Cet article est la première étape d’un projet d’étude systématique d’exemples de variétés kähleriennes à courbure sectionnelle holomorphe positive (). Hitchin a prouvé que tout surface kählerienne compacte avec doit être rationnelle et il a construit de tels exemples sur les surfaces de Hirzebruch. Nous généralisons la construction de Hitchin et prouvons que toute variété de Hirzebruch admet une métrique kählerienne avec dans chacune de ses classes kähleriennes.
Il semble intéressant d’étudier l’espace de toutes les métriques kähleriennes avec sur une variété kählerienne donnée. Nous donnons des exemples de dimension supérieure tels que certaines classes kähleriennes admettent des métriques kähleriennes avec et d’autres non.
This paper is the first step in a systematic project to study examples of Kähler manifolds with positive holomorphic sectional curvature (). Hitchin proved that any compact Kähler surface with must be rational and he constructed such examples on Hirzebruch surfaces . We generalize Hitchin’s construction and prove that any Hirzebruch manifold admits a Kähler metric of in each of its Kähler classes. We demonstrate that pinching behaviors of holomorphic sectional curvatures of new examples differ from those of Hitchin’s which were studied in the recent work of Alvarez–Chaturvedi–Heier. Some connections to previous works on the Kähler–Ricci flow on Hirzebruch manifolds are also discussed.
It seems interesting to study the space of all Kähler metrics of on a given Kähler manifold. We give higher dimensional examples such that some Kähler classes admit Kähler metrics with and some do not.
Révisé le :
Accepté le :
Publié le :
Keywords: Kähler manifolds, holomorphic sectional curvature, Kähler–Ricci flow
Mot clés : variétés kähleriennes, courbure sectionnelle holomorphe, flot de Kähler–Ricci
Yang, Bo 1 ; Zheng, Fangyang 2
@article{AIF_2019__69_6_2589_0, author = {Yang, Bo and Zheng, Fangyang}, title = {Hirzebruch manifolds and positive holomorphic sectional curvature}, journal = {Annales de l'Institut Fourier}, pages = {2589--2634}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {6}, year = {2019}, doi = {10.5802/aif.3303}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3303/} }
TY - JOUR AU - Yang, Bo AU - Zheng, Fangyang TI - Hirzebruch manifolds and positive holomorphic sectional curvature JO - Annales de l'Institut Fourier PY - 2019 SP - 2589 EP - 2634 VL - 69 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3303/ DO - 10.5802/aif.3303 LA - en ID - AIF_2019__69_6_2589_0 ER -
%0 Journal Article %A Yang, Bo %A Zheng, Fangyang %T Hirzebruch manifolds and positive holomorphic sectional curvature %J Annales de l'Institut Fourier %D 2019 %P 2589-2634 %V 69 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3303/ %R 10.5802/aif.3303 %G en %F AIF_2019__69_6_2589_0
Yang, Bo; Zheng, Fangyang. Hirzebruch manifolds and positive holomorphic sectional curvature. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2589-2634. doi : 10.5802/aif.3303. https://aif.centre-mersenne.org/articles/10.5802/aif.3303/
[1] Optimal pinching for the holomorphic sectional curvature of Hitchin’s metrics on Hirzebruch surfaces, Rational points, rational curves, and entire holomorphic curves on projective varieties (Contemporary Mathematics), Volume 654, American Mathematical Society, 2015, pp. 133-142 | DOI | MR
[2] On projectivized vector bundles and positive holomorphic sectional curvature, Proc. Am. Math. Soc., Volume 146 (2018) no. 7, pp. 2877-2882 | DOI | MR | Zbl
[3] Extremal Kähler metrics on ruled manifolds and stability, Géométrie différentielle, physique mathématique, mathématiques et société. II (Astérisque), Volume 322, Société Mathématique de France, 2008, pp. 93-150 | MR | Zbl
[4] Pincement riemannien et pincement holomorphe, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (1960), pp. 151-159 | MR | Zbl
[5] Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. Fr., Volume 88 (1960), pp. 57-71 | DOI | MR | Zbl
[6] Sur les variétés d’Einstein compactes, Comptes Rendus de la IIIe Réunion du Groupement des Mathématiciens d’Expression Latine (Namur, 1965), Librairie Universitaire, Louvain, 1966, pp. 35-55 | MR | Zbl
[7] On the topology of positively curved Kaehler manifolds, Tôhoku Math. J., Volume 15 (1963), pp. 359-364 | DOI | MR | Zbl
[8] On the topology of positively curved Kaehler manifolds. II, Tôhoku Math. J., Volume 17 (1965), pp. 310-318 | DOI | MR | Zbl
[9] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | MR | Zbl
[10] Métriques kählériennes et fibrés holomorphes, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979) no. 2, pp. 269-294 | DOI | MR | Zbl
[11] Extremal Kähler metrics, Seminar on Differential Geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 259-290 | MR | Zbl
[12] Existence of gradient Kähler–Ricci solitons, Elliptic and parabolic methods in geometry (Minneapolis, 1994), A K Peters, 1996, pp. 1-16 | MR | Zbl
[13] Geometry of complete gradient shrinking Ricci solitons, Geometry and analysis. No. 1 (Advanced Lectures in Mathematics (ALM)), Volume 17, International Press., 2011, pp. 227-246 | MR | Zbl
[14]
(1992) (unpublished)[15] Extrinsic spheres in Kähler manifolds, Mich. Math. J., Volume 23 (1976) no. 4, pp. 327-330 http://projecteuclid.org/euclid.mmj/1029001767 | MR | Zbl
[16] On Kähler manifolds with positive orthogonal bisectional curvature, Adv. Math., Volume 215 (2007) no. 2, pp. 427-445 | DOI | MR | Zbl
[17] Ricci flow on Kähler–Einstein surfaces, Invent. Math., Volume 147 (2002) no. 3, pp. 487-544 | DOI | MR | Zbl
[18] Ricci flow on Kähler-Einstein manifolds, Duke Math. J., Volume 131 (2006) no. 1, pp. 17-73 | DOI | MR | Zbl
[19] On Ricci solitons of cohomogeneity one, Ann. Global Anal. Geom., Volume 39 (2011) no. 3, pp. 259-292 | DOI | MR | Zbl
[20] Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Differ. Geom., Volume 65 (2003) no. 2, pp. 169-209 http://projecteuclid.org/euclid.jdg/1090511686 | DOI | MR | Zbl
[21] Kähler-Ricci flow on projective bundles over Kähler-Einstein manifolds, Trans. Am. Math. Soc., Volume 366 (2014) no. 2, pp. 563-589 | DOI | MR | Zbl
[22] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, 1994, xiv+813 pages | DOI | MR | Zbl
[23] An extension of Mok’s theorem on the generalized Frankel conjecture, Sci. China, Math., Volume 53 (2010) no. 5, pp. 1253-1264 | DOI | MR | Zbl
[24] On Feldman-Ilmanen-Knopf’s conjecture for the blow-up behavior of the Kähler Ricci flow, Math. Res. Lett., Volume 23 (2016) no. 6, pp. 1681-1719 | DOI | MR | Zbl
[25] Scalar curvature and uniruledness on projective manifolds, Commun. Anal. Geom., Volume 20 (2012) no. 4, pp. 751-764 | DOI | MR | Zbl
[26] On projective Kähler manifolds of partially positive curvature and rational connectedness. (2015) (https://arxiv.org/abs/1509.02149) | Zbl
[27] On the curvature of rational surfaces, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, 1973), American Mathematical Society, 1975, pp. 65-80 | MR | Zbl
[28] A momentum construction for circle-invariant Kähler metrics, Trans. Am. Math. Soc., Volume 354 (2002) no. 6, pp. 2285-2325 | DOI | MR | Zbl
[29] Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, 1996, xii+329 pages | MR | Zbl
[30] On holomorphic sections of certain hermitian vector bundles, Math. Ann., Volume 189 (1970), pp. 1-4 | DOI | MR | Zbl
[31] On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics, Recent topics in differential and analytic geometry (Advanced Studies in Pure Mathematics), Volume 18, Academic Press Inc., 1990, pp. 327-337 | MR | Zbl
[32] Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds, Curvature and topology of Riemannian manifolds (Katata, 1985) (Lecture Notes in Mathematics), Volume 1201, Springer, 1986, pp. 165-179 | DOI | MR | Zbl
[33] Counter-examples to the generalized positive action conjecture, Commun. Math. Phys., Volume 118 (1988) no. 4, pp. 591-596 http://projecteuclid.org/euclid.cmp/1104162166 | DOI | MR | Zbl
[34] On the blow-up of four-dimensional Ricci flow singularities, J. Reine Angew. Math., Volume 692 (2014), pp. 153-171 | MR | Zbl
[35] Projective manifolds with ample tangent bundles, Ann. Math., Volume 110 (1979) no. 3, pp. 593-606 | DOI | MR | Zbl
[36] Positively curved shrinking Ricci solitons are compact, J. Differ. Geom., Volume 106 (2017) no. 3, pp. 499-505 | DOI | MR | Zbl
[37] Ancient solutions to Kähler-Ricci flow, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 633-653 | DOI | MR | Zbl
[38] Kähler metrics of constant scalar curvature on bundles over , Math. Ann., Volume 291 (1991) no. 2, pp. 239-246 | DOI | MR
[39] Compact Kähler manifolds of positive bisectional curvature, Invent. Math., Volume 59 (1980) no. 2, pp. 189-204 | DOI | MR | Zbl
[40] The Kähler-Ricci flow on Hirzebruch surfaces, J. Reine Angew. Math., Volume 659 (2011), pp. 141-168 | DOI | MR | Zbl
[41] On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130 http://projecteuclid.org/euclid.jdg/1214445039 | DOI | MR | Zbl
[42] On Kählerian manifolds with positive holomorphic sectional curvature, Proc. Japan Acad., Volume 33 (1957), pp. 333-335 http://projecteuclid.org/euclid.pja/1195525029 | DOI | MR | Zbl
[43] A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities, J. Reine Angew. Math., Volume 679 (2013), pp. 223-247 | DOI | MR | Zbl
[44] A characterization of noncompact Koiso-type solitons, Int. J. Math., Volume 23 (2012) no. 5, 1250054, 13 pages | DOI | MR | Zbl
[45] Hermitian manifolds with semi-positive holomorphic sectional curvature, Math. Res. Lett., Volume 23 (2016) no. 3, pp. 939-952 | DOI | MR | Zbl
[46] A review of complex differential geometry, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) (Proceedings of Symposia in Pure Mathematics), Volume 52, American Mathematical Society, 1991, pp. 619-625 | MR | Zbl
[47] Open problems in geometry, Differential geometry: partial differential equations on manifolds (Los Angeles, 1990) (Proceedings of Symposia in Pure Mathematics), Volume 54, American Mathematical Society, 1993, pp. 1-28 | MR | Zbl
[48] Kähler-Ricci flow on a toric manifold with positive first Chern class, Differential geometry (Advanced Lectures in Mathematics (ALM)), Volume 22, International Press., 2012, pp. 323-336 | MR | Zbl
Cité par Sources :