside the inner bracket take their values in the Levi kernel (see
Example 3.1).
As mentioned earlier, the cubic tensor τ3 is constructed without any

pseudoconvexity assumption. On the other hand, in presence of pseudo-
convexity, the whole tensor τ3 must vanish identically (Lemma 3.14). The
only cubic terms that may survive are of the form (3.14) which can never
appear in the lowest weight terms, and hence never play a role in Catlin’s
multitype and boundary system theory.
Motivated by the above, we next look for quartic tensors. It turns out

(Example 4.1) that this time, neither second order Levi form derivatives nor
quartic Lie brackets provide tensorial invariants even when all vector field
arguments take their values in the Levi kernel. To overcome this problem,
we restrict the choice of the vector fields involved by requiring a certain kind
of condition of “Levi kernel inclusion up to higher order” (Definition 4.2).
In Lemma 4.6 we show that this additional condition always holds for any
vector field that is Levi-orthogonal to a maximal Levi-nondegenerate sub-
bundle, which, in particular, arises in Catlin’s boundary system construc-
tion. However, the mentioned Levi-orthogonality lacks some invariance as
it depends on the choice of the subbundle. In contrast, the Levi kernel in-
clusion up to order 1 is an invariant condition that only depends on the
1-jet of the vector field at the reference point.

With that restriction on the vector fields, the invariant quartic tensor τ4

can now be defined in a similar fashion. In particular, the this tensor’s re-
striction τ40 appears in the lowest weight normal form with weights > 1/4,
see Proposition 4.17. It turns out that the restriction τ40 provides exactly
the missing information at the lowest weight level for hypersurfaces of finite
type 4 (where the finite type 3 is known to never occur for pseudoconvex
points, see e.g. Corollary 3.15). For example, both D’Angelo finite type
4 and Catlin’s multitype up to entry 4 can be completely characterized
in terms of τ40. Specifically, having the finite type 4 is equivalent to the
nonvanishing of τ40 on complex lines (Proposition 5.1), whereas having a
multitype up to entry 4 is equivalent to τ40 having trivial kernel (Proposi-
tions 6.3).

TOME 69 (2019), FASCICULE 6
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In Section 7 we use the quartic tensor τ4 to characterize differentials of
the functions in the ideal sheaf I(q) as well as minimal tangent spaces of
“containing manifolds” defined by a transversal set of functions in I(q).
Finally, in Section 8 we obtain a characterization for a Catlin’s boundary

system, where the most difficult part of obtaining vector field directions of
nonvanishing Levi form derivatives at the lowest weight is replaced by the
nonvanishing of the tensor τ40 on the vector fields’ values at the reference
point, a purely algebraic condition.
In a forthcoming paper will shall extend the present geometric approach

towards its approximate versions with necessary control to perform the
induction step in the subelliptic estimate proof.

Acknowledgements. The author would like to thank J.J. Kohn,
D.W. Catlin, J.P. D’Angelo, E.J. Straube, M. Kolar, S. Fu, J.D. McNeal,
F. Meylan and A.C. Nicoara for numerous inspiring discussions.

2. Notation and main results

We shall work in the smooth (C∞) category unless stated otherwise.
Let M ⊂ Cn be a (smooth) real hypersurface. We write T := TM for its
tangent bundle, H = HM ⊂ T for the complex (or holomorphic) tangent
bundle, Q := T/H for the normal bundle, as well as

CT := C⊗ T, CH := C⊗H, CQ := C⊗Q,

for their respective complexifications. Further, H10 and H01 = H10 denote
(1, 0) and (0, 1) bundles respectively, such that CH = H10 ⊕ H10. By a
small abuse of notation, we write L ∈ V whenever a vector field L is a
local section in V , where V can be a bundle or a sheaf. Similarly we write
V1 ⊂ V2 when V1 is a local subbundle or subsheaf of V2, where it will
be convenient to allow V1 to be defined over smaller open sets than those
where V2 is defined.
A subscript p always denotes evaluation at a point p ∈M , i.e. Lp for the

value of a vector field L at p, or Vp for the space of all values of elements
in V , which is the fiber when V is a vector bundle.
On the dual side, Ω = ΩM stands for the bundle of all real 1-forms on

M , CΩ for all complex 1-forms, Ω0 for all contact forms, i.e. forms Ω that
are vanishing on H and real-valued on T , and CΩ0 for the corresponding
complexification.
Recall that a (local) defining function of M is any real-valued function ρ

in a neighborhood in Cn of a point in M , with dρ 6= 0 such that M given

ANNALES DE L’INSTITUT FOURIER
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by ρ = 0 in the domain of ρ. For any defining function ρ, the one-form
θ := i∂ρ spans (over R) the bundle Ω0 of all contact forms.

We shall consider the standard C-bilinear pairing 〈θ, L〉 := θ(L) for θ ∈
CΩ, L ∈ CT . By a slight abuse, we keep the same notation also for the
induced pairing

〈 · , · 〉 : CΩ0 × CQ→ C
between the (complex) contact forms and the normal bundle. With this
notation, we regard the Levi form tensor at a point p ∈M as the C-bilinear
map

τ2
p : H10

p ×H10
p → CQp,

which is uniquely determined by the identity

(2.1) 〈θp, τ2
p (L2

p, L
1
p)〉 = i〈θ, [L2, L1]〉p, L2 ∈ H10, L1 ∈ H10,

where, as mentioned before, the membership notation for L2, L1 (such as
L2 ∈ H10) means being local sections of the corresponding bundles. The
normalization of τ2 used here is chosen such that for the quadric

ρ = −2 Rew + q(z, z̄) = 0, (w, z) ∈ C× Cn−1,

with (1, 0) vector fields

Lj := ∂zj + qzj∂w, j = 1, 2,

and the contact form θ = i∂ρ = i(−dw + ∂q), we have

〈θ0, τ
2
0 (∂zj , ∂z̄k)〉 = i〈θ, [Lj , Lk]〉0 = −〈dw, qzj z̄k(∂w̄ − ∂w)〉0 = ∂zj∂z̄kq,

or more generally

(2.2) 〈θ0, τ
2
0 (v2, v1)〉 = ∂v2∂v1q, v2 ∈ H10

0 , v1 ∈ H10
0 .

Here we use the subscript notation qzj for the partial derivative, and ∂v
denotes the directional derivative along the constant vector field identified
with the vector v ∈ {0} × Cn−1 in some local holomorphic coordinates.

The tensor τ2
p has the unique C-bilinear symmetric extension

τ2
p : CHp × CHp → CQp,

for which we still write τ2
p by a slight abuse, where we extend by symmetry

to H10
p × H10

p and by zero to H10
p × H10

p and H10
p × H10

p . For the above
quadric example, (2.2) still holds for the symmetric extension. The choice
of the symmetric C-bilinear tensor rather than hermitian, as common for
the Levi form, will help us to keep the notation lighter for the subsequent
Levi form derivatives, as that way we shall never need to remember, which
arguments are C-linear and which are C-antilinear.
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2644 D. Zaitsev

Recall that M is pseudoconvex at p if and only if there exists a nonzero
covector θ0 ∈ Ω0

p with

〈θp, τ2
p (v, v)〉 > 0, v ∈ H10

p .

We shall always assume this choice of θ, whenever M is pseudoconvex.
We say that a point p ∈ M is of Levi rank q, if the Levi form τ2

p at p
has rank q. A subbundle V ⊂ H10 is called Levi-nondegenerate, if the Levi
form is nondegenerate on V × V . For every such subbundle V , we write

V ⊥ ⊂ H10, V ⊥ = ∪xV ⊥x , V ⊥x = {v ∈ H10
x : τ2

x(v, v1) = 0 for all v1 ∈ V },

for the orthogonal complement with respect to the Levi form, which is
necessarily a subbundle.
Finally, we write K10

p ⊂ H10
p and K01

p = K10
p ⊂ H01

p for the Levi kernel
components at p, CKp = K10

p ⊗ K10
p for the complexification and Kp =

CKp ∩ Tp for the corresponding real part.
The following is an overview of some of the main results (further results

below don’t assume pseudoconvexity):

Theorem 2.1. — Let M ⊂ Cn be a pseudoconvex real hypersurface.
Then for every q ∈ {0, . . . , n − 1}, there exist an invariant submodule
sheaf S10(q) of (1, 0) vector fields, an invariant ideal sheaf I(q) of complex
functions, and for every p ∈M of Levi rank q, an invariant quartic tensor

τ4
p : CTp × CTp ×K10

p ×K10
p → CQp,

and a real submanifold S ⊂M through p, such that the following hold:
(1) S contains the set of all points x ∈M of Levi rank q in a neighbor-

hood of p.
(2) The tangent space of S at p equals the real part of the kernel of τ4

p :

TpS = Re ker τ4
p = {v ∈ Tp : τ4

p (v, v3, v2, v1) = 0 for all v3, v2, v1}.

(3) In suitable holomorphic coordinates vanishing at p, M admits the
form

2 Rew =
q∑
j=1
|z2j |2 + ϕ4(z4, z̄4) + ow(1), (w, z2, z4) ∈ C× Cq × Cn−q−1,

where ow(1) indicates terms of weight greater than 1, with weights
1, 1/2 and 1/4 assigned to the components of w, z2 and z4 respec-
tively, and where ϕ4 is a plurisubharmonic homogenous polynomial
of degree 4 representing the quartic tensor τ4

p in the sense that

τ4
p (v4, v3, v2, v1) = ∂v4∂v3∂v2∂v1ϕ4

ANNALES DE L’INSTITUT FOURIER
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holds for v4, v3 ∈ CK0 and v2, v1 ∈ K10
0 .

(4) S is given by

S = {f1 = · · · = fm = 0}, df1 ∧ · · · ∧ dfm 6= 0, f j ∈ Re I(q).

In fact, any f ∈ Re I(q) vanishes on the set of points of Levi rank q.
(5) The ideal sheaf I(q) is generated by all functions g, f of the form

g = 〈θ, [L2, L1]〉, f = L3〈θ, [L2, L1]〉,

where θ ∈ Ω0 is a contact form, L3 ∈ CT is an arbitrary com-
plex vector field, and L2, L1 ∈ S10(q) are arbitrary sections of the
submodule sheaf.

(6) The submodule sheaf S10(q) contains all germs of (1, 0) vector
fields L satisfying L ∈ V ⊥L , with VL ⊂ H10 being some Levi-
nondegenerate subbundle of rank q in a neighborhood of p (that
may depend on L). In particular, S10(q) generates the Levi kernel
at each point of Levi rank q.

(7) The tensor τ4
p has the positivity property

τ4
p (v2, v2, v1, v1) > 0, v2 ∈ Tp, v1 ∈ K10

p .

In addition, when M is of finite type at most 4 at p, the following also
holds:

(i) The intersection TpS ∩Kp with the Levi kernel Kp is totally real.
(ii) For every v ∈ K10

p , the tensor τ4
p does not identically vanish on

(Cv + Cv)× (Cv + Cv)× Cv × Cv.

In particular, the regular type at p equals to the D’Angelo type and
is either 2 or 4. The type is 4 whenever K10

p 6= 0.
(iii) The (Catlin’s) multitype at p equals

(1, 2, . . . , 2︸ ︷︷ ︸
q

, 4, . . . , 4︸ ︷︷ ︸
n−q−1

),

where the number of 2’s equals the Levi rank q at p. In particular,
the multitype is determined by the Levi rank.

Note that we prefer the reversed order of the vector fields L3, L2, L1, e.g.
L3〈θ, [L2, L1]〉 that better reflects the logical order of the operations: first
form the Lie bracket [L2, L1] inside, then differentiate by L3 from outside
(after pairing with θ).
For the proofs and more detailed and general statements, see the respec-

tive sections below. The submodule sheaves S10(q) from (6) are defined in
Section 4.2, and the ideal sheaves I(q) from (5) in Section 7. In particular,
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local sections in I(q) vanish at points of Levi rank q by Corollary 7.5. The
quartic tensor τ4 is constructed in Section 4.3. In view of Proposition 7.9,
the intersection of real kernels of differentials df for f ∈ Re I(q) coincides
with Re ker τ4

p . Hence we can choose functions f j satisfying (4) and (2).
The normal form in (3) follows from Proposition 4.17.
When M is of finite type 4, Proposition 5.1 implies that τ4 has no holo-

morphic kernel, and therefore its (real) kernel as in (2) is totally real, as
stated in (i). Statement (ii) is also part of Proposition 5.1. Finally, state-
ment (iii) about the multitype is contained in Section 6.
The following simple example illustrates one of the differences between

functions in the ideal sheaf I(q) and the boundary systems (as defined in [8,
Section 2], see also Section 8 below).

Example 2.2. — Consider the hypersurface M ⊂ C2
w,z given by

2 Rew = ϕ(z, z̄, Imw), ϕ(z, z̄, u) := |z|4 + u2|z|2,

which is pseudoconvex and of finite type 4. Then a boundary system
{L2; r2} defines the 2-dimensional submanifold S := {r2 = 0} ⊂M , which
contains all points of Levi rank 0. However, since r2 is of the form

(2.3) r2 = ReL3〈θ, [L2, L1]〉

(cf. the notation of Theorem 2.1(5)), its differential at 0 is given by

dr2(v) = Re τ4
0 (v, L3

0, L
2
0, L

1
0),

which vanishes on the transversal space {dz = 0}. Consequently, any S

defined by a boundary system function r2 must be tangent to the real line
{dz = 0}.

On the other hand, in the ideal sheaf I(0) we can choose a function given
by (2.3) with transversal L3, i.e. L3

p /∈ CHp. That allows us to reduce the
submanifold S in Theorem 2.1 down to only the origin z = w = 0, which,
in fact, is the set of points of Levi rank 0.
In particular, the ideal sheaf I(0) captures as its zero set with linearly

independent differentials the 0-dimensional singular stratum of all Levi-
degenerate points, which cannot be achieved with boundary systems.

3. Invariant cubic tensors

We begin by investigating the 3rd order invariants without the pseudo-
convexity assumption.
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3.1. Double Lie brackets

In presence of a nontrivial Levi kernel K10
p at a point p ∈M , it is natural

to look for cubic tensors arising from double Lie brackets with one of the
vector fields having its value inside the Levi kernel at the reference point:

(3.1) 〈θ, [L3, [L2, L1]]〉, θ ∈ Ω0, L3, L2 ∈ H10, L1 ∈ H10, L1
p ∈ K10

p .

However, the following simple example shows that (3.1) does not define
a tensor in general:

Example 3.1. — Let M ⊂ C3
z1,z2,w be the degenerate quadric

(3.2) ρ = −(w + w̄) + z1z̄1 = 0,

and consider the (1, 0) vector fields

L3 := ∂z2 , L2 := ∂z2 + cz2L
1, L1 := ∂z1 + z̄1∂w.

The main idea here is to “twist” the vector field L2 with L2
0 ∈ K10

0 by
adding a multiple of the other vector field L1, along which the Levi form
is nonzero.
Then

[L3, [L2, L1]] = c[L1, L1] = c(∂w̄ − ∂w),
and hence for any fixed contact form θ ∈ Ω0, the value

〈θ, [L3, [L2, L1]]〉0
depends on c, even though all values Lj0 are independent of c. Note that
both L2

0 and L3
0 (but not L1

0) are inside the Levi kernel K10
0 . Hence the

double Lie bracket does not define any tensor K10
p × K10

p × H10
p → CQp

with p = 0.
Similarly, taking

L3 := ∂z2 , L2 := ∂z1 + z̄1∂w, L1 := ∂z2 + cz̄2L
1,

we conclude that
〈θ, [L3, [L2, L1]]〉0

depends on c, thus also not defining any tensor K10
p ×H10

p ×K10
p → CQp.

The same example also shows that the Levi form derivative L3〈θ, [L2, L1]〉
considered below does not behave tensorially on the same spaces.

In contrast, we do get an invariant tensor when both vector fields inside
the inner Lie bracket have their values in the Levi kernel at the reference
point. We write τ31 for the corresponding tensor, emphasizing the fact that
it will become a restriction of the full tensor τ3 below.
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Lemma 3.2. — The double Lie bracket [L3, [L2, L1]] defines an invariant
tensor

(3.3) τ31
p : CKp ×K10

p ×K10
p → CQp,

i.e. there exists an unique τ31
p as above satisfying

τ31
p (L3

p, L
2
p, L

1
p) = i[L3, [L2, L1]]p mod CHp,

L3, L2, L1 ∈ H10, L3
p, L

2
p, L

1
p ∈ K10

p .

Furthermore, τ31
p is symmetric on K10

p ×K10
p ×K10

p in its K10-arguments,
and on K10

p × K10
p × K10

p in its K10-arguments, and satisfies the reality
condition

(3.4) τ31
p (v3, v2, v1) = τ31

p (v3, v1, v2).

Proof. — It suffices to show that

(3.5) [L3, [L2, L1]]p ∈ CHp

holds whenever any of the values Ljp is 0. Since any such Lj can be written as
linear combination

∑
akLk with ak(p) = 0 and Lk being in the same bundle

(either H10 or H10), it suffices to assume Lj = aL̃j with a(p) = 0. Then,
any term giving a nonzero value at p in (3.5), must involve differentiation
of the function a, either by one of the vector fields Lj , with the bracket of
the other two as factor:

(Lj3a)[Lj2 , Lj1 ],

or by two of the vector fields Lj , with the third one as factor:

(Lj3Lj2a)Lj1 .

In the second case (3.5) is clear. In the first case, we obtain a bracket of
two Lj , one of which has value at p contained in the kernel K10

p ⊕ K10
p ,

implying (3.5).
The reality condition is straightforward and the symmetries follow from

the Jacobi identity. �

Remark 3.3. — A closely related construction is the one of the cubic
form c = c(L3, L2, L1) by Webster [64], defined for triples of vector fields
in a neighborhood of a reference point p ∈M , whose value cp at p depends
on the 1-jets of the vector fields L3, L2, L1, but in general, is not uniquely
determined by their values at p, as demonstrated by Example 3.1, unless
all three vector fields are valued in kernel at p as in Lemma 3.2.
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3.2. The Levi form derivative

As alternative to the double Lie bracket tensor, one can differentiate
the Levi form after pairing with a contact form, which is similar to the
approach employed by Catlin in his boundary system construction:

(3.6) L3〈θ, [L2, L1]〉.

Again Example 3.1 shows that (3.6) does not define a tensor if either of
the vector fields L2, L3 inside the Lie bracket is not in the Levi kernel at p.
On the other hand, if both vector fields L1, L2 inside the Lie bracket have
their value at p contained in the Levi kernel, we do obtain a tensor even
when the outside vector field L3 is not necessarily contained in CH:

Lemma 3.4. — There exists unique cubic tensor

τ3
p : CTp ×K10

p ×K10
p → CQp,

satisfying

(3.7)
〈θp, τ3

p (L3
p, L

2
p, L

1
p)〉 = i(L3〈θ, [L2, L1]〉)p,

θ ∈ Ω0, L3 ∈ CT, L2, L1 ∈ H10, L2
p, L

1
p ∈ K10

p .

Furthermore, τ3
p satisfies the reality condition

(3.8) τ3
p (v3, v2, v1) = τ3

p (v3, v1, v2),

note the switch of the last two arguments.

Proof. — The proof is similar to that of Lemma 3.2, and the symmetry
follows directly from the definition. �

Remark 3.5. — Note that the tensor τ3 in Lemma 3.4 is defined when
the first argument is any complex vector field on M , not necessarily in the
subbundle CH, in contrast to the tensor τ31 in Lemma 3.2. This shows
that taking derivatives of the Levi form provides more information than
taking iterated Lie brackets.

3.3. A normal form of order 3 and complete set of cubic
invariants of a real hypersurface

To compare tensors τ31 and τ3, it is convenient to use a partial normal
form for the cubic terms. In the following we write ϕj1...jm(xj1 , . . . xjm) for
a polynomial of the multi-degree (j1, . . . , jm) in its corresponding variables.
We also write zk = (zk1, . . . , zkm) ∈ Cm for the coordinate vectors and their
components.
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Proposition 3.6. — For every real hypersurface M in Cn and point
p ∈M of Levi rank q, there exist local holomorphic coordinates

(w, z) = (w, z2, z3) ∈ C× Cq × Cn−q−1,

vanishing at p, where M takes the form

w + w̄ = ϕ(z, z̄, i(w − w̄)), ϕ(z, z̄, u) = ϕ2(z, z̄, u) + ϕ3(z, z̄, u) +O(4),

where
ϕ2(z, z̄, u) = ϕ11(z2, z̄2) =

∑
±|z2j |2,

and
ϕ3(z, z̄, u) = 2 Reϕ21(z, z̄3) + ϕ111(z3, z̄3, u),

with

ϕ21 =
∑

ϕ21,1
j1j2j3

z2j1z2j2 z̄3j3 +
∑

ϕ21,2
j1j2j3

z2j1z3j2 z̄3j3

+
∑

ϕ21,3
j1j2j3

z3j1z3j2 z̄3j3 ,

ϕ111 =
∑

εj |z3j |2u, εj ∈ {−1, 0, 1},

and O(4) stands for all terms of total order at least 4.

Proof. — It is well-known that the quadratic term ϕ2 can be transformed
into ϕ11(z2, z̄2) representing the (nondegenerate part of) the Levi form.
Furthermore, as customary, we may assume that the cubic term ϕ3 has no
harmonic terms.
Next, by suitable polynomial transformations

(z, w) 7→

z +
r∑
j=1

z2jhj(z, w), w

,
we can eliminate all cubic monomials of the form z̄2jh(z, u) and their conju-
gates, where h(z, w) is any holomorphic quadratic monomial. The proof is
completed by inspecting the remaining cubic monomials and diagonalizing
the quadratic form in the component ϕ111. �

Next we use the convenient (1, 0) vector fields with obvious notation:

Lemma 3.7. — For a real hypersurface M ⊂ Cn given by

(3.9) w + w̄ = ϕ(z, z̄, i(w − w̄)), (w, z) ∈ C× Cn−1,

the subbundle H10 of (1, 0) vector fields is spanned by

Lj := ∂zj +
ϕzj

1− iϕu
∂w, j = 1, . . . , n− 1.

ANNALES DE L’INSTITUT FOURIER



A GEOMETRIC APPROACH TO CATLIN’S BOUNDARY SYSTEMS 2651

More generally, H10 is spanned by all vector fields of the form

(3.10) Lv := ∂v + ϕv
1− iϕu

∂w, v ∈ {0} × Cn−1,

where the subscript v denotes the differentiation in the direction of v.

Calculating with the special vector fields from Lemma 3.7, we obtain:

Corollary 3.8. — Let M be in the normal form given by Proposi-
tion 3.6. Then tensors τ31

p and τ3
p defined in Lemmas 3.2 and 3.4 respec-

tively satisfy

(3.11) 〈θ0, τ
31
0 (v3, v2, v1)〉 = 〈θ0, τ

3
0 (v3, v2, v1)〉 = ∂v3∂v2∂v1ϕ3,

where

v3, v2, v1 ∈ K10
0
∼= {0} × Cn−q−1, θ = i∂ρ, ρ = −2 Rew + ϕ.

Furthermore, the second identity in (3.11) still holds for v3 ∈ CH0.

In particular, τ31 is a restriction of τ3 to CTp ×K10
p ×K10

p , explaining
the notation.

Remark 3.9. — The term ϕ21 in Proposition 3.6 represents, up to a
nonzero constant multiple, the cubic invariant tensor introduced by Eben-
felt [25], defined by means of the Lie derivative T :

(3.12) ψ3
p :H10

p ×H10
p ×K10

p → CQp, 〈θp, ψ3(L3
p, L

2
p, L

1
p)〉=〈TL3TL2θ, L1〉p,

where
TL := d ◦ ıL + ıL ◦ d,

and ı is the contraction. Here the phenomenon illustrated by Example 3.1
of the lack of tensoriality in the last argument does not occur as the right-
hand side obviously depends only on the value L1

p. In fact, it follows from
the transformation law of the Lie derivative,

TL(fθ) = fTLθ + (Lf)θ, TfLθ = fTLθ + θ(L)df,

that the same right-hand side in (3.12) defines a tensor even on the larger
spaces

(3.13) τ21
p : CHp × CHp × CKp → CQp.

On the other hand, the same expression does not define any tensor when
the first argument varies arbitrarily in CT , even for a Levi-flat hypersurface
M ⊂ C2. Indeed, taking

M = {ρ = 0}, ρ = −w − w̄,

TOME 69 (2019), FASCICULE 6



2652 D. Zaitsev

with

θ = −i(1 + z + z̄)dw, L3 = i(∂w − ∂w̄), L2 = ∂z, L1 = ∂z̄,

we compute

TfL3TL2θ = TfL3(ıL2dθ) = fω + dθ(L2, L3)df = fω + df,

where f is any smooth complex function and ω is some 1-form. Then choos-
ing f with f(p) = 0 and dfp = cdz̄, we conclude that 〈TfL3TL2θ, L1〉p
depends on c and hence is not tensorial.

Finally, as consequence from Proposition 3.6, we obtain:

Corollary 3.10. — The tensors τ3 and τ21, given by respectively
Lemma 3.4 and (3.13), coincide up to a constant on their common set
of definition, and constitute together the full set of cubic invariants of M
at p.

3.4. Symmetric extensions

As consequence of Corollary 3.8, τ3 is symmetric in K10- or in K10-
vectors whenever two of them occur in any two arguments. This property
leads to a natural symmetric extension:

Lemma 3.11. — The restriction

τ30
p : CKp ×K10

p ×K10 → CQp
of the cubic tensor τ3

p admits an unique symmetric extension

τ̃30
p : CKp × CKp × CKp → CQp,

satisfying
〈θ0, τ̃

30
0 (v3, v2, v1)〉 = ∂v3∂v2∂v1ϕ3,

whenever M is in a normal form ρ = −2 Rew+ϕ = 0 as in Proposition 3.6
and θ = i∂ρ.

Remark 3.12. — Note that since ϕ3 has no harmonic terms in a normal
form, the extension tensor τ̃30 always vanishes whenever its arguments are
either all in K10 or all in K10.

Example 3.13. — In contrast to τ30, the full cubic tensor τ3 does not in
general have any invariant extension to CT × CK × CK. Indeed, consider
the cubic M ⊂ C2 given by

ρ := −2 Rew + ϕ3 = 0, ϕ3 = 2 Re(z2z̄).

ANNALES DE L’INSTITUT FOURIER



A GEOMETRIC APPROACH TO CATLIN’S BOUNDARY SYSTEMS 2653

Then ∂w̄∂z∂zϕ3 = 0. Now consider a change of coordinates with linear part
(w, z) 7→ (w, z + iw) transforming ∂w̄ into ∂w̄ − i∂z̄. Then, after removing
harmonic terms, the new cubic term takes form

ϕ3 = 2 Re(z2z̄)− 4 Imwzz̄.

But then (∂w̄ − i∂z̄)∂z∂zϕ3 6= 0, i.e. the 3rd derivatives of ϕ3 do not trans-
form as tensor when passing to another normal form.

3.5. Cubic tensors vanish for pseudoconvex hypersurfaces

If M is pseudoconvex, the Levi form 〈θ, [L,L]〉 does not change sign.
Then the right-hand side in (3.7) is, up to a constant, a derivative of a
nonnegative function at its zero, hence vanishes. Therefore the whole cubic
tensor τ3 must vanish identically. We obtain:

Lemma 3.14. — Let M be a pseudoconvex hypersurface and p ∈ M .
Then the cubic tensor τ3

p (and therefore its restriction τ31
p ) vanishes iden-

tically. Equivalently, the cubic normal form in Proposition 3.6 satisfies

(3.14) ϕ21(z, z̄3) =
∑
jkl

cjklz2jz2kz̄3l, ϕ111(z3, z̄3, u) = 0.

The remaining cubic terms in (3.14) can be absorbed into higher weight
terms as follows. We write ow(m) for terms of weights higher than m.

Corollary 3.15. — A pseudoconvex hypersurface M in suitable holo-
morphic coordinates is given by

(3.15) w + w̄ = ϕ(z, z̄, i(w − w̄)), ϕ =
∑
j

|z2j |2 + ow(1),

where ow is calculated for (w, z2, z3), and their conjugates, having weights
1, 1

2 ,
1
3 respectively. In particular, M cannot be of (D’Angelo) type 3.

The last statement follows directly from (3.15), since the contact orders
with lines in the directions of z3 are at least 4.

3.6. Freeman’s modules and uniformly Levi-degenerate
hypersurfaces

Freeman [28] introduced for any smooth real hypersurface M ⊂ Cn, a
decreasing sequence of invariantly defined submodules of the module of all
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smooth (1, 0) vector fields on M . In particular, Freeman’s second submod-
ule N ′2 is defined by the Lie bracket relation

N ′2 := {L ∈ H10 : [L,L1] ∈ CH for all L1 ∈ H10},

or equivalently, by the inclusion relation in the Levi kernels K10
p :

N ′2 := {L ∈ H10 : Lp ∈ K10
p for all p}.

For a fixed p0 ∈ M , it is easy to see that vector fields in N ′2 span the
Levi kernel K10

p0
if and only if dimK10

p is constant for p ∈ M near p0, i.e.
whenM is uniformly Levi-degenerate in a neighborhood of p0. Indeed, since
dimK10

p is upper semi-continuous, whereas the dimension of the span at p
of all values of N ′2 is lower semi-continuous, the only way both dimensions
can match at p0 is when they are both constant in its neighborhood, i.e.
when M is uniformly Levi-degenerate. In the latter case, the tensor τ21

in (3.12) can be computed by means of double Lie brackets of vector fields
in N ′2, as shown in [39, Appendix].

On the other hand, if M is of finite type, one necessarily has Kp = 0 on
a dense set of p ∈ M (otherwise nontrivial integral surfaces of K10 would
be complex-analytic subsets of M). Hence in this case, the module N ′2 is
always trivial, whereas the tensor τ3 may not be so. And even when the
module N ′2 is not trivial but dimKp is not constant in any neighborhood
of a point p0, it is easy to see that the set of values Lp for L ∈ N ′2 can
never span the full Levi kernel Kp.

Remark 3.16. — In the uniformly Levi-degenerate case, i.e. when the
Levi kernel dimension dimKp is constant, alternatively to the Lie derivative
approach in (3.12), both double Lie brackets (as in Lemma 3.2) and Levi
form derivative approaches (as in Lemma 3.4) can be used to define τ21 by
imposing additional restrictions on the vector fields to be contained in the
Levi kernel subbundle everywhere, rather than only at the reference point
as in (3.12).
On the other hand, without the uniformity assumption on dimKp, only

the Lie derivative approach leads to an invariant definition of τ21, whereas
only the Levi form derivative approach is suitable to define the full cubic
tensor τ3 as in Lemma 3.4. It is quite remarkable that no single approach
seems to work to define the complete system of cubic invariants, consisting
of the pair (τ21, τ3).
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4. Invariant quartic tensors

If the cubic tensor τ3 vanishes, it is natural to look for higher order
invariants by taking iterated Lie brackets or higher order derivatives of
Levi form. However, in contrast to the statements of Lemmas 3.2 and 3.4,
we don’t obtain any tensor in this way even when all vector field values are
in the Levi kernel, as demonstrated by our next counter-example:

Example 4.1. — Let M ⊂ C3
z1,z2,w be again the degenerate quadric from

Example 3.1, and set

L := ∂z2 + cz2(∂z1 + z̄1∂w).

Then
[L,L] = |cz2|2(∂w̄ − ∂w),

and both 〈θ, [L, [L, [L,L]]]〉0 and (LL̄〈θ, [L, L̄]〉)0 depends on c (and hence
on the 1-jet of L), even though the value L0 is contained in the Levi kernel
K10

0 , and the cubic tensor τ3
0 identically vanishes.

4.1. Vector fields that are in the Levi kernel up to order 1

In view of Example 4.1, in order to obtain a tensor, we need to restrict
the choice of the vector fields. This motivates the following definition:

Definition 4.2. — Let L be a (1, 0) vector field. We say that L is in the
Levi kernel up to order 1 at p if, for any vector fields L1 ∈ H10, L2 ∈ CT ,
and any contact form θ, the following holds:

(4.1) 〈θ, [L1, L]〉p = (L2〈θ, [L1, L]〉)p = 0.

More generally, we have the following “microlocal” version of this defi-
nition as follows. For a fixed tangent vector v ∈ CTp, we say that L is in
the Levi kernel up to v-order 1 at p if (4.1) holds whenever L2

p = v, i.e.
we differentiate the Levi form only in the fixed given direction. (The latter
property obviously depends only on the value v rather than its vector field
extension L2.) If the above property holds for all v in a vector subspace
V ⊂ CTp, we also say that L is in the Levi kernel up to V -order 1 at p.

If L is a (0, 1) vector field, we say that L is in the Levi kernel up to order
1 at p whenever L is. Similarly, we extend all the other terminology in this
definition to (0, 1) vector fields.

It is straightforward to see that:
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Lemma 4.3. — For any (0, 1) vector field L with Lp ∈ K10
p , the

expression
(L2〈θ, [L1, L]〉)p

only depends on the values L2
p, L

1
p and θp, as well as on the 1-jet of L at p.

In particular, L being in the Levi kernel up to order 1, is a linear condition
on the 1-jet of L at p.

Example 4.4. — In the setting of Example 4.1, choosing L1 := ∂z1 +z̄1∂w,
we compute

(L〈θ, [L1, L]〉)0 6= 0,
which shows that here L is not in the Levi kernel of order 1, even though
its value at 0 is contained in the Levi kernel.

Remark 4.5. — Using any normal form as in Proposition 3.6 and calcu-
lating with vector fields (3.10), we can obtain a condition equivalent to (4.1)
with L2 in CH (rather than in CT ), which can be stated in terms of the
double Lie brackets instead of the Levi form derivatives:

(4.2) 〈θp, [L1, L]p〉 = 〈θp, [L2, [L1, L]]p〉 = 〈θp, [L2, [L1, L]]p〉) = 0.

A priori, it is not at all clear that vector fields as in Definition 4.2 exist.
The following lemma provides an easy way of constructing them.

Lemma 4.6. — Let M have the Levi rank q at p ∈M , with Levi kernel
K10
p . Assume that L ∈ H10 is in the Levi kernel up to order 1 at p, as per

Definition 4.2. Then Lp ∈ K10
p and

(4.3) τ3
p (L2

p, L
1
p, Lp) = 0, L2 ∈ CT, L1 ∈ H10, L1

p ∈ K10
p .

must hold for all L2, L1. (Equivalently, Lp is contained in the kernel of τ3
p

in the last argument).
Vice versa, assume that Lp ∈ K10

p and (4.3) holds. Let

(L̃1, . . . , L̃q)

be a Levi-nondegnerate system of (1, 0) vector fields at p (i.e. the matrix
τ2
p (L̃jp, L̃kp) is nondegenerate), such that L is Levi-orthogonal to each L̃j ,
j = 1, . . . , q, in a neighborhood of p. Then L is in the Levi kernel up to
order 1 at p.

Proof. — The first part follows directly from the definitions.
Vice versa, since the Levi form has rank r in p, and Lp is Levi-orthogonal

to each L̃j , it follows that Lp is in the Levi kernel, i.e. the first expression
in (4.1) must vanish.
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Next, (4.3) implies that the second expression in (4.1) vanishes whenever
L1
p ∈ K10

p . Similarly, in view of the symmetry (3.8), also the third expression
vanishes under the same assumption.

Finally, to a general L1 with L1
p /∈ K10

p , we can always add a linear
combination of L̃j to achieve the inclusion of the value at p in the Levi
kernel. Since L is Levi-orthogonal to each L̃j identically in a neighborhood
of p, this does not change (4.1), completing the proof. �

In particular, in view of Lemma 3.14 we obtain:

Corollary 4.7. — Let M be pseudoconvex. Then every v ∈ K10
p ex-

tends to a (1, 0) vector field, which is in the Levi kernel up to order 1 at
p.

Remark 4.8. — More generally, a similar result can be obtained without
pseudoconvexity for a v ∈ K10

p whose conjugate v is in the kernel of τ3 (in
the last argument), i.e. satisfying

τ3
p (L3

p, L
2
p, v) = 0

for all L3, L2. Then there exists a (0, 1) vector field L extension of v, which
is in the Levi kernel up to order 1 at p.

4.2. Invariant submodule sheaves of vector fields

The notion of the Levi kernel inclusion up to order 1 has been defined
pointwise in Definition 4.2. In order to have a uniform control for Levi
kernels in nearby points, we shall need to define corresponding sheafs of
submodules of vector fields as follows.

Definition 4.9. — Let M ⊂ Cn be a real hypersurface. Denote by
T 10 the sheaf of all (1, 0) vector fields on M . For every q 6 n − 1, define
S10(q) ⊂ T 10 to be the submodule sheaf consisting of all germs of vector
fields on M which are contained in the Levi kernel up to order 1 at every
point of Levi rank 6 q.

Clearly we have the inclusions

S10(0) ⊃ · · · ⊃ S10(n− 1).

As a direct consequence of Lemma 4.6, we obtain the following strength-
ening of Corollary 4.7:
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Corollary 4.10. — Let M be a pseudoconvex hypersurface. Then for
every q, local sections of S10(q) span the Levi kernel K10

x at every point
x ∈M of Levi rank q.

Note that to guarantee the existence of sufficiently many sections as in
Corollary 4.10, it is important to restrict the property underlying Defi-
nition 4.9 only to points of Levi rank 6 q. Without that restriction, the
sheaf would become trivial e.g. for any manifoldM that is generically Levi-
nondegenerate (which is the case for any M of finite type).
Definition 4.9 requires to check the condition at every point of Levi rank

6 q, which can be difficult to deal with in practice, when the set of such
points is not “nice”. However, Lemma 4.6 implies:

Corollary 4.11. — Suppose that M is pseudoconvex. Let V ⊂ H10

be a Levi-nondegenerate subbundle of rank q in a neighborhood of p. Then
any section in the Levi-orthogonal complement V ⊥ is contained in the sheaf
S10(q). In particular, local sections of S10(q) span the Levi kernel K10

x at
every point x ∈M of Levi rank 6 q.

Recall that in Section 2, we call a subbundle V ⊂ H10 Levi-nondegenerate
whenever the Levi form restriction to V × V is nondegenerate.

Example 4.12. — If p ∈ M is a point of Levi rank 0, where the cubic
tensor τ3

p vanishes, any (1, 0) vector field is automatically contained in the
Levi kernel up to order 1 at p in view of Corollary 4.7. In particular, ifM is
pseudoconvex, the sheaf S10(0) consists of all germs of (1, 0) vector fields.
When M is not pseudoconvex, the condition f ∈ S10(0) is more delicate,
requiring f to belong to the kernel of the cubic tensor τ3

p at every point of
Levi rank 0.

On the opposite end, for q = n − 1, the sheaf S10(n − 1) consists of
all germs of (1, 0) vector fields that are contained in the Levi kernel at
every point. Indeed, any point is of Levi rank 6 n − 1, hence any germ
in S10(n− 1) is automatically contained in the Levi kernel at every point.
Vice versa, for any such germ L, the first term in (4.2) vanishes identically
and hence also the second vanishes by differentiation.

The sheaves S10(q) for 1 < q < n− 1 are more interesting:

Example 4.13. — Let M ⊂ C3
z1,z2,w be given by

2 Rew = |z1|4 + |z2|4.

The condition L ∈ S10(1) only involves points of Levi rank 6 1, i.e. the
subset M1 := {z1z2 = 0}. Hence, at points outside M1, the sheaf S10(1)
contains all germs of (1, 0) vector fields.
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Next, for p = (z1, 0, w) ∈M1 with z1 6= 0, a (1, 0) vector field L satisfying

(4.4) L = a1∂z1 + a2∂z2 mod (∂w̄ − ∂w)

for some functions a1, a2, is in the Levi kernel up to order 1 at p if and only
if the coefficient a1 vanishes up to order 1 at p. A similar property holds
for p = (0, z2, w) ∈M1. Finally, for p = (0, 0, w) ∈M1, any L is in the Levi
kernel up to order 1 at p. However, any L ∈ S10(1) must have both a1, a2

vanish at 0 up to order 1 by continuity. Summarizing, a germ L ∈ S10(1)
if and only if aj vanishes up to order 1 at every point of M1 with z3−j = 0
for j = 1, 2.

4.3. Construction of the quartic tensor

Equipped with special vector fields as in Definition 4.2, we can now define
an invariant quartic tensor by means of the second order derivatives of the
Levi form:

Lemma 4.14. — Let M be such that the cubic tensor τ3
p vanishes for

some p ∈M . Then there exists an unique tensor

τ4
p : CTp × CTp ×K10

p ×K10
p → CQp,

such that for any (1, 0) vector fields L1, L2 ∈ H10 that are in the Levi
kernel up to order 1 at p, any vector fields L3, L4 ∈ CT , and any contact
form θ ∈ Ω0,

(4.5) 〈θp, τ4
p (L4

p, L
3
p, L

2
p, L

1
p)〉 = i(L4L3〈θ, [L2, L1]〉)p.

More generally, (4.5) still holds whenever both L1 and L2 are in the Levi
kernel up to Ljp-order 1 at p, for j = 3, 4.

Proof. — Similar to the proof of Lemma 3.2, it suffices to prove that
the right-hand side of (4.5) vanishes whenever either Lk = aL̃k for some
k = 1, 2, 3, 4, or θ = aθ̃, where a is a smooth function vanishing at p. In the
following ã will denote either a or the conjugate a and we assume (without
loss of generality) that each of L3, L4 is contained in either H10 or H01.
Now the vanishing of the right-hand side in (4.5) is obvious for k = 4.

For k = 3, it takes the form

(L4ã)p(L̃3〈θ, [L2, L1]〉)p,
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which must vanish in view of Definition 4.2. For k = 1, we obtain

(L4ā)p(L3〈θ, [L2, L̃1]〉)p + (L3ā)p(L4〈θ, [L2, L̃1]〉)p
+ (L4L3ā)p(〈θ, [L2, L̃1]〉)p,

which again vanishes in view of Definition 4.2. For k = 2, the proof follows
from the case k = 1 by exchanging L2 and L1 and conjugating. Finally, for
θ = aθ̃, we obtain

(L4a)p(L3〈θ̃, [L2, L1]〉)p + (L3a)p(L4〈θ̃, [L2, L1]〉)p
+ (L4L3a)p(〈θ̃, [L2, L1]〉)p,

which vanishes by the same argument. �

Remark 4.15. — In higher generality, when the cubic tensor τ3
p may not

vanish completely, a quartic tensor τ4
p can still be constructed via (4.5)

along certain kernels of τ3
p . We will not pursue this direction as our focus

here is on the pseudoconvex case when τ3
p always vanishes identically.

4.4. Positivity of the quartic tensor

As direct consequence of Lemma 4.14 we obtain:

Corollary 4.16. — Let M be pseudoconvex. Then the quartic tensor
τ4
p satisfies the following positivity property:

τ4
p (v2, v2, v1, v1) > 0, v2 ∈ Tp, v1 ∈ K10

p .

Proof. — Since the Levi form τ2
p (v1, v1) vanishes for all v1 ∈ K10

p , the
function x 7→ i〈θ, [L2, L1]〉x in (4.5) for fixed L2 and L1 = L2 achieves
its local minimum at p. Hence its differential also vanishes at p and the
real hessian is positive semidefinite. Then the desired conclusion follows
from (4.5). �

4.5. A normal form up to weight 1/4

Since the cubic normal form for pseudoconvex hypersurfaces (3.15) is in
some sense “lacking nondegenerate terms”, we extend it by lowering the
weight of z3 from 1/3 to 1/4 (and renaming z3 to z4 to reflect the weight
change):
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Proposition 4.17. — For every pseudoconvex real hypersurface M in
Cn and point p ∈ M of Levi rank q, there exist local holomorphic coordi-
nates

(w, z) = (w, z2, z4) ∈ C× Cq × Cn−q−1,

vanishing at p, such that M takes the form

(4.6) ρ = 0, ρ = −2 Rew + ϕ(z, z̄, i(w − w̄)), ϕ = ϕ2 + ϕ4 + ow(1),

where

ϕ2(z, z̄, u) =
q∑
j=1
|z2j |2, ϕ4(z, z̄, u) = 2 Reϕ31(z4, z̄4) + ϕ22(z4, z̄4),

with

ϕ31 =
∑

ϕ31
j1...j4

z4j1z4j2z4j3 z̄4j4 ϕ22 =
∑

ϕ22
j1...j4

z4j1z4j2 z̄4j3 z̄4j4 ,

where the weight estimate ow is calculated for u, z2
j , z4

k, and their conju-
gates, being assigned the weights 1, 1

2 ,
1
4 respectively. Each polynomial ϕjk

here is bihomogeneous of bidegree (j, k) in (z4, z̄4).
Furthermore, the following hold:
(1) For every v ∈ K10

0
∼= {0} × Cn−q−1, the vector field Lv given

by (3.10) is in the Levi kernel up to v0-order 1 at 0 for any v0 ∈
CK0.

(2) For v4, v3 ∈ CK0 and v2, v1 ∈ K10
0 , we have

(4.7) τ4
p (v4, v3, v2, v1) = ∂v4∂v3∂v2∂v1ϕ4.

In particular, the restriction

(4.8) τ40
p : CKp × CKp ×K10

p ×K10
p → CQp

of τ4
p is symmetric in whatever arguments can be exchanged and

satisfies the reality condition

τ4
p (v4, v3, v2, v1) = τ4

p (v4, v3, v1, v2),

note the switch of the last two arguments.

Proof. — The existence of the desired normal form is a direct conse-
quence of Lemma 3.14. A direct calculation shows the special vector fields
in (3.10) with v ∈ {0} × Cn−q−1 are in the Levi kernel up to tangential
order 1 as claimed. The remaining properties are straightforward. �

Similarly to Corollary 3.8, one can also show the following quartic Lie
bracket representation:
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Lemma 4.18. — The restriction τ40 of τ4 satisfies

〈θp, τ41
p (L4

p, L
3
p, L

2
p, L

1
p)〉 = i〈θp, [L4, [L3, [L2, L1]]]p〉

whenever L2, L1 ∈ H10 are in the Levi kernel up to CK-order 1 at p,
L3, L4 ∈ CH, and θ ∈ Ω0 is any contact form.

Here we use the “microlocal” variant of the containment condition in the
Levi kernel from Definition 4.2.

Remark 4.19. — It is easy to see that pseudoconvexity of M implies
that the quartic polynomial ϕ4 in (4.6) is plurisubharmonic. Conversely,
every plurisubharmonic ϕ4 appears in a normal form of some pseudoconvex
hypersurface, e.g. the model hypersurface

w + w̄ =
q∑
j=1
|z2j |2 + ϕ4(z4, z̄4).

Furthermore, taking averages along circles, it is easy to see that plurisub-
harmonicity of ϕ4 implies that of its bidegree (2, 2) component ϕ22.

4.6. Normal form for vector fields in the Levi kernel up to
order 1

In any normal form as in (4.6), our special vector fields that are in the
Levi kernel up to order 1, have particularly simple weighted expansion. In
fact, we obtain this conclusion under a slightly more general assumption
that only requires to differentiate the Levi form in the directions of the
Levi kernel. As customary, we shall assign weight −a to coordinate vector
field ∂zj whenever the weight of the coordinate zj is a.

Proposition 4.20. — Let M be of the form (4.6) and L ∈ H10 be any
vector field such that

(4.9) 〈θ, [L1, L]〉0 = (L2〈θ, [L1, L]〉)0 = 0

holds for any θ ∈ Ω0, L1 ∈ H10 and L2 ∈ CH with L2
0 ∈ CK0. Then in

the given coordinates and weights as in Proposition 4.17, the vector field L
must have weight at least −1/4 and there exists vector v ∈ {0} × Cn−q−1

such that L has a weighted expansion

(4.10) L =
∑
j

aj(∂z4j + ϕ4
z4j

(∂w̄ − ∂w)) +Ow(0),

aj ∈ C, j = 1, . . . , n− q − 1.
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In particular, L cannot have any other terms of weight −1/4 such as

(4.11) z4j∂z2k , z̄4j∂z2k .

Vice versa, any vector field (4.10) satisfies (4.9).

Proof. — Since L is in the Levi kernel at 0, its expansion cannot have
any vector fields ∂z2k , hence L must have weight > −1/4.
To show (4.10), it suffices to prove that none of the terms (4.11) can

occur in the expansion of L. But the latter fact is a direct consequence
of (4.9) with

L1 = ∂z2k L2 = ∂z4j or L2 = ∂z̄4j mod ∂w.

Finally, assume L has expansion (4.10). In particular, L0 ∈ K10
0 must

hold, hence the first expression in (4.9) vanishes. To show that also the
second expression vanishes, in view of Remark 4.8, it suffices to assume
that L1 is either in the Levi kernel up to order 1 or is of the form

(4.12) L1 = ∂z2j + z̄2j∂w.

In the first case, L1 also has a weighted expansion similar to (4.10). Since
θ = i∂ρ has weight > 1, a direct calculation shows that [L1, L] has weight
> −1/4, and hence L2〈θ, [L1, L]〉 has weight > −1/4 + 1− 1/4 = 1/2, and
therefore must vanish at 0.

In the second case, when L1 is given by (4.12), a direct calculation
shows that [L1, L] has weight > −1/2 and hence L2〈θ, [L1, L]〉 has weight
> −1/4 + 1− 1/2 = 1/4, and therefore again must vanish at 0. �

As a byproduct, we obtain the following consequence:

Corollary 4.21. — Let L and L′ be two vector fields satisfying the
assumptions of Proposition 4.20. Then

[L,L′]0, [L,L′]0 ∈ CK0.

Proof. — In view of Proposition 4.20, L, L′ and their conjugates com-
mute in their components of weight −1/4. Hence their brackets must have
weight > −1/4 and the statement follows. �

Recall that in Definition 4.9 we introduced invariant submodule sheaves
S10(q) ⊂ H10 by requiring the condition to be in the Levi kernel up to
order 1 to hold at every point of Levi rank 6 q. Then as direct application
of Corollary 4.21, we obtain:

Corollary 4.22. — The invariant submodule sheaf S(q) = S10(q) ⊕
S10(q) satisfies the following formal integrability condition at all points q
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of Levi rank 6 q:
[S(q),S(q)]p ∈ CKp.

Proof. — The statement follows by applying Corollary 4.21 at each point
of Levi rank 6 q. �

4.7. Symmetric extension

Similarly to Lemma 3.11, we obtain a symmetric extension for the Levi
kernel restriction of τ4:

Lemma 4.23. — The restriction

τ40
p : CKp × CKp ×K10

p ×K10
p → CQp

of the quartic tensor τ4
p admits an unique symmetric extension

τ̃40
p : CKp × CKp × CKp × CKp → CQp,

satisfying

(4.13) 〈θ0, τ̃
40
0 (v4, v3, v2, v1)〉 = ∂v4∂v3∂v2∂v1ϕ4,

whenever M is in a normal form ρ = −2 Rew + ϕ = 0 as in Proposi-
tion 4.17 and θ = i∂ρ. In fact, (4.13) holds whenever ϕ satisfies dϕ0 = 0
and ∂vj∂v2∂v1ϕ3 = 0 for j = 3, 4.

5. Applications and properties of the quartic tensor

5.1. Relation with the D’Angelo finite type

The quartic tensor τ4 can be used to completely characterize the finite
type up to 4 in the sense of D’Angelo [22] (see also “Property P” in [22,
Definition 5.1]):

Proposition 5.1. — LetM be a pseudoconvex hypersurface with non-
trivial Levi kernel at p. Then M is of D’Angelo type 4 at p if and only
if for every nonzero vector v ∈ K10

p , the tensor τ4
p does not vanish when

restricted to

(5.1) (Cv + Cv)× (Cv + Cv)× Cv × Cv.

In fact, the latter property implies the following stronger nonvanishing
condition:

τ4
p (v, v, v, v) 6= 0.
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Proof. — We may assume M is put into its normal form as in Proposi-
tion 4.17.
If the restriction of τ4

p vanishes on (5.1) for some v 6= 0, we may assume
v = ∂z31 , where z3 = (z31, . . . , z3,n−r). Then it follows from the normal
form that the line Cv has order of contact with M higher than 4, hence
the D’Angelo type at p is also higher than 4.
On the other hand, suppose the restriction of τ4

p to (5.1) does not vanish
for any v 6= 0. Assume by contradiction, there exists a nontrivial holomor-
phic curve

γ : (C, 0)→ (Cn+1, 0), γ(t) =
∑
k>k0

akt
k, ak0 6= 0,

whose contact order with M at 0 is higher than 4. Recall that the contact
order is given by

ν(ρ ◦ γ)
ν(γ) ,

where ρ is any defining function of M and ν is the vanishing order at 0, in
particular, ν(γ) = k0 > 1. Taking ρ := −2 Rew + ϕ, we must have ak0 ∈
{0} × Cn, otherwise the contact order would be 1. Similarly, expanding
ρ ◦ γ, it follows by induction that

al ∈ {0} × Cn, l < 4k0,

and
ak ∈ {0} × {0} × Cn−r, k < 2k0,

for otherwise the contact order would be less than 4. Finally collecting
terms of order 4k0 and using our assumption that the contact order is
greater than 4, we obtain

(5.2) ϕ2(a2k0t
2k0 , a2k0t

2k0) + ϕ4(ak0t
k0 , ak0t

k0) = 0.

In particular, it follows that

ϕ4(ak0ξ, ak0ξ) = cξ2ξ̄2.

Since ϕ4 is plurisubharmonic, we must have c > 0. Hence both terms
in (5.2) are nonnegative, and therefore must vanish. In particular, ca2

k0
a2
k0

=
0, implying

ϕ4(ak0ξ, ak0ξ) = 0,
which is in contradiction with our nonvanishing assumption on τ4

p . Hence
the D’Angelo type is 4 completing the proof of the converse direction.
Finally, the last statement follows from the plurisubharmonicity of ϕ4 in

any normal form. �
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The last conclusion suggests a connection with the so-called regular type.
Recall that the regular type of M at p is the maximum (possibly infinite)
of the vanishing order ν(ρ ◦ γ), where ρ is a defining function of M in a
neighborhood of p and γ : (C, 0) → (Cn, p) a germ of a regular complex-
analytic curve, i.e. satisfying γ′(0) 6= 0. As a consequence of Proposition 5.1,
we obtain the following characterization:

Corollary 5.2. — Let M be a pseudoconvex hypersurface with non-
trivial Levi kernel at p. Then the following are equivalent:

(1) M is of D’Angelo type 4 at p;
(2) M is of regular type 4 at p;
(3) the quartic tensor satisfies τ4

p (v, v, v, v) 6= 0 whenever v is a nonzero
vector in the Levi kernel at p.

Proof. — The equivalence of (1) and (3) is contained in Proposition 5.1.
The equivalence of (2) and (3) is obtained by repeating the proof of the
proposition for a regular curve. �

The pseudoconvexity assumption in Proposition 5.1 cannot be dropped:

Example 5.3. — Let M ⊂ C3
w,z1,z2

be given by

2 Rew = |z1|2 − |z2|4.

ThenM contains the image of the curve t 7→ (0, t2, t) and is hence of infinite
type at 0. On the other hand, M is in the normal form (4.6) and hence
τ4
0 (v, v, v, v) 6= 0 for any v 6= 0 ∈ K10

0 .

5.2. Uniformity of the quartic tensor

The sheaves S10(q) introduced in Definition 4.9 can be used to obtain a
uniform behavior of τ4

p as p varies over the set of nearby points of bounded
Levi rank. In fact, as direct consequence from the definition and Corol-
lary 4.11, we obtain that τ4

p can be calculated using local sections of S10(q):

Corollary 5.4. — For every vector fields L4, L3 ∈ CT and L2, L1 ∈
S10(q) defined in an open set U ⊂ M , the identity (4.5) holds simultane-
ously for all points p ∈ U of Levi rank q.

Remark 5.5. — In the context of Corollary 5.4, it is essential to require
the vector fields L2, L1 to be contained in Levi kernels up order 1 (rather
than merely contained in Levi kernels). In fact, for a higher order pertur-
bation of Examples 4.1 where 0 is the only Levi-degenerate point, choosing
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vector fields Lj as higher order perturbations of the vector field L in the
example or its conjugate would violate (4.5).

It is important to note that the conclusion of Corollary 5.4 may not
hold for points p ∈ U of Levi rank > q when L2

p, L
1
p ∈ K10

p . In fact, τ4
p

may not even be continuous e.g. may vanish for p of higher Levi rank
even when τ4

p0
does not vanish on any line for p0 of Levi rank q. This is

illustrated by D’Angelo’s celebrated example where the finite type is not
upper-semicontinuous [21, 22], see also Example 4 and its continuation on
p. 135–136 in [23]:

Example 5.6 (D’Angelo). — Let M ⊂ C3
w,z1,z2

be given by

2 Rew = |z2
1 − wz2|2 + |z2|4.

Then M is of Levi rank 0 and finite type 4 at 0 and hence τ4
0 does not

vanish on the lines products (5.1) in view of Proposition 5.1. In fact, M is
in its normal form as in Proposition 4.17 with ϕ4 = |z1|4 + |z2|4, and hence

τ4
0 (v, v, v, v) = 4(|v1|4 + |v2|4), v ∈ K10

0
∼= {0} × C2

z1,z2
.

On the other hand, at every p = (it, 0, 0) on the imaginary axis with
t 6= 0, the Levi rank is 1, and M can be locally transformed into a normal
form (4.6) with vanishing ϕ4 implying τ4

p (v, v, v, v) = 0 for any v ∈ K10
p .

Thus τ4
p (v, v, v, v) cannot be continuous for any v = v(p) converging to any

v(0) 6= 0 as p→ 0.
Of course, this phenomenon is closely related to the lack of upper-

semicontinuity of the type as demonstrated by D’Angelo. The additional
importance of this example and its generalisation in [22, Example 5.16]
and [23, Example 4] is the occurrence of the “worst possible lack of semicon-
tinuity” of the type for pseudoconvex hypersurfaces, demonstrating sharp-
ness of the D’Angelo’s bound controlling the type in a neighborhood of a
point p ∈M in terms of the type at p, see [22, Theorem 5.5].

5.3. Kernels of quartic tensors

For any homogenous polynomial, consider the following notion of holo-
morphic kernel:

Definition 5.7. — The holomorphic kernel of a homogeneous polyno-
mial P (z, z̄), z ∈ Cn, is defined to be the subspace of all (1, 0) vectors v
such that

(5.3) ∂vP (z, z̄) ≡ ∂vP (z, z̄) ≡ 0.
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Equivalently, the holomorphic kernel is the space of all v such that both v
and v belong to the kernel of the polarization of p.

It is straightforward to see the following simple characterization of the
kernel:

Lemma 5.8. — The holomorphic kernel of p is the maximal subspace V
such that, there exists a linear change of coordinates such that

V = ⊕lj=1(C∂zj ⊕ C∂z̄j )

and P (z, z̄) is independent of the variables z1, . . . , zl and their conjugates.

Definition 5.9. — The rank of P is n− d, where d is the dimension of
the holomorphic kernel.

Also separating bihomogeneous components in (5.3), we obtain:

Lemma 5.10. — Let

P (z, z̄) =
∑

Pkl(z, z̄)

be a decomposition into components Pkl of bidegree (k, l) in (z, z̄). Then
the holomorphic kernel of P equals the intersection of kernels of Pkl for
all k, l.

Next we compare the holomorphic kernel of the polynomial ϕ4 in the
normal form given by Proposition 4.17 and the restriction

τ40
p : CKp × CKp ×K10

p ×K10
p → CQp.

of the quartic tensor τ4
p to the Levi kernel in each component.

Definition 5.11. — The holomorphic kernel of τ40
p is V ∩ V , where

V = ker τ40
p = {v ∈ CKp : τ40

p (v, v3, v2, v1) = 0 for all v3, v2, v1}.

First of all, remark that without pseudoconvexity assumption, the holo-
morphic kernel of τ40

p may get larger than that of ϕ4:

Example 5.12. — Let M ⊂ C3
w,z1,z2

be given by

2 Rew = ϕ4(z, z̄) := 2 Re(z3
1 z̄2).

Then the arguments in the proof of Proposition 4.17 can be used to show
that (4.7) still holds, implying that ∂z2 and ∂z̄2 are in the kernel of τ40

0 in
the 1st and 2nd arguments but not in the 3rd one.
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On the other hand, in presence of pseudoconvexity, both kernels must
coincide as the following lemma shows. As a matter of convention, for a
multilinear function f(v1, . . . , vm), we call its kernel in the kth argument
the space of all vk such that f(v1, . . . , vm) = 0 holds for all vj with j 6= k.

Lemma 5.13. — LetM be in its normal form given by Proposition 4.17,
and assume thatM is pseudoconvex. Then both holomorphic kernels of τ40

in the 1st and 2nd arguments coincide with holomorphic kernel V of ϕ4.
Furthermore, the kernels of τ40 in the 3rd and 4th arguments coincide
respectively with V and V .

Proof. — As direct consequence of (4.7) we obtain that the holomorphic
kernel of ϕ4 is contained in the kernel of τ40

p in each argument.
Vice versa, let v be (1, 0) vector in the holomorphic kernel of τ40

p (in
the 1st argument). We write ξ = z4 for brevity. After a linear change of
coordinates we may assume v = ∂ξ1 , where ξ1 is the first component of ξ
in the notation of Proposition 4.17. Then it follows from (4.7) that ∂ξ1ϕ

4

is harmonic. Since ϕ4 has no harmonic terms, it must have the form

ϕ4 = 2 Re(ξ̄1h(ξ)) +R,

where h is holomorphic and R is independent of ξ1. Now since M is pseu-
doconvex, ϕ4 is plurisubharmonic, in particular,

(5.4) (∂ξ1 + t∂ξj )(∂ξ̄1
+ t∂ξ̄j )ϕ

4 > 0

holds for all t ∈ R. Then for t = 0, we obtain ∂ξ1h > 0. Since h is holomor-
phic, we must have ∂ξ1h ≡ 0. Hence the linear part of (5.4) must be > 0
and therefore equal to 0, since t is any real number. But this means h ≡ 0,
and hence v = ∂ξ1 is in the holomorphic kernel of ϕ4 as claimed.

The claimed statements for kernels in other arguments of τ40
p are obtained

by repeating the same proof. �

In view of Lemma 5.13, we simply refer to the holomorphic kernel of τ40

for its kernel in the 1st (and, equivalently, in the 2nd) argument, Also the
rank of τ40 is dimK10

p − d, where d is the dimension of its holomorphic
kernel, which coincides with the rank of ϕ4 in the sense of Definition 5.9.

6. Relation with Catlin’s multitype

We first recall the definition of the multitype due to Catlin [7]. Consider
arbitrary ordered weights

(6.1) Λ = (λ1, . . . , λn), 1 6 λ1 6 · · · 6 λn 6∞,
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and for a multiindex α = (α1, . . . , αn), define its weight by

‖α‖Λ := λ−1
1 α1 + · · ·+ λ−1

n αn.

Definition 6.1. — A weight Λ is called admissible if for each k =
1, . . . , n, either λk = +∞ or there exists a k-tuple of nonnegative integers
a = (a1, . . . , ak) satisfying ak > 0 and ‖a‖Λ = 1.

Next, for a smooth function ρ(z, z̄) defined in a neighborhood of 0, write

(6.2) ρ = OΛ(1)

whenever all nonzero monomials ρzαz̄βzαz̄β in the Taylor expansion of ρ at
0 satisfy ‖α + β‖Λ > 1, i.e. are of weight > 1, or, equivalently, whenever
the estimate

|ρ(z, z̄)| 6 C(|z1|λ1 + · · ·+ |zn|λn)
holds in a neighborhood of 0 for some C > 0. Finally, we regard (µ1, . . . , µn)
as lexicographically smaller than (λ1, . . . , λn) whenever µj < λj holds for
the smallest j such that µj 6= λj .

Definition 6.2 ([7]). — The multitype of a smooth real hypersurface
M ⊂ Cn at a point p ∈ M is the lexicographic supremum of the set of all
admissible weights Λ such that there exist local holomorphic coordinates
in a neighborhood of p and vanishing at p, where M is given by a defining
function ρ satisfying ρ = OΛ(1).

Note that since a defining function ρ is unique up to a nonvanishing
smooth factor, the property ρ = OΛ(1) is independent of the choice of ρ
(but, of course, in general, it does depend on the coordinates).
Catlin’s multitype is an essential ingredient in his proof of the Prop-

erty (P) [8], based on [7], required for the proof of global regularity of the
∂̄-Neumann problem, as well as for its quantitative analogue in [9] required
for the proof of subelliptic estimates. However, in practice, the multitype
is difficult to compute, due to the nature of its definition requiring taking
lexicographic supremum over arbitrary holomorphic coordinate charts.
In [47], Kolar gave a remarkable general algorithm for computing the

multitype of a given hypersurface, which involves taking certain consecutive
coordinate normalisations. However, the number of steps involved there
equals the dimension, and each step depends on the previous coordinate
choice.
In our case, we can use the quartic tensor τ4 to have an algebraically

invariant way of calculating part of the multitype, that works regardless
of the dimension n and independent of coordinates. In case τ4 has trivial
kernel, this approach gives the complete multitype.
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Proposition 6.3. — LetM ⊂ Cn be a pseudoconvex hypersurface, and
p ∈M a point with Levi form of rank q2 and the restricted quartic tensor
τ40 of rank q4. Then the multitype Λ = (λ1, . . . , λn) of M at p satisfies

(6.3) λ1 = 1, λ2 = . . . λq2+1 = 2, λq2+2 = · · · = λq2+q4+1 = 4,

and

(6.4) λk > 4, k > q2 + q4 + 1.

In particular, if τ40 has only trivial kernel, the multitype is (1, 2, . . . , 2,
4, . . . , 4), where the number of 2’s equals the Levi rank.

Proof. — By Lemma 5.8, in addition to the normal form in Proposi-
tion 4.17, we can make ϕ4 independent of the last d coordinates, where d
is the dimension of the (1, 0) kernel of τ4. This shows that it is possible to
achieve (6.2) with weights satisfying both (6.3) and (6.4).
The actual multitype may only be lexicographically higher, in particu-

lar, (6.4) is already satisfied. Assume by contradiction that we have an-
other choice of coordinates with higher weights failing one of the equalities
in (6.3). However, we must obviously have λ1 = 1 and the Levi form in-
variance forces the next q2 weights to be equal 2. Therefore we must have
some λk > 4 for k 6 q2 + q4 + 1. In those coordinates, we would have the
same normal form as in Proposition 4.17 with ϕ4 being independent of zj
at least for j > q2+q4+1. That, however, would mean that the rank of τ4 is
less than q4, which is a contradiction. Hence the multitype must satisfy all
of (6.3) as claimed, where the admissibility condition from Definition 6.1
is clearly satisfied. �

7. Ideal sheaves for the Levi rank level sets

We use the vector field submodule sheaves S10(q) in Definition 4.9 to de-
fine invariant ideal sheaves of smooth functions I(q) (as in Theorem 2.1(5)):

Definition 7.1. — Let M ⊂ Cn be a pseudoconvex hypersurface. For
every q, define I(q) to be the ideal sheaf generated by all (smooth complex)
functions g,f of the form

g = 〈θ, [L2, L1]〉, f = L3〈θ, [L2, L1]〉,

where θ ∈ Ω0 is a contact form, L3 ∈ CT arbitrary complex vector field,
and L2, L1 ∈ S10(q) arbitrary sections.
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Remark 7.2. — The same ideal sheaf I(q) is generated by the functions
g, f as in Definition 7.1, where the vector fields Lj can be chosen from a
fixed finite set of generators of CT and S10(q). That is due to the linearity
of g with respect to smooth functions, and the linearity of f modulo the
ideal generated by all functions g.

Example 7.3. — Example 4.12 shows that for q = 0, the sheaf S10(0)
contains all germs of all (1, 0) vector fields. Then the ideal sheaf I(0) is
generated by all Levi form entries and their first order derivatives.
On the opposite end, Example 4.12 shows that for q = n − 1, the sheaf

S10(n − 1) consists of all germs of (1, 0) vector fields that are everywhere
contained in the Levi kernel. Such sheaf is always trivial when the hypersur-
face M is generically Levi-nondegenerate, which is the case e.g. whenever
M is of finite type. In the latter case, the ideal sheaf I(n − 1) is also
trivial (identically zero), which corresponds to the simple fact that the set
of points of the maximal Levi rank n − 1 is never contained in a proper
submanifold.

Example 7.4. — Let M be as in Example 4.13. Then away from the
subset M1 = {z1z2 = 0} ⊂ M of the points of Levi rank 6 1, the ideal
sheaf I(1) is generated by the Levi form entries |z1|2, |z2|2, that generate
all smooth germs of functions there. This is expected as that set consists
of the Levi-nondegenerate points.
On the other hand, along the Levi-degeneracy set M1, the Levi form

and its derivatives in Definition 7.1 need to be computed along vector
fields L2, L1 from the submodule S10(1). In view of Example 4.13, the Levi
form entries g = 〈θ, [L2, L1]〉 always vanish of order at least 2 along M1,
whereas their derivatives f = L3〈θ, [L2, L1]〉 generate the maximal ideal of
M1 away from z1 = z2 = 0.

As a direct consequence of Corollary 4.11 and Lemma 3.14, we obtain a
general way of constructing submanifolds containing level sets of the Levi
rank:

Corollary 7.5. — LetM be a pseudoconvex hypersurface. Then every
local section in I(q) vanishes at all points of Levi rank q. In particular, for
any collection f1, . . . , fm of real functions from the real part Re I(q) defined
in an open set U ⊂M satisfying

(7.1) df1 ∧ · · · ∧ dfm 6= 0,

the submanifold
S = {f1 = · · · = fm = 0}
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contains the set of all points of Levi rank q in U . In fact, the set S still has
the same property without assuming (7.1).

Remark 7.6. — Note that due to our definition of I(q), any complex
multiple of a local section is again a local section. Consequently, it suffices
to take only sections in Re I(q) to define the same set.

We next apply the quartic tensor to describe the differentials of sections
in I(q).

Definition 7.7. — For an ideal sheaf I define its kernel at p

kerp I ⊂ CTp,

to be the intersection of kernels of all differentials dfp, where f is any local
section of I in a neighborhood of p.

Then Corollary 7.5 implies:

Lemma 7.8. — Let p ∈ M be a point of Levi rank q. Then the kernel
of the qth sublevel ideal I(q) at p coincides with the kernel of the quartic
tensor τ4

p .

We can now summarize this paragraph’s results as follows:

Proposition 7.9. — LetM ⊂ Cn be a pseudoconvex real hypersurface,
and p ∈M a point of Levi rank q. Then in a neighborhood of p, the set of
all points of the same Levi rank q is contained in a real submanifold S ⊂M
through p such that

TpS = ker τ4
p ,

and S is given by the vanishing of local sections

f1, . . . , fm ∈ I(q), df1 ∧ · · · ∧ dfm 6= 0.

In particular, when M is of finite type 4 at p, the intersection of TpS with
the Levi kernel at p is totally real.

8. Relation with Catlin’s boundary systems

8.1. Maximal Levi-nondegenerate subbundles

Recall that Catlin’s boundary system construction for a hypersurface M
at a point p ∈ M begins with a maximal collection of (1, 0) vector fields
L2, . . . , Lq+1 tangent to M such that the Levi form matrix

(〈θ, [Lj , Lk]〉)26j,k6q
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is nonsingular. In particular, q must be equal to the Levi rank at p.
Invariantly, consider any maximal Levi-nondegenerate subbundle

through p, i.e. any smooth subbundle V 10 ⊂ H10 where the restriction
of the Levi form is nondegenerate. Then obviously any such V 10 appears
as the span of the first q vector fields in Catlin’s boundary system, and vice
versa, every such span is a maximal Levi-nondegenerate subbundle.
Next Catlin considers the Levi-orthogonal subbundle

S10 := (V 10)⊥ ⊂ H10

(T 10
q+2 in Catlin’s notation). In particular, the subbundle S10 contains all

Levi kernels K10
x at all points x ∈ M near p, even when dimK10

x depends
on x. That makes the fiber (V 10

x )⊥ unique whenever the Levi rank at x
is the same as p, even when V 10

x itself may not be unique. On the other
hand, at points x of higher Levi rank, (V 10

x )⊥ clearly depends on the choice
of V 10

x .
The rest of Catlin’s boundary system construction only depends on the

subbundle S10 rather than on V 10 and its chosen basis.

8.2. Levi kernel inclusion of higher order

As mentioned before, S10 contains the Levi kernel at every point. On the
other hand, if M is pseudoconvex, we have shown in Lemma 4.6 that S10

is itself contained in the Levi kernel up to order 1 at p as defined in Defi-
nition 4.2. That permits to use arbitrary sections of S10 in the calculation
of the quartic tensor τ4:

Corollary 8.1. — Let M be a pseudoconvex hypersurface, V 10 ⊂
H10 a maximal Levi-nondegenerate subbundle at p ∈ M , and S10 the
Levi-orthogonal complement of V 10. Then the quartic tensor τ4

p defined by
Lemma 4.14 satisfies

〈θp, τ4
p (L4

p, L
3
p, L

2
p, L

1
p)〉 = i(L4L3〈θ, [L2, L1]〉)p

for any L4, L3 ∈ CT , L2, L1 ∈ S10 and θ ∈ Ω0.

8.3. Relation with the rest of Catlin’s boundary system
construction

The remaining part of Catlin’s construction is based on the higher order
Levi form derivatives

(8.1) Lθ := Lm . . . L3〈θ, [L2, L1]〉, L = (Lm, . . . , L1),
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where θ = ∂r and r is a defining function of M . Then a boundary system

(8.2) B = {r1, rq2+2, . . . , rν ;L2, . . . , Lν}, q2 + 2 6 ν 6 n,

is constructed together with associated weights

α1 = 1 < α2 = · · · = αq = 2 < αq+1 6 · · · 6 αν 6∞,

where r1 = r is the given defining function, Lj and rj are respectively
smooth (1, 0) vector fields and smooth real functions in a neighborhood of
p. The construction proceeds by induction as follows. Assuming a boundary
system is constructed for given ν, define the next subbundle

T 10
ν+1 := {L ∈ T 10

q2+2 : ∂rq2+2(L) = · · · = ∂rν(L) = 0}.

Then count all previous Lj and their conjugates with weight αj , and con-
sider a new vector field Lν+1 ∈ T 10

ν+1 and its conjugate, whose weight
α = αν+1 is to be determined. Now look for all lists L = (Lm, . . . , L1) with
each Lk ∈ {Lq+2, . . . , Lν+1}, which are of total weight 1 and ordered, i.e.
Lj , Lj precede Lk, Lk whenever j > k, such that

(8.3) (L∂ρ)p 6= 0.

The list must contain the new vector field Lν+1 or its conjugate, and the
new weight αν+1 is chosen to be minimal possible with that property. Fi-
nally set either

rν+1 := ReLm−1 . . . L3〈θ, [L2, L1]〉 or rν+1 := ImLm−1 . . . L3〈θ, [L2, L1]〉

such that
(Lν+1rν+1)p 6= 0,

which is always possible in view of (8.3), since the first vector field in
the list, Lm is either Lν+1 or its conjugate. Restating Lemma 4.6 and
Corollary 8.1, we have:

Corollary 8.2. — Let M be a pseudoconvex hypersurface with Levi
form of rank q at p. Fix a (Catlin’s) boundary system {L2, . . . , Lq+1} at p.
Then S10 = T 10

q+2 = V ⊥ for

V := span{L2, . . . , Lq+1}.

Furthermore, for any vector fields L4, L3 ∈ S10 + S10, L2 ∈ S10, L1 ∈ S10,
we have

L3〈θ, [L2, L1]〉p = 0,
L4L3〈θ, [L2, L1]〉p = τ40

p (L4
p, L

3
p, L

2
p, L

1
p).

In other words, for lists L of length 3, the derivative (Lθ)p vanishes, whereas
for lists of length 4, it only depends on the vector field values at p and is
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given by the restricted quartic tensor τ4 (regardless of the choice of the
boundary system).

Thus via the quartic tensor restriction τ40
p , the nonvanishing condition

in (8.3) is reduced to a purely algebraic property only depending on the
vector fields’ values at p.
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