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HIRZEBRUCH MANIFOLDS AND POSITIVE
HOLOMORPHIC SECTIONAL CURVATURE

by Bo YANG & Fangyang ZHENG (*)

Abstract. — This paper is the first step in a systematic project to study exam-
ples of Kähler manifolds with positive holomorphic sectional curvature (H > 0).
Hitchin proved that any compact Kähler surface with H > 0 must be rational
and he constructed such examples on Hirzebruch surfaces M2,k = P(Hk ⊕ 1CP1 ).
We generalize Hitchin’s construction and prove that any Hirzebruch manifold
Mn,k = P(Hk ⊕ 1CPn−1 ) admits a Kähler metric of H > 0 in each of its Kähler
classes. We demonstrate that pinching behaviors of holomorphic sectional curva-
tures of new examples differ from those of Hitchin’s which were studied in the
recent work of Alvarez–Chaturvedi–Heier. Some connections to previous works on
the Kähler–Ricci flow on Hirzebruch manifolds are also discussed.

It seems interesting to study the space of all Kähler metrics of H > 0 on a given
Kähler manifold. We give higher dimensional examples such that some Kähler
classes admit Kähler metrics with H > 0 and some do not.

Résumé. — Cet article est la première étape d’un projet d’étude systématique
d’exemples de variétés kähleriennes à courbure sectionnelle holomorphe positive
(H > 0). Hitchin a prouvé que tout surface kählerienne compacte avec H > 0 doit
être rationnelle et il a construit de tels exemples sur les surfaces de Hirzebruch.
Nous généralisons la construction de Hitchin et prouvons que toute variété de
Hirzebruch admet une métrique kählerienne avec H > 0 dans chacune de ses classes
kähleriennes.

Il semble intéressant d’étudier l’espace de toutes les métriques kähleriennes avec
H > 0 sur une variété kählerienne donnée. Nous donnons des exemples de di-
mension supérieure tels que certaines classes kähleriennes admettent des métriques
kähleriennes avec H > 0 et d’autres non.
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1. Introduction

Let (M,J, g) be a Kähler manifold, then one can define the holomorphic
sectional curvature of any J-invariant real 2-plane π = Span{X, JX} by

H(π) = R(X, JX, JX,X)
‖X‖4

.

It is the Riemannian sectional curvature restricted on any J-invariant real
2-plane ([29, p.165]). Compact Kähler manifolds with positive holomor-
phic sectional (H > 0) form an interesting class of complex manifolds. For
example, these manifolds are simply-connected ([42]), and H > 0 implies
positive scalar curvature ([6]), which further leads to the vanishing of its
pluri-canonical ring [30]. In 1975 Hitchin [27] proved that any Hirzebruch
surface M2,k = P(Hk ⊕ 1CP1) admits a Kähler metrics with H > 0. More-
over, it is proved in [27] that any rational surface admits a Kähler metric
with positive scalar curvature.
There is another positive curvature condition much studied on Kähler

manifolds: the so-called (holomorphic) bisectional curvature (See Defini-
tion 2.1). Any compact Kähler manifold with positive holomorphic bisec-
tional curvature is biholormophic to CPn by Mori [35] and Siu–Yau [39].
Motivated by these results and Hitchin’s example, Yau [46] asked if the
positivity of holomorphic sectional curvature can be used to characterize
the rationality of algebraic manifolds. More precisely, the following question
was asked.

Conjecture 1.1 (Yau [47, Problems 67 and 68]). — Consider a com-
pact Kähler manifold with positive holomorphic sectional curvature, is it
unirational? Is it projective? If a projective manifold is obtained by blowing
up a compact manifold with positive holomorphic sectional curvature along
a subvariety, does it still carry a metric with positive holomorphic sectional
curvature? In general, can we find a geometric criterion to distinguish the
concept of unirationality and rationality?

There is some progress on Question 1.1 in recent years. For example, an
important criterion on non-uniruledness of projective manifolds in terms
of pseudoeffective canonical line bundles was established by Boucksom–
Demailly–Păun–Peternell [9]. Heier–Wong [25] applied this result to show
that any projective manifold with a Kähler metric with positive total scalar
curvature is uniruled. Later, they [26] proved that any projective manifold
with a Kähler metric of H > 0 is rationally connected. We also refer to [26]
and [45] for more results on Kähler or Hermitian manifolds with H > 0.
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In this paper, we focus on examples of Kähler metrics with H > 0. More
specifically, we want to carry out a detailed study of such metrics on any
Hirzebruch manifold Mn,k = P(Hk ⊕ 1CPn−1). We are partly motivated by
the work of Chen–Tian ([17] and [18]), where they proved that the space
of all Kähler metrics with positive bisectional curvature on CPn is path-
connected.

Conjecture 1.2. — Given any Hirzebruch manifold Mn,k = P(Hk ⊕
1CPn−1), what can we say about the space of all Kähler metrics with H > 0?
Is it path-connected?

As a first step to answer Conjecture 1.2, we prove the following result.

Theorem 1.3. — Given any Hirzebruch manifold Mn,k, there exists a
Kähler metric of H > 0 in each of its Kähler classes.

We refer interested readers to Chapter 4 of Griffiths–Harris [22] for a
detailed discussion on rational surfaces. In general dimensions, a Hirzebruch
manifoldMn,k is defined to be the projective bundle associated to the rank-
2 vector bundle Hk ⊕ 1CPn−1 , where H being the hyperplane bundle and
1CPn−1 the trivial bundle over CPn−1. Therefore the natural projection π :
Mn,k → CPn−1 realizesMn,k as the total space of CP1-bundle over CPn−1.
Note that Mn,k can also be described as P(H−k ⊕ 1CPn−1). Let E0 denote
the divisor inMn,k corresponding to the section (0, 1) of H−k⊕1CPn−1 , E∞
the divisor in Mn,k corresponding to the section (0, 1) of Hk ⊕ 1CPn−1 , and
F the divisor corresponding to the pull-back line bundle π∗H overMn.k

(1) .
Then the Picard group ofMn,k is generated by the divisors E0 and F , while
E∞ = E0 + kF . The integral cohomology ring of Mn,k is

Z[F,E0]/〈Fn, E2
0 + kE0F 〉.

The anti-canonical class of Mn,k can be expressed as

K−1
Mn,k

= 2E∞ − (k − n)F = n+ k

k
E∞ −

n− k
k

E0,

and every class α in the Kähler cone of Mn,k can be expressed as

(1.1) α = b

k
[E∞]− a

k
[E0]

for any b > a > 0. We refer readers to [11] and [40] for these standard facts
on Hirzebruch manifolds.

(1)Note that we follow the notations of E0 and E∞ as in [11, p. 278] (see also the
introduction of [40]), which are different with those in [22, p. 517].
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Hitchin’s examples of Kähler metrics with H > 0 on M2,k ([27]) were
motivated by a natural choice of Kähler metrics on any projective vector
bundles over compact Kähler manifolds. Namely let π : (E, h)→ (M, g) be
any Hermitian vector bundle over a compact Kähler manifold. The Chern
curvature form Θ(OP(E)(1)) of OP(E)(1) over P(E) has the fiber direction
components given by the Fubini–Study form, hence is positive. Therefore

(1.2) ω̃ = π∗ωg + s
√
−1Θ(OP(E)(1))

is a well-defined Kähler metric on P (E) when s > 0 is sufficiently small.
Given any Hirzebruch surface M2,k, one picks (E, h) = (Hk ⊕ 1CP1 , h) and
(M, g) as (CP1, gFS) where gFS is the standard Fubini–Study metric and h
the induced metric. It was proved in [27] and [1] that the resulting Kähler
metric satisfies H > 0 if and only if 0 < s < 1

k2 . We note that Hitchin’s
examples can only exist on a proper open set of Kähler cone of M2,k. For
example, onM2,1, by a scaling his examples lie in Kähler class b[E∞]−aE0
where a < b < 2a. Our Theorem 1.3 establishes the existence of Kähler
metric of H > 0 in each of Kähler class of any Mn,k.
To prove Theorem 1.3, we follow Calabi’s ansatz ([10, 11]). The crucial

observation (pointed out in [11, p. 279]) that the group of holomorphic
transformations of Mn,k contains U(n)/Zk as its maximal compact group.
Therefore it is natural to study Kähler metrics with U(n)-symmetry. Cal-
abi’s ansatz has found wide applications on the study of special Kähler
metrics, including Kähler–Einstein metrics, Kähler–Ricci solitons, Kähler
metrics with constant scalar curvature, extremal Kähler metrics, etc.. See
for example [3, 10, 11, 12, 19, 20, 28, 31, 32, 33, 38] (this list is by no
means exhaustive). Precisely we follow the method of Koiso–Sakane [32] to
prove Theorem 1.3. It turns out that for Hirzebruch manifolds Mn,k their
approach is equivalent to Calabi’s.
In general, given any C∗ bundle π : L∗ → M obtained by a Hermitian

line bundle (L, h), we may consider the following metric on the total space
of L∗:

(1.3) g̃ = π∗gt + dt2 + (dt ◦ J̃)2,

where gt is a continuous family of Kähler metrics on the base (M,J), t is
a function which only depends on the norm of Hermitian metric h, and J̃
the complex structure on the total space of L. Koiso–Sakane [32] gave a
sufficient condition such that the resulting metric g̃ is Kähler and studied
the compactification of such metrics. They applied this method to construct
new examples of non-homogeneous Kähler–Einstein metrics in [32].
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Let us choose H−k → CPn−1 as L→M . After a suitable reparametriza-
tion, one can show that g̃ defined in (1.3) can be compactified to produce
smooth Kähler metrics on Mn,k if one can find a single-variable function φ
with suitable boundary conditions. Let (Mn,k, g̃) denote the resulting met-
ric for notational simplicity and the corresponding φ a generating function.
It can be shown that the curvature tensors of (Mn,k, g̃) are completely de-
termined by three components in terms of φ, φ′, and φ′′. Here we make a
crucial use of the U(n)-isometric action on (Mn,k, g̃).

(1) A which is the holomorphic sectional curvature along the fiber di-
rection F ,

(2) B which is the bisectional curvature along the fiber and any direc-
tion in the base E0,

(3) C which is the holomorphic sectional curvature along E0.
We observe that Hitchin’s example is canonical among all Kähler metrics

with H > 0 on Mn,k in the following sense:

Proposition 1.4. — Hitchin’s examples can be uniquely characterized
as U(n)-invariant Kähler metrics on Mn,k which have the constant curva-
ture component A.

In the level of the generating function φ(U) each of Hitchin’s example
corresponds to some quadratic even function defined on [−c, c] with 0 <

c < n
k(2k+1) . Indeed, the boundary conditions of the generating function

φ reflects the Kähler class of the resulting metric g̃. To construct Kähler
metrics with H > 0 in each of the Kähler class of Mn,k is equivalent
to find examples of generating functions φ(U) defined on [−c, c] for any
c ∈ (0, nk ) and yet satisfying some differential inequalities and suitable
boundary behaviors. We refer to Proposition 3.7 for a precise statement.
To prove Theorem 1.3 we have to construct such φ(U) by establishing
some quite delicate estimates on even polynomials with large degrees (See
Proposition 3.17).
It is natural to study pinching behaviors of H on a compact Kähler

manifolds with H > 0. We refer to Definition 2.2 for local and global
pinching constants for H.

Proposition 1.5 (Alvarez–Chaturvedi–Heier [1]). — The local and
global pinching constants of holomorphic sectional curvature are the same
for any of the Hitchin’s examples on M2,k. The maximum among them is

1
(2k+1)2 and the ray of the corresponding Kähler classes is b[E∞]− aE0 of
the slope b

a = 2k+2
2k+1 .
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We show that the conclusion of Theorem 1.5 is not always true for other
Kähler metrics with U(n)-symmetry and with H > 0, which again reflects
the specialness of Hitchin’s examples.

Proposition 1.6. — There exist Kähler metrics with H > 0 on Mn,k

whose local and global pinching constants for holomorphic sectional curva-
ture are not equal.
In general, the local holomorphic pinching constant of any U(n)-invariant

Kähler metric on Mn,k is bounded from above by 1
k2 .

We also show that the same conclusion as in Proposition 1.5 on M2,k
holds on Mn,k. In other words, the optimal pinching constant 1

(2k+1)2

for Hitchin’s examples is dimension free. It seems quite complicated to
determine the optimal holomorphic pinching constant among all U(n)-
invariant Kähler metrics on Mn,k, though we believe it is achieved exactly
by Hitchin’s examples. In any case, we would like to propose the following
question:

Conjecture 1.7. — If a compact Kähler surface with H > 0 has its
local pinching constant λ > 1

9 , then it must be biholomorphic to CP2 or
CP1 × CP1.

As a partial evidence on Conjecture 1.7, we give a complete classification
of compact Kähler manifolds with local holomorphic pinching constant λ >
1
2 . We refer to Proposition 2.6 for a complete statement, and just point
out that in the case of Kähler surfaces, they are biholomorphic to CP2 or
CP1 × CP1.
Getting back to Conjecture 1.2. we have the following result as a corollary

of the proof of Theorem 1.3.

Corollary 1.8. — The space of all U(n)-invariant Kähler metrics of
H > 0 on Mn,k is path-connected.

Without the assumption of U(n)-symmetry, a general answer to Conjec-
ture 1.2 is still open. In the meantime it seems impossible to make use of
the path constructed in Corollary 1.8 to study the optimal holomorphic
pinching constants. In the other direction, motivated by [17, 18], one may
wonder if the Kähler–Ricci flow can be used to study the space of all Kähler
metrics of H > 0. To that end, we study the holomorphic sectional curva-
tures for the Kähler–Ricci shrinking solitons on Fano Hirzebuch manifold
Mn,k(k < n) constructed by Koiso [31] and Cao [12], and the complete non-
compact Feldman–Ilmanen–Knopf (F-I-K) shrinking solitons on the total
space of H−k → CPn−1 with k < n in [20].
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Our calculation suggests that the Cao–Koiso shrinking soliton on Mn,k

admits H > 0 as the ratio n
k is sufficiently large. However, in the noncom-

pact case, we find that the F-I-K shrinking solitons do not have H > 0 if
k < n 6 k2 + 2k. In fact we expect that none of F-I-K shrinking solitons
satisfy H > 0. A more ambitious question is that whether any complete
Kähler–Ricci soliton with H > 0 must be compact, in view of [36, 37].
Combined with the previous works on Kähler–Ricci flow on Hirzebruch
manifolds ([21, 24, 40, 48]), we conclude:

Corollary 1.9. — H > 0 is not preserved under the Kähler–Ricci
flow.

Another generalization of Hitchin’s examples was studied in a recent
work [2], it was proved that the projectivization P(E) of any Hermitian
vector bundle E over a compact Kähler manifold with H > 0 also admits a
Kähler metric of H > 0. The resulting metric on P(E) is of the form (1.2)
for s sufficiently small. Instead of working with the line bundle H−k on
CPn−1, it is possible to apply the method of Koiso–Sakane developed in
the proof of Theorem 1.3 to get more examples of Kähler metrics of H > 0
on some CPk bundles. For example, consider M = CPn1−1 × CPn2 and
L = π∗1H

−1
1 ⊗π∗1H

−k2
2 whereH1 andH2 are hyperplanes bundles on CPn1−1

and CPn2 , π1 and π2 are projections to its factors. Then we can produce
a CPn1 -bundle over CPn2 as a suitable compactification of L∗ → M . It
seems interesting to study the space of all Kähler metrics of H > 0 on
these manifolds.
As a further study of Conjecture 1.2 and Conjecture 1.7, we also prove:

Proposition 1.10. — LetM be the hypersurface in CPn×CPn defined
by
∑n+1
i=1 ziwi = 0 equipped with the restriction of the product of the

Fubini–Study metric, where z, w are the homogeneous coordinates. Then
the holomorphic pinching constant of M is 1

4 .
Consider N which is a smooth bidegree (p, 1) hypersurface in CPr×CPs

where r, s > 2, p > 1, and p > r + 1, then some Kähler classes of N admit
Kähler metrics of H > 0 and some do not.

Note that when n = 2, the bidegree (1, 1) hypersurface in the first part
of Proposition 1.10 is exactly the flag 3-fold with the its canonical Kähler–
Einstein metric. One may wonder:

Conjecture 1.11. — Is it true that if a compact Kähler 3-fold with
H > 0 has its local holomorphic pinching constant λ > 1

4 , then it must be
biholomorphic to a compact Hermitian symmetric space?

TOME 69 (2019), FASCICULE 6
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This paper is organized as follows: In Section 2, we prove the classifica-
tion theorem of compact Kähler manifolds with local holomorphic pinching
constant λ > 1

2 . In Section 3, we prove the main Theorem 1.3 and discuss
the relation between Kähler–Ricci flow and H > 0 on Mn,k. In Section 4,
we consider the canonical Kähler–Einstein metric on the flag 3-fold and
prove Proposition 1.10. We end the paper with some general discussions on
H > 0 in the higher dimensions the submanifold point of view.

Acknowledgments. We would like to thank Gordon Heier for helpful
suggestions and a few corrections on some inaccuracies on a preliminary ver-
sion of this paper, and Bennett Chow for his interests. Bo Yang is grateful
to Xiaodong Cao for his encouragement, the Math Department at Cornell
University for the excellent working condition, as well as Bin Guo, Zhan
Li, and Shijin Zhang for helpful discussions. We are very thankful to the
anonymous referee for carefully reading an earlier version of the paper and
making many constructive comments. Their patience and professionalism
is much appreciated.

2. Holormophic sectional curvature: preliminary results

Let us begin the definition of various curvatures on a Kähler manifold.

Definition 2.1. — Let (M, g, J) be a Kähler manifold of complex di-
mension n > 2 with it Riemannian curvature tensor R.

(1) Sectional curvature for any real 2-plane π ⊂ Tp(M) is defined by
K(π) = R(X,Y,Y,X)

|X|2|Y |2−g(X,Y )2 where π = span{X,Y }.
(2) Holomorphic sectional curvature (H) for any J-invariant real 2-

plane π ⊂ Tp(M) is defined by H(π) = R(X,JX,JX,X)
|X|4 where π =

span{X, JX}. For the sake of conveinience, we freely use H(X),
H(X −

√
−1JX) or H(π) for its holomorphic sectional curvature.

(3) (Holomorphic) bisectional curvature for any two J-invariant real 2-
planes π, π′ ⊂ Tp(M) is defined by B(π, π′) = R(X,JX,JY,Y )

|X|2|Y |2 where
π = span{X, JX} and π′ = span{Y, JY }.

In the study of Kähler manifolds with positive curvature, it is useful to
consider various curvature pinching conditions in either a local or a global
sense.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.2 (Local pinching and global pinching). — Let λ, δ ∈
(0, 1), we define the following pinching conditions on a Kähler manifold
(M, g).

(1) λ 6 H 6 1 in the local sense if for any p ∈ M , 0 < λH(π′) 6
H(π) 6 1

λH(π′) for any J-invariant real 2-planes π, π′ ⊂ Tp(M).
In other words, there exists a function ϕ(p) > 0 on Mn such that
0 < λϕ(p) 6 H(p, π) 6 1

λϕ(p) for any p and any holomorphic plane
π ⊂ Tp(M).

(2) δ 6 K 6 1 in the local sense if for any p ∈ M , 0 < δK(π′) 6
K(π) 6 1

δK(π′) for any two real 2-planes π, π′ ⊂ Tp(M).
(3) λ 6 H 6 1 in the global sense if λ 6 H(π) 6 1 for any p ∈ M and

any J-invariant real 2-plane π ⊂ Tp(M). δ 6 K 6 1 in the global
sense is defined similarly.

Compact Kähler manifolds with H > 0 are less understood and some-
what mysterious. For example, if one works with linear algebra aspects
of curvature tensors, then H > 0 alone does not give much information
on the Ricci curvature. In fact, any Hirzebruch surface M2,k (k > 2) are
not Fano, thus do not admit any Kähler metric with positive Ricci cur-
vature. Nonetheless one may study Kähler manifolds with H > 0 pinched
by a large constant. In this regard, the following results of Berger [4] and
Bishop–Goldberg [7] are very interesting.

Proposition 2.3 (Berger [4]). — Let (Mn, g) be Kähler, then 0 < λ 6
H 6 1 in the local sense implies 7λ−5

8 6 K 6 4−λ
3 in the local sense.

Proposition 2.4 (Bishop–Goldberg [7]). — If (Mn, g) is Kähler, then
0 < λ 6 H(p) 6 1 implies

1
4 [3(1 + cos2 θ)λ− 2] 6 K(X,Y ) 6 1− 3

4λ sin2 θ

for any unit tangent vectors X,Y at p with g(X,Y ) = 0 and g(X, JY ) =
cos θ. In particular, λ-holomorphic pinching implies 1

4 (3λ− 2)-pinching on
sectional curvatures.

In the proof of the above Proposition 2.3, Berger discovered an interesting
inequality.

Lemma 2.5 (Berger [4, 5]). — Let (Mn, g) be a Kähler manifold and
0 < λ 6 H 6 1 in the local sense, then for any unit vector X,Y with
g(X,Y ) = 0 and g(X, JY ) = cos θ, we have

(2.1) λ− 1
2 + λ

2 cos2 θ 6 R(X, JX, JY, Y ) 6 1− λ

2 + 1
2 cos2 θ.

TOME 69 (2019), FASCICULE 6
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For the convenience of the readers, we sketch Berger’s proof of Lem-
ma 2.5, as it will be crucial in the proof of Proposition 2.6 below.

Berger’s proof of Lemma 2.5. — Given any unit vector X,Y with
g(X,Y ) = 0 and g(X, JY ) = cos θ, consider

(2.2) λ 6
1
2 [H(aX + bY ) +H(aX − bY )] 6 1

By the left half of inequality (2.2), we conclude that

(2.3) (H(X)− λ)a4 + (R(X, JX, JY, Y )

+ 2R(X, JY, JY,X)− λ)2a2b2 + (H(Y )− λ)b4 > 0

holds for any real numbers a, b. Apply H(X), H(Y ) 6 1, it follows
from (2.3) that

(2.4) R(X, JX, JY, Y ) + 2R(X, JY, JY,X) > 2λ− 1.

Next consider

(2.5) λ 6
1
2 [H(aX + bJY ) +H(aX − bJY )] 6 1.

Since
1
2{(a

2 + b2 + 2ab cos θ)2 + (a2 + b2− 2ab cos θ)2} = (a2 + b2)2 + 4a2b2 cos2 θ,

a similar argument as in (2.3) and (2.4) leads to

(2.6) 3R(X,JX, JY, Y )− 2R(X, JY, JY,X) > 2λ+ 2λ cos2 θ − 1.

By adding (2.4) and (2.6) we have

(2.7) R(X, JX, JY, Y ) > λ+ λ

2 cos2 θ − 1
2 .

The right half of inequality (2.1) can be proved similarly if we work on the
right halves of inequalities in both (2.2) and (2.5). �

It is possible to get some characterization of Kähler manifolds with a
large holomorphic pinching constant λ. For example, Bishop–Goldberg [7]
proved that if 4

5 < λ 6 H 6 1 holds in the local sense on a compact
Kähler manifold (M, g), then M has the homotopy type of CPn. They also
proved in [8] that λ > 1

2 implies b2(M) = 1. Note that a direct calculation
shows that CPk×CPl with the product of Fubini–Study metric has exactly
1
2 6 H 6 1 (see [1] for a general result on holomorphic pinching of product
metrics). In light of these results, it is natural to ask if 1

2 < λ 6 H 6 1
in the local sense implies that Mn is biholomorphic to CPn. This is indeed
the case and we have the following:

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.6. — Let (Mn, g) be a compact Kähler manifold with
0 < λ 6 H 6 1 in the local sense, then the following holds:

(1) If λ > 1
2 , then M

n is bibolomorphic to CPn.
(2) If λ = 1

2 , then M
n is one of the following:

(a) Mn is biholomorphic to CPn,
(b) Mn is holomorphically isometric to CPk×CPn−k with a prod-

uct of Fubini–Study metrics. Moreover, each factor must have
the same constant H,

(c) Mn is holomorphically isometric to an irreducible compact
Hermitian symmeric space of rank 2 with its canonical Kähler–
Einstein metric.

Proof of Proposition 2.6. — Let us consider n > 2, the crucial ob-
servation is that 1

2 6 λ 6 1 in the local sense implies that (Mn, g) has
nonnegative orthogonal holomorphic bisectional curvature. Namely for any
two J-invariant planes π = span{X, JX} and π′ = span{Y, JY } in Tp(M)
which are orthogonal in the sense that g(X,Y ) = g(X, JY ) = 0, then

R(X, JX, JY, Y ) > 0.

This follows from Berger’s inequality (2.1).
Nonnegative and positive orthogonal bisectional curvature is well stud-

ied in [14, 16, 23, 43]. Now if λ > 1
2 then (Mn, g) has positive orthogonal

bisectional curvature, it is proved in [16, 23, 43] that the Kähler–Ricci flow
evolves such a metric to positive bisectional curvature, which is biholomor-
phic to CPn by [35] and Siu–Yau [39].
If λ = 1

2 then (Mn, g) has nonnegative orthogonal bisectional curvature,
according to a classification result due to Gu–Zhang ([23, Theorem 1.3]),
noting that H > 0 implying simply-connectedness, then (M, g) is holomor-
phically isometric to

(2.8) (CPk1 , gk1)× · · · × (CPkr , gkr )× (N l1 , hl1)× . . . (Nkr , hls).

Next we consider (N li , hli) each of which is a compact irreducible Hermitian
symmetric spaces of rank > 2 with its canonical Kähler–Einstein metric,
the holomorphic pinching constant of such a metric was well-studied and
it is exactly the reciprocal of its rank, see for example [15]. We conclude
that if there are only one factor in the decomposition (2.8), then M is
either holomorphic to CPn or holomorphically isometric to an irreducible
Hermitian symmetric space of rank 2 with its Kähler–Einstein metric.

The remaining case where there are more than one factor in the decom-
position (2.8) will follow from the holomorphic pinching of product Kähler
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metrics. Indeed, fix a point (p1, p2) ∈ M = M1 × M2, if we consider a
special case that each factor metric of M1 and M2 is normalized so that
λi 6 H(pi)(gi) 6 1 for i = 1 and 2, it is proved in [1] that the local pinching
constant at (p1, p2) of a product Kähler metric (M1×M2, g1×g2) is λ1λ2

λ1+λ2
.

It is clear that λ1λ2
λ1+λ2

= 1
2 is equivalent to λ1 = λ2 = 1. In the general case

of 1
2 -pinching in the local sense, a similar argument as in [1] can be used to

show there have to be exactly two factors and each factor must have the
same constant H value at p1 and p2. Since p1 ∈ M1 and p2 ∈ M2 can be
chosen arbitrarily, we conclude that both of them are holomorphically iso-
metric to complex projective spaces with their Fubini–Study metrics having
the same H value. �

A natural question following Proposition 2.6 is what is the next thresh-
old, if any, for the holomorphic pinching constants for Kähler manifolds
with H > 0. In general, the situation might be complicated. Note that
the canonical Kähler–Einstein metric on a compact Hermitian symmetric
space has holomorphic pinching constant determined by its rank ([15]). The
Kähler–Einstein metrics on a lot of the Kähler C-spaces also satisfy H > 0,
and in general one has to work with the corresponding Lie algebra carefully
to determine its holomorphic pinching constant. Nonetheless, in this paper
we focus on the case of dimension 2 and 3, we will see in Section 3 and 4
that Hirzebruch surfaces and the flag 3-space might be the right objects to
provide the next interesting threshold for the holomorphic pinching.

3. Kähler metrics with H > 0 on Hirzebruch manifolds

In this section we first review Hitchin’s examples on Hirzebruch surfaces
M2,k, then we prove the main Theorem 1.3 and study the relation between
the Kähler–Ricci flow and H > 0.

3.1. A review of Hitchin’s construction

Hitchin [27] proved that any compact Kähler surface with positive sec-
tional curvature is rational. Any rational surface can be obtained by blowing
up points on CP2, CP1 × CP1, and Hirzebruch surfaces M2,k. The natural
question is which rational surface admits Kähler metric with H > 0. In this
regard, Hitchin proved that any Hirzebruch surface M2,k admits a Hodge
metric of H > 0. Moreover, it is proved ([27, Corollary 5.18]) that the blow
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up of any compact Kähler manifold with positive scalar curvature admits a
Kähler metric with positive scalar curvature when the complex dimension
n > 2. As a corollary, any rational surface admits a Kähler metric with
positive scalar curvature. However his construction [27] can not be general-
ized to produce Kähler metrics with H > 0 in a direct way. Therefore, it is
an interesting open question whether there is a Kähler metric with H > 0
on CP2 with two points blown up.

In general, given any Hermitian vector bundle (E, h) → (M, g) where
(M, g) is a compact Kähler manifold, the Chern curvature form Θ(OP(E)(1))
of OP(E)(1) over P(E) has the fiber direction component given by the
Fubini–Study form, hence is positive. Therefore

(3.1) ω̃ = π∗ωg + s
√
−1Θ(OP(E)(1))

is a well-defined Kähler metric on P (E) when s > 0 is sufficiently small.
Hitchin [27] studied Kähler metrics of the from (3.1) on Hirzebruch sur-

faces M2,k, Here we pick (E, h) = (Hk ⊕ 1CP1 , h) and (M, g) as (CP1, gFS)
where gFS is the standard Fubini–Study metric and h the induced metric.
If we use the local parametrization (z1, (dz1)− k2 , z2) and write down the
metric locally

(3.2) ω̃ =
√
−1∂∂̄ log(1 + |z1|2) + s

√
−1∂∂̄ log[(1 + |z1|2)k + |z2|2].

In this case, since the vector bundle Hk ⊕ 1CP1 has nonnegative curvature,
the component of the Chern curvature form Θ(OP(E)(1)) along the base
direction is nonnegative, so ω̃ is in fact a Kähler metric for all s > 0.
It is proved in [1, 27] that ω̃ hasH > 0 as long as s < 1

k2 . Let us define the
optimal local (global) holomorphic pinching constant to be the maximum
value among all the local (global) pinching constants in Definition 2.2. It
was shown in [1] that the optimal local and global holomorphic pinching
constants of Hitchin’s examples are the same and equal to 1

(2k+1)2 and the
corresponding s = 1

2k2+k . Note that this s value corresponds to Kähler
class b[E∞] − aE0 where b = 2k+2

2k+1a > 0. In particular, if k = 1, then
s = 1

3 , the corresponding Kähler metric ω̃ is not in the anti-canonical class
of 2πc1(M2,1).

Let us rephrase the question we proposed in Section 1 of this paper.

Question. — Hitchin’s examples produce a family of Kähler metrics
with H > 0 whose Kähler classes only stay in a subset of the Kähler cone
of M2,k. Indeed, this subset does not approach a piece of the essential
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boundary of the Kähler cone (b[E∞] − aE0 where a → 0+). Here by “es-
sential” we mean that here the boundary of Kähler cone with its vertex
excluded.
Are there Kähler metric with H > 0 from each of the Kähler classes of

M2,k? In particular, since c1(M2,1) > 0, it would be interesting to know
there is any metric with H > 0 from the anti-canonical class of M2,1.

What is the best holomorphic pinching constant λk among all Kähler
metrics of H > 0 on the Hirzebruch surfaces M2,k? Note that Hitchin’s
examples are of U(2)-symmetry, it seems reasonable to expect the optimal
holomorphic pinching constant λk to be realized by some Kähler metric
with a large symmetry.
Let λk denote the optimal holomorphic pinching constant among all Käh-

ler metrics of H > 0 on M2,k. Is it true that any compact Kähler surface
with pinching constant strictly greater λ1 must be biholomorphic to CP2

or CP1 × CP1?

3.2. Hirzebruch manifolds by Calabi’s ansatz

Let us recall a powerful method to construct canonical metrics pio-
neered by Calabi (Calabi’s ansatz). Our exposition follows more closely
from Koiso–Sakane [32]. As we shall see later, for Hirzebruch manifolds
Mn,k, Calabi’s ansatz can be applied to produce U(n)−invariant Kähler
metrics which include Hitchin’s examples as a special case.

3.2.1. Kähler metrics on C∗-bundles reviewed

First we review some facts on the construction of a Kähler metric on a
C∗-bundle over a compact Kähler manifold where C∗ = C − {0}. Given a
holomorphic line bundle L→M on a complex manifold M , where π is the
natural projection, we consider the C∗-action on L∗ = L \ L0, where L0 is
the zero section of L. Denote by V and S the two holomorphic vector fields
generated by the R+ and S1 action, respectively.
Let π : (L, h)→ (M, g) be a Hermitian line bundle over a compact Kähler

manifold (M, g). Denote by J̃ the complex structure on L. Assume t is a
smooth function on L∗ which only depends on the norm of Hermitian metric
h on L. By this we mean, fix a point v ∈ L∗, under a local trivialization
of L, we may write v = ξeL with ξ 6= 0 and h(v) = |ξ|2h(eL), then t

is a single-variable function of
√
h(v). Moreover we assume t is strictly

increasing with respect to
√
h(v).
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Consider a Hermitian metric on L∗ of the form

(3.3) g̃ = π∗gt + dt2 + (dt ◦ J̃)2,

where gt is a family of Riemannian metrics onM to be decided. Let u(t)2 =
g̃(V, V ) and it can be checked that u depends only on t.
The following results were proved in [32].

Lemma 3.1 ([32]). — The Hermitian metric g̃ defined by (3.3) is Kähler
on L∗ if and only if each gt is Kähler on M , and gt = g0 − UΘ(L), where
U ′(t) = u(t) and Θ(L) is the curvature form of (L, h). Morever, we assume
the range of t includes 0 and U(0) = 0, then U is determined by U =∫ t

0 u(τ)dτ .

From now on, we always assume the eigenvalues of the curvature Θ(L)
with respect to g0 are constant on M .

Let z1 . . . zn−1 be local holomorphic coordinates onM and z0 . . . zn−1 be
local coordinates on L∗ such that ∂

∂z0
= V −

√
−1S.

Lemma 3.2 ([32]). — g̃00̄ = 2u2, g̃α0̄ = 2u∂αt, g̃αβ̄ = gtαβ̄ + 2∂αt∂β̄t.
Define p = det(g−1

0 · gt), then det(g̃) = 2u2 · p · det(g0).

Lemma 3.3 ([32]). — If we assume that ∂αt = ∂ᾱt = 0 (1 6 α 6 n− 1)
on a fiber, and if a function f on L∗ depends only on t, then ∂0∂0̄f =
u d

dt (u
df
dt ), ∂α∂0̄f = 0, ∂α∂β̄f = − 1

2u
df
dt Θ(L)αβ̄ . Moreover, the Ricci cur-

vature of g̃ becomes: R̃00̄ = −u · d
dt (u ·

d
dt (log(u2p))), R̃α0̄ = 0, R̃αβ̄ =

Ric(g0)αβ̄ + 1
2u ·

d
dt (log(u2p)) ·Θ(L)αβ .

It is convenient to reparametrize and introduce two functions φ(U) =
u2(t) and Q(U) = p. The following lemma characterizes any φ(U) which
corresponds to a smooth (maybe incomplete) Kähler metric in the form
of (3.3) on the total space of the C∗-bundle L∗.

Lemma 3.4. — Given any hermitian line bundle (L, h) over a compact
Kähler manifold (M, g0) such that the eigenvalues of the curvature Θ(L)
with respect to g0 are constant on M , fix −∞ < Umin < Umax 6 +∞ such
that gt

.= g0 − UΘ(L) remains positive on (Umin, Umax).
Let φ(U) be a smooth positive function on (Umin, Umax), if we assume

that ∫ U

Umin

dU
φ(U) = +∞,

∫ Umax

U

dU
φ(U) = +∞,(3.4) ∫ U

Umin

dU√
φ(U)

<∞ ∀ U ∈ (Umin, Umax).(3.5)
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Then we can solve for t as a strictly increasing function of
√
h which is

defined on (0,∞). Moreover, we may choose tmin > −∞ where (tmin, tmax)
is the range of t. The corresponding g̃ in the form of (3.3) is a smooth
Kähler metric on the total space of L∗.

Proof of Lemma 3.4. — This is motivated from Lemma 2.1 in [44] and
we include a proof for the sake of self-containedness.
Recall that

√
h is the norm of Hermitian metric on L. According to the

definition of C∗-action on L∗, we have:

(3.6) V =
√
h

d
d
√
h
, which leads to u =

√
φ(U) =

√
h

d
d
√
h
.

It follows:
dU√
φ(U)

= dt, and dU
φ(U) = d

√
h√
h
.

Therefore (3.5) is a necessary condition so that the range of
√
h is [0,∞)

and tmin is finite.
On the other hand, for any given φ(U) satisfying (3.5), we can solve

t = t(U) and U = U(
√
h), hence t as function of

√
h. Note that t = t(

√
h)

is defined on (0,+∞). The resulting metric g̃ of the form (3.3) is a smooth
metric defined on the total space of L∗. �

3.2.2. Kähler metrics on P(L⊕ 1)

It is discussed ([32, p.169]) how to extend the Kähler metric g̃ on L∗ onto
P(L⊕ 1). We summarize their results below.

Lemma 3.5 ([32]). — Assume t extends to P(L ⊕ 1) with the range
[tmin, tmax] with both tmin and tmax are finite, and the subset E0 (or E∞)
defined by t = tmin (or t = tmax) is a complex submanifold with codi-
mension Dmin or Dmax. Moreover, assume the Kähler metric g̃ extends to
P(L⊕ 1), which is also denoted by g̃.
Then it implies that near U = Umin the Taylor expansion of φ(U) has the

first term 2(U−Umin), and near U = Umax, it has the first term 2(Umax−U).

Indeed, once we assume φ(U) is a smooth function defined on [Umin,

Umax] and satisfies the endpoint condition in Lemma 3.5, one may
check (3.5) holds automatically and Kähler metric g̃ extends to P(L⊕1). In
this case, t extends to a smooth function on [0,∞] with its range [tmin, tmax].
Furthermore, because g̃ is in the particular form (3.3), t−tmin measures the
distance from E0 to points in P(L⊕ 1) and tmax − t from E∞ in P(L⊕ 1).
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A standard example which satisfies the assumptions of Lemma 3.5 is
Hirzebruch manifold Mn,k. Indeed we may view any Mn,k as the compact-
ification of the total space of C∗-bundle induced from k-th power of the
tautological bundle H−k → CPn−1. Here we assume the base CPn−1 is
endowed with the Fubini–Study metric Ric(g0) = g0, hence

(3.7) Rij̄kl̄(g0) = 1
n

((g0)ij̄(g0)kl̄ + (g0)kj̄(g0)il̄).

It follows from Lemma 3.1 to Lemma 3.5 that

(3.8) g̃ij =
(

1 + k

n
U

)
(g0)ij , Θ(H−k) = −k

n
(g0)ij , tij = k

2nu(g0)ij .

Here we need to pick [Umin, Umax] such that Umin > −nk and Umax <∞. It
follows from (3.8) that these conditions on Umin and Umax are necessary so
that the extension metric g̃ is well-defined and positive definite on E0 and
E∞.

Let us remark that there are other types of compactification covered in
Lemma 3.5. For example, consider the tautological bundle H−1 → CPn−1,
if we pick Umin = −n and Umax < ∞, the corresponding compactification
will produce a Kähler metric on CPn. Note that in this case, it follows
from (3.8) that the complex submanifold Emin becomes a single point and
Emax is CPn−1. The compactification is obtained by adding a copy of CPn−1

along the infinity of Cn, resulting in CPn. We refer to [19, p. 281] for a more
general discussion on various types of compatification obtained from C∗-
bundles over products of Kähler–Einstein manifolds.
From now on, we consider Hirzebruch manifolds Mn,k. From dicussions

following Lemma 3.5, for any given −nk < Umin < Umax < ∞, and any
smooth function φ : (Umin, Umax) → R+. Assume φ(U) which can be
smoothly extended to [Umin, Umax] with the asymptotic conditions

φ(U) = 2(U − Umin) +O((U − Umin)2),

φ(U) = 2(Umax − U) +O((Umax − U)2).

It follows from Lemma 3.4 that we can solve t = t(
√
h) as an increasing

function of the norm of Hermitian metric of H−k → CPn−1. Therefore
the Kähler metric of the form (3.3) is well-defined on Mn,k. The following
proposition gives the formulas of curvature tensors of such a metric onMn,k.

Proposition 3.6 (Curvature tensors of g̃ on Mn,k). — Consider π :
Mn,k \ (E0∪E∞)→ CPn−1 and any given point p ∈ CPn−1. Let us assume
that ∂αt = ∂αt = 0 (1 6 α 6 n− 1) on the fiber π−1(p) as in Lemma 3.3.
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Consider the unitary frame {e0, e1, . . . , en−1} along this fiber:

(3.9) e0 = 1√
2φ

∂

∂z0
, ei = 1√

(1 + k
nU)(g0)īi

∂

∂zi
(1 6 i 6 n− 1).

Then the only nonzero curvature components of g̃ on Mn,k are:

A
.= R̃00̄00̄ = −1

2
d2φ

dU2 ,(3.10)

B
.= R̃00̄īi =

k2φ− k(n+ kU) dφ
dU

2(n+ kU)2 ,(3.11)

C
.= R̃īiīi = 2R̃īijj̄ = [2(n+ kU)− k2φ]

(n+ kU)2 .(3.12)

Here 1 6 i, j 6 n− 1 and i 6= j.

Proof of Proposition 3.6. — Given any point p ∈ CPn−1, assume ∂αt =
∂ᾱt = 0 as in Lemma 3.3, we could do a local calculation along a fiber
π−1(p) ⊂Mn,k to solve curvature components of (Mn,k, g̃).
Recall the formula of curvature tensors of a Kähler manifold

(3.13) R̃ij̄kl̄ = − ∂2g̃kl̄
∂zi∂zj

+ g̃λµ̄
∂g̃kµ̄
∂zi

∂g̃λl̄
∂zj

.

Combined with Lemma 3.3 and (3.8), one can solve

(3.14) R̃

(
∂

∂z0
,
∂

∂z0
,
∂

∂z0
,
∂

∂z0

)
= −φ

d(2φ dφ
dU )

dU + 1
2φφ

dφ
dU φ

dφ
dU

= −2φ2 d2φ

dU2 .

Here we apply ∂
∂z0

= V −
√
−1S = φ( d

dU −
√
−1J̃( d

dU )) because of (3.6).
All other curvature components can be calculated in a similar way.
Next we note that the transitive U(n)-action on the base CPn−1 can be

lifted to the total space of H−k ⊕ 1CPn−1 , This action preserves the fiber
metric and we get a natural U(n)-isometric action on (Mn,k, g̃). Therefore,
the above calculation on the fiber π−1(p) ⊂ Mn,k can be carried out on
any other fiber. So we get the right hand sides of (3.10), (3.11), and (3.12)
are well-defined on Mn,k \ (E0 ∪ E∞).
It remains to check (3.10), (3.11), and (3.12) is also well-defined on E0

and E∞. By Lemma (3.5) we can solve t(
√
h) = tmin +c

√
h+O(h) for some

c > 0 near E0. It follows from (3.6) that
1√
2φ

∂

∂z0
= 1√

2
1
dt

d
√
r

(
d

d
√
h
−
√
−1J̃

(
d

d
√
h

))
= 1√

2

(
d
dt −

√
−1J̃

(
d
dt

))
.
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Hence e0 = 1√
2φ

∂
∂z0

, as the radial vector field in terms of geodesic coordi-
nates, is not well-defined on E0. Instead, we can always pick a (1, 0) vector
f0 well-defined on a neighborhood of p which is unit along the fiber, so
that {f0, e1, . . . , en−1} is a unitary frame along the fiber π−1(p) including
p. Note that along the fiber away from p, we have f0 = e

√
−1θe0 for some

θ. Obviously the right hand sides of (3.10), (3.11), and (3.12) remain the
same under the new frame {f0, e1, . . . , en−1} along the fiber. After taking
the limit to p, we see the curvature formulas for A,B, and C holds true
on E0, By a similar argument they also hold on E∞, hence on the whole
Mn,k. �

Proposition 3.6 leads to the following characterization of U(n)-invariant
Kähler metrics with H > 0 on Mn,k.

Proposition 3.7 (The generating function φ). — Any U(n)-invariant
Kähler metric on Mn,k has positive holomorphic sectional curvature if and
only if

(3.15) A > 0, C > 0, 2B > −
√
AC.

In other words, it is characterized by a smooth concave function φ(U) where
−∞ < Umin 6 U 6 Umax < +∞ with 1+ k

nUmin > 0 such that the following
conditions hold:

(1) φ > 0 on (Umin, Umax), φ(Umin) = φ(Umax) = 0, φ′(Umin) = 2, and
φ′(Umax) = −2.

(2) φ(U) < 2
k2 (n+ kU), kφ

n+ kU
− φ′ > −

√
φ′′
[
φ

2 −
1
k2 (n+ kU)

]
for any U ∈ [Umin, Umax].

Proof of Proposition 3.7. — We have pointed out that the metric g̃ in
the form of (3.3) is U(n)-invariant, It remains to see any U(n)-invariant
Kähler metric on Mn,k can be written in the form (3.3). Recall that in the
standard version of Calabi’s ansatz ([11, p. 278–282]), any U(n)-invariant
Kähler metric on Mn,k can be expressed as a compactification of a Kähler
metric on Cn\{0} in the form

√
−1∂∂̄u(|z|). Here some suitable asymptotic

conditions at |z| = 0 and |z| =∞ are imposed to ensure a smooth extension
ontoMn,k, It follows from a straightforward check (see [20, (19), p. 186] for
example) that the above metric corresponds to the metric (3.3) we consid-
ered. Therefore on Hirzebruch manifolds Mn,k, the class of U(n)-invariant
Kähler metrics is the same as the class of Kähler metrics satisfying (3.3)
and (3.8).
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Given a (1, 0) vector X at any point p ∈ Mn,k, after a U(n) which
preserves the point p, we may chooseX = x0e0+x1e1 with |x0|2+|x1|2 = 1.
Then the expression of the holomorphic sectional curvature is

H(X) = A|x0|4 + 4B|x0x1|2 + C|x1|4.

It is direct to check that H(X) > 0 is equivalent to A > 0, C > 0, and
2B > −

√
AC.

Note that φ is a concave function since A > 0, condition (1) is the
endpoint condition on φ in order to get the smooth compactification, and
condition (2) simply means C > 0 and 2B > −

√
AC. �

As a corollary of Proposition 3.6 and 3.7, we have the following rough
estimates on holomorphic pinching constants of U(n)-invariant Kähler met-
rics on Mn,k.

Corollary 3.8 (A rough estimate on holomorphic pinching constants).
Any U(n)-invariant Kähler metric on Mn,k with H > 0 have its local
holomorphic pinching constant bounded from above by 1

k2 , Fix 0 < c <
n
k , if we consider any U(n)-invariant Kähler metric with H > 0 whose
corresponding Kähler class lies in the following ray S in the Kähler cone

S =
{
b[E∞]− a[E0]

∣∣∣∣where a = b
n− kc
n+ kc

}
.

Then its holomorphic pinching constant is bounded from above by 2c
n−kc .

Proof of Corollary 3.8. — For the first part, we simply evaluate curva-
ture tensors at U = Umin.

A(Umin) = −1
2φ
′′(Umin), B(Umin) = − k

n+ kUmin
,

C(Umin) = 2
n+ kUmin

.

Note that condition (2) in Proposition 3.7 implies −φ′′(Umin) > 4k2

n+kUmin
.

Therefore the local holomorphic pinching constant has to be bounded from
above by C(Umin)

A(Umin
< 1

k2 .
For the second part, it suffices to consider the case [Umin, Umax] = [−c, c]

for any fixed c ∈ (0, nk ). On one hand, we have

max
U∈[−c,c]

C(U) 6 max 2
n− kc

− k2φ

(n− kc)2 6
2

n− kc

On the other hand, from
∫ c
−c−φ

′′dU = 4 we conclude there must be a point
U0 ∈ [−c, c] such that A(U0) = 1

c . These lead to an upper bound for the

ANNALES DE L’INSTITUT FOURIER



HIRZEBRUCH MANIFOLDS AND H > 0 2609

local pinching constant:
C(U0)
A(U0) 6

2c
n− kc

. �

Another consequence of Proposition 3.6 and 3.7 is the path-connectedness
of Kähler metrics of H > 0 in the same Kähler class on Mn,k.

Corollary 3.9 (A convexity property on H > 0 in a fixed Kähler
class). — If φ1 and φ2 are two generating functions of two Kähler metrics
of H > 0 in the same Kähler class on Mn,k, so is any convex combination
tφ1 + (1− t)φ2 with 0 < t < 1.

Proof of Corollary 3.9. — It suffices to check tφ1 +(1− t)φ2 satisfies the
assumptions in Proposition 3.7. This is a straightforward calculation once
we apply the elementary inequality:

−t
√
A1B1 − (1− t)

√
A2B2 > −

√(
tA1 + (1− t)A2

)(
tB1 + (1− t)B2

)
for any nonnegative real numbers A1, A2, B1, B2 and t ∈ [0, 1]. �

Remark 3.10. — It would be interesting know if a similar conclusion as
in Corollary 3.9 holds without the assumption on U(n)-symmetry.

It is interesting to note that another version of Calabi’s ansatz [10] can
be used to study Kähler metrics on the projective compactfication of some
holomorphic vector bundle over a compact Kähler manifold. In more de-
tails, assume π : (E, h)→M is a Hermitian vector bundle over a compact
Kähler manifold (M,ωg), consider the Kähler form on the total space of E
defined by

(3.16) ω̂ = π∗ωg +
√
−1∂∂̄u(

√
h).

Here u is some suitable function on E which only depends on the hermitian
metric h of E. The corresponding Kähler metric ĝ is the one considered
in [10, p. 274], which is similar as g̃ in (3.3). Note that the restriction of
ĝ on each fiber has a U(r)-invariant Hermitian structure. By considering
a suitable asymptotic behavior of u(

√
h) along

√
h = 0 and

√
h = ∞, we

could get an smooth extension of ĝ on the projectivization P(E ⊕ 1). It is
natural to expect new examples of compact Kähler metrics with of H > 0
can be constructed in the form of (3.16), and this viewpoint seems to be
more direct compared to the remark after Corollary 1.9. In any case, we
focus on Hirzebruch manifolds Mn,k in this paper.
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3.2.3. Hitchin’s examples reformulated

Hitchin’s construction gives a family of Kähler metrics with U(2) sym-
metry on M2,k. We observe a similar construction works for Mn,k.

Example 3.11 (Hitchin’s examples on Mn,k). — Given s > 0, Umin = 0,
Umax = ns, define φs(U) = − 2

nsU
2 + 2U . Now

A = 2
ns
, B =

k2

nsU
2 + 4k

s U − kn
(n+ kU)2 , C =

2k2

ns U
2 + (2k − 2k2)U + 2n

(n+ kU)2 .

It is a direct calculation to show the above example is exactly the same
as ω̃ in (3.2). In fact, we observe that Hitchin’s example is canonical in the
following sense.

Proposition 3.12. — Hitchin’s examples can be uniquely character-
ized as U(n)-invariant Kähler metrics on Mn,k with the constant radial
curvature A. In particular, the following example gives the unique form of
φ(U) up to a scaling and a translation of [Umin, Umax].

Example 3.13 (Hitchin’s example in a canonical form). — Let c > 0,
Umin = −c, Umax = c, define φc(x) = c − x2

c on [−c, c]. Since φ′(−c) = 2,
φ′(c) = −2, and φ(±c) = 0, we have a Kähler metric on M2,1. Now

A = 1
c
, B =

1
cU

2 + 4
cU + c

2(U + 2)2 , C =
1
cU

2 + 2U + 4− c
(U + 2)2 .

If we assume 0 < c < 2, then obviously 1 − 1
2U > 0, A > 0, and C > 0

on [−c, c]. Consider

D
.= 2B +

√
AC =

1
cU

2 + 4
cU + c+ 1

c

√
U2 + 2cU + c(4− c) · (U + 2)
(U + 2)2 .

Then D(−c) > 0 is equivalent to c < 2
3 . Moreover, one can check that the

numerator of D(U) is increasing on U ∈ (−c, c), hence D(U) > 0 for any
−c < U < c and 0 < c < 2

3 . Therefore φc provides a family of Kähler
metrics of H > 0 for any 0 < c < 2

3 .
Next let us find the pinching constant for φc(x) = c− x2

c . For any given
φc, the expression of the holomorphic sectional curvature is

H(X) = A|x0|4 + 4B|x0x1|2 + C|x1|4,

where X = x0e0 + x1e1 with |x0|2 + |x1|2 = 1.
If we set t = |x0|2, then H(X) = (A+C − 4B)t2 + t(4B− 2C) +C with

t ∈ [0, 1]. it is elementary to discuss its extremal values. In particular, we
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will show that for any c ∈ (0, 2
3 ), the pinching constant infU∈(−c,c)

minH
maxH (U)

is always attained at U = −c, i.e. along the zero section of M2,1.
Indeed

min
‖v‖=1

H(U, v) = AC − 4B2

(A+ C − 4B) , max
‖v‖=1

H(U, v) = A.

Therefore, the local pinching constant equals

AC − 4B2

A(A+ C − 4B) = 2U3 + (6− 3c)U2 − 12cU − c3 − 2c2 − 8c
(2U − 2− 3c)(U + 2)2 .

It is direct to check that the above expression is increasing on U ∈ [−c, c].
If U = −c, it becomes 2c(c−3c)

(2−c)(5c+2)2 , When c = 2
7 ≈ 0.2857, it attains the

maximum 1
9 . The optimal pinching constant among the family φc agrees

with the result in [1], and the corresponding optimal Kähler metrics are
just multiples of those in [1].
It is also straightforward to solve the optimal holomorphic pinching con-

stant of Hitchin’s examples on any Hirzebruch manifold Mn,k. Given any
1 6 k < n, pick c > 0, Umin = −c, Umax = c, define φc(U) = c − x2

c on
[−c, c]. We claim that φc gives a Kähler metric onMn,k with H > 0 as long
as c < n

k(2k+1) . Note that

A = 1
c
, B =

k2

c U
2 + 2nk

c U + ck2

2(n+ kU)2 , C =
k2

c U
2 + 2kU + 2n− ck2

(n+ kU)2 .

Similarly

D
.= 2B +

√
AC =

k2

c U
2 + 2nk

c U+ck2 + n+kU
c

√
k2U+2kcU+(2n−ck2)c

(n+ kU)2

First note that 0 < c < n
k(2k+1) is equivalent toD(−c) > 0, then similarly

we could show under this condition on c the numerator of D is strictly
increasing on U ∈ (−c, c), therefore D(U) > 0 holds on [−c, c].
Note that when n > 4, for any positive integer k satisfying k(2k+1) < n,

we may pick c = 1. In this case the Kähler class of the resulting metric is
proportional to the anti-canonical class.
For the above metric on Mn,k given by φc(x) = c− x2

c on [−c, c], where
0 < c < n

k(2k+1) is a constant, one can carry out a similar calculation to
conclude that the local pinching constant achieves its maximum at U = −c,
which is

2c(n− c(2k2 + k))
(n− ck)((3k + 2)c+ n) .
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It can be shown that it obtains its maximum value at c = n
4k2+3k , and the

optimal pinching constant is 1
(2k+1)2 which is the same as in [1]. Note that

the optimal pinching constant is dimension free.

3.3. New examples and the proof of Theorem 1.3

Let us consider M2,1 which is the only Fano Hirzebruch surface. Note
that Kähler metrics of Hitchin’s examples on M2,1 can not be proportional
to the anti-cananical class. A natural question is whether there exists a
Kähler metric withH > 0 in 2πc1(M2,1). Note that the corresponding φ(U)
of such a metric must satisfy (2 + Umax) = 3(2 + Umin) besides φ(Umin) =
φ(Umax) = 0, φ′(Umin) = 2, and φ′(Umax) = −2 required by the smooth
compactification.
In the following we exhibit such an example with different global and

local holomorphic pinching constants.

Proposition 3.14 (A new family of Kähler metrics of H > 0 on M2,1).
Given any real number 0 < c < 6

5 , pick a real number µ ∈ ( 1
2c, c), define

φc,µ : [−c, c]→ R by

φc,µ(U) = µ−
(

1
c3
− µ

c4

)
U4 −

(
2µ
c2
− 1
c

)
U2

Thus φc,µ determines a family of Kähler metrics on M2,1, and in particular
when c = 1, the Kähler class of φc,µ is proportional to the anti-canonical
class of M2,1.
There exists some δ ∈ (0, 1

2 ) which depends on c such that for any 1
2c <

µ < ( 1
2 + δ)c, φc,µ(U) defines a Kähler metric on M2,1 with H > 0.

Proof of Proposition 3.14. — We begin with the formulas of curvature
tensors of φc,µ(U):

A = 6
(

1
c3
− µ

c4

)
U2 +

(
2µ
c2
− 1
c

)
,

B =
3( 1
c3 − µ

c4 )U4 + 8( 1
c3 − µ

c4 )U3 + ( 2µ
c2 − 1

c )U2 + 4( 2µ
c2 − 1

c )U + µ

2(U + 2)2 ,

C =
( 1
c3 − µ

c4 )U4 + ( 2µ
c2 − 1

c )U2 + 2(U + 2)− µ
(U + 2)2 .

First note that for any c ∈ (0, 2), µ ∈ ( 1
2c, c), we have A > 0 for any

U ∈ [−c, c], then since C(−c) = 2
2−c and C(U + 2)2 is increasing on [−c, c],

we also have C > 0.
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Next one can check that

2B +
√
AC|U=−c = − 2

2− c + 1
c

√
2(5c− 4µ)

2− c ,

From here, it is direct to see that given any c ∈ (0, 6
5 ), there exists some

δ > 0 such that for any 1
2c < µ < ( 1

2 + δ)c, 2B +
√
AC > 0 at U = −c.

From now on let us consider Tµ(U) = (U + 2)2(2B +
√
AC), it suffices

to show that Tµ(U) > 0 for any U ∈ [−c, c] if µ is sufficiently close to 1
2c.

Note that
Tµ(U) = Pµ(U) + (U + 2)

√
Qµ(U)

where

Pµ(U) = 3
(

1
c3
− µ

c4

)
U4+8

(
1
c3
− µ

c4

)
U3+

(
2µ
c2
− 1
c

)
U2+4

(
2µ
c2
− 1
c

)
U+µ

and

Qµ(U) = 6
(

1
c3
− µ

c4

)2
U6 + 7

(
1
c3
− µ

c4

)(
2µ
c2
− 1
c

)
U4 + 12

(
1
c3
− µ

c4

)
U3

+
[(

2µ
c2
− 1
c

)2
+ 6(4− µ)

(
1
c3
− µ

c4

)]
U2 + 2

(
2µ
c2
− 1
c

)
U

+
(
− 2
c2
µ2 + 8 + c

c2
µ− 4

c

)
.

Claim. — T c
2
(U) > 0 on [−c, c] and in particular it has a positive lower

bound at 0.

Proof of the Claim. — To see it is true, note that:

T c
2
(U) =

(
3

2c3U
4 + 4

c3
U3 + c

2

)
+ (U + 2)

√
3

2c6U
6 + 6

c3
U3 + 3(8− c)

2c3 U2.

It suffices to consider the interval [−c, 0], we will show that T c
2
(U) is strictly

concave on [−c, 0], thus it attains its minimum either at U = −c or at
U = 0, which are both positive.

d2T c
2
(U)

dU2 = 6
c3
U(3U + 4) +

9
2c12U

3 ·R(U)(√
3

2c6U6 + 6
c3U3 + 3(8−c)

2c3 U2
)3 ,

where

R(U) = 6U8 + 6U7 + 36c3U5 + (108c3 − 9c4)U4 + (80c3 − 10c4)U3

+ 30c6U2 + (108c6 − 12c7)U + c8 − 20c7 + 96c6.
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Note that R(−c) = 4c6(2 − c)2 > 0, we will prove that dR(U)
dU > 0 on

[−c, 0], which leads to R(U) > 0 for any 0 < c < 6
5 . Indeed,

1
6

dR(U)
dU = 8U7 + 7U6 + 30c3U4 + 6(12c3 − c4)U3

+ 5(8c3 − c4)U2 + 10c6U + (18c6 − 2c7)
= I1 + I2 + I3.

where we have

I1 = 10c6U + 72
5 c

6 − 2c7 > 72
5 c

6 − 12c7 = 12
(

6
5 − c

)
> 0,

I2 = 8U7 + 7U6 + 13
6 c

3U4 > U6(8U + 7 + 13
6 c) > 7U6

(
1− 5

6c
)
> 0,

I3 = 167
6 c4U4 + 18

5 c
6 + 6(12c3 − c4)U3 + 5(8c3 − c4)U2,

for any U ∈ [−c, 0] where 0 < c < 6
5 .

Next we prove I3 > 0 on [−c, 0].

I3 >U
2
[

167
6 c3U2 + 6(12c3 − c4)U + 5(8c3 − c4) + 18

5 c
4
]
.

Let S(U) denote the quadratic function inside the bracket:

S(U) = 167
6 c3U2 + 6(12c3 − c4)U + 5(8c3 − c4) + 18

5 c
4.

Now it is straightforward to see that under the assumption 0 < c < 6
5 ,

S(U) attains its minimum at U = −c, and

S(−c) = c3
(

203
6 c2 − 367

5 c+ 40
)
> 0

Putting these together, we have proved that
d2T c

2
(U)

dU2 is strictly negative
on [−c, 0], and therefore T c

2
(U) > 0 on [−c, c]. �

Now let us continue with the proof of Proposition 3.14, note that as
µ → ( c2 )+, Tµ(U) converges to T c

2
(U) uniformly on [−1,−U0] ∪ [U0, 1] for

ANNALES DE L’INSTITUT FOURIER



HIRZEBRUCH MANIFOLDS AND H > 0 2615

some fixed small number U0 > 0,
∂Tµ(U)
∂µ

= ∂P

∂µ
+ (U + 2)

2
√
Q

∂Q

∂µ

=
(
− 3
c4
U4 − 8

c4
U3 + 2

c2
U2 + 8

c2
U + 1

)
+ (U + 2)

2
√
Q

{
− 12
c4

(
1
c3
− µ

c4

)
U6

+ 7
[

2
c2

(
1
c3
− µ

c4

)
− 1
c4

(
2µ
c2
− 1
c

)]
U4 − 12

c4
U3

−
[

4
c2

(
2µ
c2
− 1
c

)
− 6
(

1
c3
− µ

c4

)
− 6
c4

(4− µ)
]
U2

+ 4
c2
U + 8 + c− 4µ

c2

}
Take U0 = min{ 1

100 ,
1

100c
2}, we see that ∂Tµ(U)

∂µ is strictly positive for any
|U | < U0 as long as µ− c

2 is small enough. In other words, we can find some
δ > 0 such that Tµ(U) > 0 on [−U0, U0] for any c

2 < µ < ( 1
2 +δ)c. Moreover,

Tµ(U) converges to T c
2
(U) outside [−U0, U0], hence we get Tµ(U) > 0 for

1
2c < µ < ( 1

2 + δ)c. �

Example 3.15 (Pinching constants in the anti-canonical class). — Now
we focus on the example in the anti-canonical class constructed in Propo-
sition 3.14, namely, with c = 1. We expect that Proposition 3.14 is still
true for any 1

2 < µ < 3
4 , as numerical tests suggest that 2B +

√
AC is

indeed positive on U ∈ [−1, 1] for any 1
2 < µ < 3

4 . However, it seems rather
tedious to prove it, as Tµ(U) is not always increasing on [−1, 1]. We need
some better estimates on the critical points of Tµ(U) which lie in [−1, 0).
Let us we only consider the case when µ is close to 1

2 . The following table
lists the minimum and maximum of H for any given U ∈ [−1, 1].

Intervals of U [−1, U1] [U1, U2] [U2, U3] [U3, U4] [U4, 1]
min‖v‖=1H(U, v) AC−4B2

A+C−4B
AC−4B2

A+C−4B A AC−4B2

A+C−4B
AC−4B2

A+C−4B
max‖v‖=1H(U, v) A C C C A

In the above, U1 < U4 are values which corresponds to A = C, and
U2 < U3 are values which corresponds to A = 2B.
For example along the zero section U = −1, minH = AC−B2

A+C−4B = 6−8µ
11−4µ

and maxH = A(−1) = 5− 4µ. Therefore the pinching constant along zero
section is 6−8µ

(5−4µ)(11−4µ) , which is close to 2
27 as µ goes close to 1

2 . It is clear
that the global maximum of holomorphic sectional curvature is attained at
U = −1 by A = 5 − 4µ while the global minimum is attained at U = 0
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by A = 2µ− 1. Therefore, we conclude that the local pinching constant of
Kähler metric generated by φµ is obtained at U = 0:

min
U∈[−1,1]

min‖v‖=1H(U, v)
max‖v‖=1H(U, v) = A(0)

C(0) = 4(2µ− 1)
4− µ .

And the global holomorphic pinching constant is

minU,‖v‖=1H(U, v)
maxU,‖v‖=1H(U, v) = A(0)

A(1) = 2µ− 1
5− 4µ.

Therefore, we see the global pinching constant is strictly smaller than
the local one for the generating function φ1,µ defined in Proposition 3.14
when µ is close to 1

2 .
Now we are ready to prove our main theorem.

Theorem 3.16. — Given any Hirzebruch manifold Mn,k = P(Hk ⊕
1CPn−1), there exists a Kähler metric of H > 0 in each of its Kähler classes.

As we mentioned the paragraph following Proposition 1.4 in Section 1,
the boundary conditions of the generating function φ defined on [−c, c] re-
flects the Kähler class of the resulting metric g̃. For example, the volume of
the zero section E0 is (1− k

nc)VFS , where VFS denote the volume of CPn−1

endowed with Ric(gFS) = gFS , and the volume of the infinity section E∞
is (1 + k

nc)VFS . Therefore, to produce examples in each of the Kähler class
ofMn,k, it suffices to find examples of generating functions φ(U) defined on
[−c, c] for any c ∈ (0, nk ) which satisfy Proposition 3.7. It is the purpose of
the following proposition to prove the existence of such φ(U), hence prove
Theorem 3.16.

Proposition 3.17. — Let n > 2 and k > 1 be any two integers,
there exists some p0(n, k) ∈ N and a sequence of positive real numbers
{εp}p>p0 with limp→∞ εp = 0, such that for any c ∈ (0, nk − 2εp], there
exists p1(n, k, c) > p0 with the following property:
Given any p > p1 there exists some δ1 > 0 and δ2 > 0 such that for any

α2 ∈ (0, δ1) and µ = c
p + δ2, φ(x) defined on [−c, c] by

φ(x) = µ− α2x
2 − α2p−2x

2p−2 − α2px
2p.(3.17)

where

α2p−2 = pµ− c− (p− 1)α2c
2

c2p−2 , α2p = c− (p− 1)µ+ (p− 2)α2c
2

c2p
,

generates a Kähler metric with H > 0 on Mn,k.
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Proof of Proposition 3.17. — Let εp = 2n
2p+2k−1 and pick any c < n

k−2εp,
we will determine constants δ1 and δ2 step by step. A quick observation is
that in order to make sure both α2p−2 and α2p positive, we need

(3.18) δ2 <
c

p(p− 1) , and (p− 1)δ1c2 < p δ2.

Note that

A = p(2p− 1)α2pU
2p−2 + (p− 1)(2p− 3)α2p−2U

2p−4 + α2,(3.19)

B = (2p− 1)α2pU
2p + 2p nk α2p U

2p−1 + (2p− 3)k2α2p−2U
2p−2

2(n+ kU)2(3.20)

+ (2p− 2)nkα2p−2U
2p−3 + k2α2U

2 + 2nkα2U + k2µ

2(n+ kU)2 ,

C = k2α2pU
2p + k2α2p−2U

2p−2 + k2α2U
2 + 2kU + 2n− k2µ

(n+ kU)2 .(3.21)

Obviously A > 0 on [−c, c], note that

(3.22) C >
2n− k2µ− 2kc

(n+ kU)2 for any U ∈ [−c, c].

By plugging c 6 n
k − 2εp and µ = c

p + δ2 into the right hand side of (3.22)
we find that a sufficient condition for C > 0 is

(3.23) δ2 <
n(2p+ 2k + 1)
kp(2p+ 2k − 1) .

Note that 2B +
√
AC|U=−c > 0 is equivalent to φ′′(−c) < − 4k2

n−kc . By a
direct calculation we see that it is further equivalent to

(3.24) k(2p− 1) + 2k2

c(n− kc)

[
n

k
− εp − c

]
>

2p(p− 1)
c2

δ2 − α2(2p2 − 6p+ 4).

In order that (3.24) holds, it suffices to pick δ2 so that the following holds:

(3.25) k(2p− 1) + 2k2

(n− kc)

[
n

k
− εp − c

]
>

2p(p− 1)
c

δ2.

In other words, for any c ∈ (0, nk − 2εp], it is easy to pick δ1 and δ2 such
that all the inequalities in (3.18), (3.23), and (3.25) are satisfied.
It remains to show 2B +

√
AC is positive on [−c, c]. Motivated by the

proof of Proposition 3.14 let us introduce

T (µ, α2, U) = P (µ, α2, U) + (n+ kU)
√
Q(µ, α2, U),
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where

P (µ, α2, U) = 2(n+ kU)2B(U),

and Q(µ, α2, U) = (n+ kU)2A(U) · C(U).

where A,B,C are given in (3.19), (3.20), and (3.21).
We need to show that T (µ, α2, U) > 0 for any U ∈ [−c, c] under the

assumption c ∈ (0, nk − 2εp], α2 ∈ (0, δ1), and µ = c
p + δ2, where δ1 and δ2

satisfy (3.18), (3.23), and (3.24). By a similar argument as in the proof of
Proposition 3.14, one checks that for α2, δ2 small, there exists U0 sufficiently
small.

∂T (µ, α2, U)
∂µ

> 0, and ∂T (µ, α2, U)
∂α2

> 0

for any |U | < U0.
For example, note that

∂α2p−2

∂µ
= p

c2p−2 ,
∂α2p

∂µ
= −p− 1

c2p

Therefore,
∂P

∂µ
= − (p− 1)(2p− 1)k2

c2p
U2p + (2p− 3) k2p

c2p−2U
2p−2

+ (2p− 2) nkp
c2p−2U

2p−3 + k2,

∂Q

∂µ
= ∂A

∂µ
C +A

∂C

∂µ

=
(
− p(p− 1)(2p− 1)

c2p
U2p + p(p− 1)(2p− 3)

c2p−2 U2p−4
)
· C

+
(
− k2(p− 1)

c2p
U2p + k2p

c2p−2U
2p−2 − k2

)
·A,

>
p(p− 1)(2p− 3)

2c2p−2 U2p−4(2n− k2µ)

− 2k2
(
α2 + (p− 1)(2p− 3)α2p−2U

2p−4
)
.

It follows that when |U |, α2, δ2 are small enough,
∂T (µ, α2, U)

∂µ
= ∂P

∂µ
+ (n+ kU)

2
√
Q

∂Q

∂µ
>

k2

2 −
4nk2α2

2√α2 · n
> 0.(3.26)

Therefore to prove Theorem 3.17 it suffices to show that T ( cp , 0, U) > 0
for U ∈ [−c, c]. Now we have

α2p−2 = 0, and α2p = 1
p c2p−1 .

ANNALES DE L’INSTITUT FOURIER



HIRZEBRUCH MANIFOLDS AND H > 0 2619

Therefore,

P

(
c

p
, 0, U

)
= (2p− 1)k2

pc2p−1 U2p + 2nk
c2p−1U

2p−1 + c

p
k2,(3.27)

Q

(
c

p
, 0, U

)
= 2p− 1

c2p−1 U
2p−2

(
k2

pc2p−1U
2p + 2kU + 2n− c

p
k2
)
.(3.28)

Let us reparametrize x = U
c , then T (x) is defined on [−1, 1].

T

(
c

p
, 0, x

)
= P (x) + (n+ kcx)

√
Q(x)(3.29)

= (2p− 1)k2c

p
x2p + 2nkx2p−1 + c

p
k2(3.30)

+ (n+kc x)

√
(2p−1)x2p−2

(
k2

p
x2p+2kx+ 2n

c
− k

2

p

)
.

Note that P (x) is increasing on [−1, 0] and has a unique zero x0 ∈ (−1, 0).
We already have T (−1) > 0 and T (x0) > 0 from (3.18), (3.23), and (3.24).
It suffices to show T (x) > 0 on [−1, x0]. To that end, let us introduce

W (x) = −(P (x))2 + (n+ kxc)2Q(x).

Obviously we also have W (−1) > 0 and W (x0) > 0. By Lemma 3.18
below we conclude that W (x) > 0 on [−1, x0], which implies T (x) > 0 for
any x ∈ [−1, 0], thus completing the proof of Proposition 3.17. �

Lemma 3.18. — Given any n > 2 and k positive integers and c ∈ (0, nk−
2εp] for p > p0(n, k), there exists p1(n, k, c) such that for any p > p1, either
there exists −1 < x1 < x0 such that W (x) is increasing on [−1, x1] and
decreasing on [x1, x0], or W (x) is increasing on [−1, x0].

Proof of Lemma 3.18. — A straightforward calculation shows that

dW
dx = −2P (x)P ′(x) + 2(n+ kcx)kcQ(x) + (n+ kcx)2Q′(x)

= (2p− 1)(n+ kcx)x2p−3J(x),

where

J(x) = −4k3c
p− 1
p

x2p+1 − 2nk2 2p+ 1
p

x2p + 2k2c(2p+ 1)x2

+
(

8npk−2kn− 4k3c

p
−2k3c

)
x+
(

4pn2

c
− 4n2

c
−2k2n+ 2nk2

p

)
.
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We add a brief remark on J(−1) when c = n
k − 2εp. It follows that

J(−1) = 4p
c

(n− kc)2 + 6k3c− 6nk2 + 2k2c+ 2kn− 4n2

c

= 4pk2

n
k − 2εp

4ε2p + εp

(
− 12k3 − 4k2 − 8nk

n
k − 2εp

)
= εp

(
− 12k3 − 4k2 − 8nk

n
k − 2εp

+ 16pk2εp
n
k − 2εp

)
.(3.31)

Recall that εp = 2n
2p+2k−1 . A tedious calculation will lead to the fact that

for k suitably large (k > 5), J(−1) > 0 for p = p(n, k) large enough. On
the other hand, if k is small (k 6 2 for example), then J(−1) < 0.
The crucial observation which leads to the proof of the lemma is that,

for any 0 < c 6 n
k − 2εp, we can find p1 = p(n, k, c) so that J ′(x) > 0 for

any x ∈ [−1, x0].
First let us estimate x0, the unique zero of P (x) on (−1, 0). We have

P (x0) = (2p− 1)k2c

p
x2p

0 + 2nkx2p−1
0 + c

p
k2(3.32)

= x2p−1
0

[(
2− 1

p

)
k2cx+ 2nk

]
+ c

p
k2.(3.33)

Note that (3.32) implies that 2nk(−x0)2p−1 > c
pk

2, while (3.33) implies
that

(−x0)2p−1
[
2nk −

(
2− 1

p

)
k2c

]
<
c

p
k2.

To sum up, we have the following estimates on x0

(3.34)
(
ck

2pn

) 1
2p−1

< −x0 <

(
ck

n

) 1
2p−1

.

Next we compute J ′(x):

(3.35) 1
p
J ′(x) = −4k3c

(
1− 1

p

)(
2 + 1

p

)
x2p − 4nk2

(
2 + 1

p

)
x2p−1

+ 4k2c

(
2 + 1

p

)
x+

(
8nk − 2kn

p
− 4k3c

p2 −
2k3c

p

)
.

In order to do calculation in the O( 1
p ) order, we note that when p =

p(n, k) is large enough, we have

(3.36) 2n
3p < εp <

n

p
.
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Plugging into c = n
k − s where 2εp 6 s < n

k , it follows from (3.35) that

1
p
J ′(x) = −4k3

(
n

k
− s
)(

2− 1
p
− 1
p2

)
x2p − 4nk2

(
2 + 1

p

)
x2p−1

+ 4k2
(
n

k
− s
)(

2 + 1
p

)
x

+
(

8nk − 2kn
p
− 4nk2

p2 + 4k3s

p2 −
2nk2

p
+ 2k3s

p

)
> −8nk2x2p−1(x+ 1) + 8nk(1 + x)

+ 4k3 n

kp
x2p − 4nk

2

p
x2p−1 + 4k2

(
− 2s+ n

kp

)
x

− 2kn
p
− 2nk2

p
+O

(
1
p2

)
> 4k2

(
2s− n

kp

)
(−x)− 2kn

p
− 2nk2

p
+O

(
1
p2

)
.

It follows from (3.34), (3.36), and the above estimate on J ′(x) that

(3.37) 1
p
J ′(x) > 4k2 5n

3p

[
ck

2pn

] 1
2p−1

− 2kn
p
− 2nk2

p
+O

(
1
p2

)
>

2kn(2k − 1)
p

> 0

for any p > p1(n, k, c) large enough and any −1 6 x 6 x0. Note that
in (3.37), we have used

lim
p→+∞

[
ck

2pn

] 1
2p−1

= 1.(3.38)

This completes the proof of Lemma 3.18. �

Let us remark that if we considerM2,1, the conclusion of Theorem 3.16 is
not necessarily stronger than that of Proposition 3.14. The point is that the
degree of the generating polynomial φ(U) in Proposition 3.17 might depend
on the c where [−c, c] is the domain of φ(U). In particular, the degree p goes
to infinity as c approaches to 0, while the generating function in Proposi-
tion 3.14 is a quartic polynomial. However, we are able to show that the
proof of Proposition 3.17 can be used to establish the path-connectedness
of all U(n)-invariant Kähler metrics of H > 0 on any Hirzebruch manifold
Mn,k.

Corollary 3.19. — The space of all U(n)-invariant Kähler metrics of
H > 0 on Mn,k is path-connected.
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Proof. — In view of Corollary 3.9, it suffices to show that given any
0 < c1 < c2 < n

k , we can construct a continuous family of generating
functions φc(U) where U ∈ [−c, c] for any c1 6 c 6 c2.

Such a family can be constructed following the proof of Proposition 3.17.
In particular, if we examine (3.18), (3.23), (3.25), (3.26), and (3.38), we con-
clude by the continuous dependence of parameters that for any c ∈ [c1, c2]
there exists a sufficiently large integer p = p(n, k) which is independent of
the choice of c, δ1 = δ1(p, n, k, c), and δ2 = δ2(p, n, k, c) such that φc(U)
with c ∈ [c1, c2] defined by (3.17) is a continuous path of Kähler metrics
with H > 0. �

3.4. Complete Kähler–Ricci solitons revisited

First let us recall the definition of gradient Kähler–Ricci solitons.

Definition 3.20 (Shrinking gradient Kähler–Ricci solitons). — Let
(Mn, J) be a complex manifold with a Kähler metric g and f a real-valued
function. The quadruple (Mn, J, g, f) is called a shrinking gradient Kähler–
Ricci soliton if the following two conditions hold:

(1) Ric(g)ij̄ − gij̄ − fij̄ = 0,
(2) After expressing ∇f in terms of holomorphic coordinates, its (1, 0)-

part is a holomorphic vector field.

Shrinking Kähler–Ricci solitons are important objects in the study of
finite type singularity of Kähler–Ricci flow. We refer to [13] for a survey of
recent developments on (Kähler-)Ricci solitons.

In this subsection, we are interested in complete Kähler–Ricci solitons in
the following two cases.

(1) Compact shrinking Kähler–Ricci soliton on Fano Hirzebuch mani-
folds Mn,k(k < n) constructed by Cao [12] and Koiso [31],

(2) Complete noncompact shrinking Kähler–Ricci soliton on the total
space of H−k → CPn−1 when k < n. These were constructed by
Feldman–Ilmanen–Knopf (F-I-K) in [20].

We are motivated by the following general question:

Question. — Are there are any characterization of compact shrinking
Kähler–Ricci soliton with H > 0, and it is true that any complete noncom-
pact shrinking Kähler–Ricci soliton with H > 0 must be compact?

Let us review the example constructed in [12, 20, 31]. We follow Koiso’s
approach in the compact case and also treat the complete noncompact case
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in a similar way (See also [44]). Recall the Kähler metric g̃ on the compact-
ification of the C∗-bundle obtained by H−k → CPn−1 discussed in Sub-
section 3.2.1. In the compact case, we consider the smooth compatification
which gives Hirzebruch manifold Mn,k, as discussed in Subsection 3.2.2.
While in the noncompact case, we consider the compatification near E0
and requires the metric to be complete along infinity. Therefore it results
a complete Kähler metric on the total space of H−k → CPn−1.

Lemma 3.21 ([32, p. 169–172]). — Given any Kähler metric g̃ on
Mn,k(k < n) in the form (3.3) and satisfy the assumption of Lemma 3.5
and (3.8). If we assume in addition that g̃ is in 2πc1(Mn,k), this is to say,
there exists a function f on Mn,k such that

(3.39) Ric(g̃)− ω̃g =
√
−1∂∂̄f.

If we further set Umin = −1 after a normalization, then we conclude that
Umax = 1, then f defined in (3.39) only depends on U , and it must satisfy

(3.40) dφ
dU + φ

Q

dQ
dU + 2U − φ df

dU = 0.

If we further assume that f in (3.39) is given by f = −αU for some
constant α, then it follows that ∇f = −α2 V is a holomorphic vector field.
Equation (3.40) becomes

(3.41) dφ
dU + φ

Q

dQ
dU + 2U − αφ = 0.

Assume the soliton metric is of the form (3.3), one may apply Lemma 3.2,
Lemma 3.3, and the proof of Lemma 3.21 to conclude that (3.41) is exactly
the reduction of shrinking soliton equation in Definition 3.20. See also [31,
32] for more details.
Note that Q = (1 + k

nU)n−1, so Equation (3.41) takes the form

(3.42) dφ
dU + k(n− 1)

n+ kU
φ+ 2U − αφ = 0.

Equation (3.42) can be solved explicitly:

(3.43) φ(U) = 2η(U,α)
Q(U) − 2eα(U+1)

Q(U) η(−1, α),

where η(U,α) is a polynomial of degree n defined by

(3.44)
∫
xe−αxQ(x)dx = −e−αxη(x, α).
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Theorem 3.22 (Koiso [31], Cao [12], Feldman–Ilmanen–Knopf [20]).
For any integer 1 6 k < n, consider (CPn−1, g0) where g0 is the Fubini–
Study metric with Ric(g0) = g0.

(1) There exists a unique shrinking Kähler–Ricci soliton of the
form (3.3) on each Mn,k. The corresponding generating function
φ : [−1, 1] → R is strictly positive on (−1, 1) with φ(1) = φ(−1) =
0, φ′(−1) = −φ′(1) = 2, and of the form (3.43). It is unique in the
sense that the value α > 0 is determined by the unique solution of
φ(1) = 0.
It is proved in [12] that the Ricci curvature of the soliton metric

is positive on Mn,k if and only if k = 1.
(2) There exists a unique complete shrinking Kähler–Ricci soliton of

the form (3.3) on the total space of Lk → CPn−1. The correspond-
ing generating function φ : [−1,+∞] → R is strictly positive on
(−1,+∞) with φ(−1) = 0, φ′(−1) = 2, and of the form (3.43).
Here the value α > 0 is determined by the unique solution to
η(−1, α) = 0.

It follows from (3.42) and Proposition 3.6 that the curvature components
for shrinking solitons are:

A = −1
2

[
α2 − 2αk(n− 1)

n+ kU
− k2n(n− 1)

(n+ kU)2

]
φ+

(
α− k(n− 1)

n+ kU

)
U + 1

B = [k2n− k(n+ kU)α]φ+ 2k(n+ kU)U
2(n+ kU)2 ,

C = 2(n+ kU)− k2φ

(n+ kU)2 .

It is easy to see that along the zero section U = −1, 2B +
√
AC > 0

implies that

(3.45) α < α0(n, k) .= (n− 2k)(k + 1)
n− k

For example, when n = 2, k = 1, the necessary condition for H > 0 is α <
α0(2, 1) = 0, however the corresponding α on M2,1 is the unique positive
root of the equation e2α(−α2 + 2)− 3α2 − 4α− 2 = 0 (α ' 0.5276195199).
Therefore the Cao–Koiso shrinking soliton on M2,1 does not satisfy H > 0.

Next we analyze the noncompact case in more details. Consider the fol-
lowing polynomial which is of degree n in terms of α.

αn+1η(x, α) = −αn+1eαx
∫
xe−αx

(
1 + k

n
x

)n−1
dx
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Making use of the integration formula∫
znezdz =

( n∑
l=0

(−1)n−ln!
l! z

l

)
ez + C,

Some routine calculation leads to

αn+1η(U,α) =
(
k

n

)n−1
(

n∑
l=1

n!
l!

(n+ kU)l−1(n+ kU − l)
kl

αl + n!
)
.

Therefore the value of α∗ which solves the shrinking soliton equation,
namely, the root of the polynomial η(−1, α), is reduced to root of the
following polynomial of degree n

χ(α) =
n∑
l=1

n!
l!

(n− k)l−1(n− k − l)
kl

αl + n!.

Similarly as in (36) in [20, p. 197], since χ(∞) < 0 and χ(0) > 0,
Descartes’ rule of signs implies there exists a unique positive root α∗
for χ(α). With this choice α = α∗, φ(U) has the asymptotical behavior
φ ∼ 1

α∗
U as U →∞, and it shows that the soliton metric is complete along

infinity.
Now we are interested in a more precise estimate of α∗. First note that

α∗ > k. To see this, we check

χ(α) =
n∑
l=1

n!
l!

(n− k)l−1(n− k − l)
kl

αl + n!

=
(
α(n− k)

k

)n
+
n−1∑
l=0

n!
l!

(
α(n− k)

k

)l(
1− α

k

)
.(3.46)

We propose the following conjecture on a precise estimate on α∗.

Conjecture 3.23. — For any 1 6 k < n, α∗, which is the unique
positive root of the polynomial χ(α), satisfies α0(n, k) < α∗ < k + 1. If so,
then none of F-I-K shrinking solitons satisfy H > 0.

Argue similarly as in (3.46), we can show that Conjecture 3.23 is indeed
true if k < n 6 k2 + 2k. It is very likely that it is true in general, as
numerical experiments suggest.
On the other hand, compact shrinking solitons on Mn,k could have pos-

itive holomorphic sectional curvature as the ratio n
k grows larger.

Proposition 3.24 (Some shrinking solitons onMn,k have H > 0). — If
we fix k = 1, then the lowest dimensional example of Cao–Koiso shrinking
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solitons which satisfies H > 0 is on M3,1. On M3,1 its local pinching con-
stant is 1−α

(2−α)(5−α) ' 0.05587 where α ' 0.6820161326. If k = 2, the lowest
dimensional example with H > 0 is on M7,2, where α ' 1.742423694.

Let us explain the calculation in the case of M3,1. In this case the corre-
sponding α is the unique positive solution of the following equation

16α3 + 24α2 + 18α+ 6− e2α(−4α3 + 6α+ 6) = 0.

In particular, α ' 0.6820161326 < α0(3, 1) = 1.5 where α0(n, k) defined
in (3.45). One can show that (2B +

√
AC)(3 + U)2 is increasing on U ∈

[−1, 1] by a direct calculation, therefore we have H > 0. In general, for any
Mn,1 with n > 3, it is likely that α < α0(n, k) and (2B+

√
AC)(n+kU)2 is

increasing on U ∈ [−1, 1]. It seems tedious to verify it and we do not have
an affirmative answer. In any case, we expect that the Cao–Koiso shrinking
soliton on Hirzebruch manifold Mn,1 have H > 0 for any n > 3.

Let us calculate the local holomorphic pinching constant of Cao–Koiso
soliton on M3,1. A similar argument as in Example 3.14 shows that

min‖v‖=1H(U, v)
max‖v‖=1H(U, v) =

{
AC−4B2

A(A+C−4B) , U ∈ [−1, U∗]
C
A , U ∈ [U∗, 1]

Here U∗ is the solution of 2B = C on [−1, 1], whose numerical value is
about −0.573003. Therefore the pinching constant is obtained at U = −1,
which is 1−E

(2−E)(5−E) ' 0.05587.
Let us remark that if we drop the assumption of the shrinking Kähler–

Ricci soliton, it is easy to write down examples of complete Kähler metrics
of H > 0 on the total space of H−k → CP1. For instance, we have

Example 3.25. — Define a function ψ(U) on [− 1
2 ,+∞) as follows:

ψ(U) =
{

1
2 − 2U2, U ∈ [− 1

2 ,−
1
4 )

c(U + 2) + 1
2 ln(U + 2), U ∈ [− 1

4 ,∞)

where c = 3
14 −

2
7 ln( 7

4 ) ∼ 0.05439 so that ψ is continuous at U = − 1
4 .

Choose a small number δ > 0 so that ψ admits a convex smoothing φ

which equals to ψ except inside (− 1
4 − δ,−

1
4 + δ), Note that for ψ, both

C > 0 and 2B +
√
AC have positive lower bounds in (− 1

4 − δ,−
1
4 ) and

(− 1
4 ,−

1
4 + δ). It guarantees the existence of a convex smoothing φ which

in turns gives a complete Kähler metric with H > 0 on the total space of
L−1 → CP1. The metric actually has positive bisectional curvature outside
a compact subset. Moreover, its bisectional curvatures decay quadratically
along the infinity. Asymptotically such a metric has a conical end and
admits holomorphic functions with polynomial growth.
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3.5. H > 0 is not preserved along the Kähler–Ricci flow

Recently there has been much progress on Kähler–Ricci flow with U(n)-
symmetry on Hirzebruch manifolds Mn,k. See for example Zhu [48], Song–
Weinkove [40], Fong [21, 34], and Guo–Song [24]. In this subsection, we
apply Hitchin’s example and new examples constructed in Theorem 3.16
to show that in general H > 0 is not preserved by the Kähler–Ricci flow.

These results imply that if the initial metric g0 is U(n)-invariant and
in the Kähler class b0

k [E∞] − a0
k [E0] where b0 > a0 > 0, then the flow

always develops a singularity in finite time. Let T <∞ denote the maximal
existence time. Their results can be summarized as:

(1) Suppose that the initial metric g0 satisfies |E∞||E0| = b0
a0

= n+k
n−k , where

|E0| denotes the volume of the divisor E0 with respect to g0. In this
case the Kähler class of g0 is proportional to the anti-canonical class
of Mn,k. Then the Kähler–Ricci flow shrinks the fiber and the base
uniformly and collapses to a point. The rescaled flow converges to
the Cao–Koiso soliton on Mn,k ([48]).

(2) If g0 satisfies b0
a0
< n+k

n−k , then the Kähler–Ricci flow shrinks the fiber
first, and the flow collapses to the base CPn−1 ([40]). The rescaled
flow converges to Cn−1 × CP1 ([21]).

(3) If g0 satisfies b0
a0

> n+k
n−k , then the Kähler–Ricci flow shrinks the

zero section E0 first and hence “contracts the exceptional divisor”
([40]). The flow, after a parabolic rescaling converges to the F-I-K
shrinking soliton on the total space of H−k → CPn−1 ([24]).

(4) If n 6 k, then the Kähler–Ricci flow shrinks the fiber first, and the
flow converges to the base CPn−1 in the Gromov–Hausdorff sense
as t→ T ([40]).

Based on Hitchin’s examples reformulated in Example 3.13 and new ex-
amples we constructed in Proposition 3.17, we have the following examples
of the U(n)-invariant Kähler–Ricci flow.

On M2,1, let us take the metric in the anti-canonical class constructed
in Example 3.14 as the initial metric. Then the normalized flow converges
to the Cao–Koiso soliton. Unfortunately, the positivity of H breaks down.
Therefore, in general, H > 0 is not preserved along the Kähler–Ricci flow.
If instead we start from the initial metric corresponding to φc(U) = c− x2

c

on [−c, c] s in Example 3.13, where 0 < c < 2
3 , then the limiting metric of

the unnormalized flow is (CP1, cgFS). In this case, it is not clear whether
H > 0 is preserved, or how the holomorphic pinching constant of g(t)
evolves.
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On M3,1, if we pick initial metric as the Cao–Koiso shrinking soliton, it
follows from Proposition 3.24 that it satisfies H > 0. Since it is a fixed
point of the normalized flow, the holomorphic pinching constant remains
constant.
On M4,1, if we pick initial metric by the examples φc(U) = c − x2

c on
[−c, c] for any 0 < c < 4

3 . Then each of the first three cases mentioned above
could occur. For c = 1, the normalized flow evolves φ1(U) to the Cao–Koiso
soliton. While the initial metric has the holomorphic pinching constant
2/27 ' 0.074, the limit metric has the holomorphic pinching constant '
0.095. The pinching constant indeed improves after a long time, though
we do not know the short time behavior of pinching constants along the
flow. If 1 < c < 4

3 , then the rescaled flow converges to the F-I-K shrinking
soliton on the total space of L−1 → CP3. However this F-I-K soliton no
longer has H > 0, and once again we see that H > 0 is not preserved under
Kähler–Ricci flow.
Therefore a natural question arises: is there an effective way to construct

a one-parameter family of deformation of Kähler metrics with H > 0?
It would be ideal if the holomorphic pinching constant could enjoy some
monotonicity properties along this deformation.

4. Kähler metrics of H > 0 from the submanifold point of
view

In this section, we discuss holomorphic pinching of the canonical Kähler–
Einstein metrics on some Kähler C-spaces. Furthermore, we make some
general remarks on the question of constructing H > 0 metric from the
submanifold point of view.

Proposition 4.1. — Consider the flag threefold, or more generally, let
M be the hypersurface in CPn × CPn defined by

(4.1)
n+1∑
i=1

ziwi = 0,

where n > 2 and ([z], [w]) are the homogeneous coordinates. Let g be the
restriction onM of the product of the Fubini–Study metrics (each of which
has H = 2). Then the holomorphic sectional curvature of g is between 2
and 1

2 . So the holomorphic pinching constant is 1
4 , which is dimension free.

Proof of Proposition 4.1. — Let us work on the case n = 2 and in
the inhomogeneous coordinates [1, z1, z2] and [w1, 1, w2]. The hypersur-
face M3 ⊂ CP2 × CP2 is defined by w1 + z1 + z2w2 = 0 and can be
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parametrized by

(4.2) (t1, t2, t3)→ [1, t1, t2]× [−t1 − t2t3, 1, t3].

It follows that
∂

∂t1
= ∂

∂z1
− ∂

∂w1
,
∂

∂t2
= ∂

∂z2
− t3

∂

∂w1
,
∂

∂t3
= −t2

∂

∂w1
+ ∂

∂w2
.

Therefore under { ∂
∂t1
, ∂
∂t2
, ∂
∂t3
} the induced metric g̃ has the form: g11̄ + h11̄ g12̄ + t3h11̄ t2h11̄ + h12̄

g21̄ + t3h11̄ g22̄ + |t3|2h11̄ t3t2h11̄ − t3h12̄
t2h11̄ − h21̄ t2t3h11̄ − t3h21̄ |t2|2h11̄ + h22̄


where gij̄ = g( ∂

∂zi
, ∂
∂zj

) and hij̄ = g( ∂
∂wi

, ∂
∂wj

) where 1 6 i, j 6 2 are
Fubini–Study metrics on two factors CP2 respectively:

gij̄ = δij
1 + |z|2 −

zjzi
(1 + |z|2)2 , hij̄ = δij

1 + |w|2 −
wjwi

(1 + |w|2)2 .

Recall that the curvature tensor of g̃ is given by the formula (3.13). More-
over, we observe that there is a natural U(3)-action on M which acts tran-
sitively because of the defining equation (4.1). Therefore it suffices to calcu-
late the curvature tensor of the induced metric g̃ at the point (t1, t2, t3) =
(0, 0, 0). Now pick an orthonormal frame {e1, e2, e3} = { 1√

2
∂
∂t1
, ∂
∂t2
, ∂
∂t3
}.

Then a straight forward calculation shows that the only non vanishing
curvature components under {e1, e2, e3} are the following:

R11̄11̄ = 1, R22̄22̄ = 2, R33̄33̄ = 2,

R11̄22̄ = R11̄33̄ = 1
2 , R22̄33̄ = −1

2 .

From this, we get that Rij̄ = 2δij for any 1 6 i 6= j 6 3, so g̃ is Kähler–
Einstein. Once we have all the curvature components, it is direct to see
that min‖X‖=1H(X) = H( e2+e3√

2 ) = 1
2 and max‖X‖=1H(X) = 2.

The same argument works for the hypersurface defined by
∑n+1
i=1 ziwi = 0

in Pn × Pn. It gives the same pinching constant 1
4 for any n > 2. �

However, if we try a similar calculation on other types of bidegree (p, q)
hypersurfaces in CPn × CPn, the argument breaks down.
As a simple example, consider the bidegree (2, 1) hypersurface defined by∑2
i=0 z

2
iwi = 0 in CP2 × CP2 given by homogeneous coordinates ([z], [w]).

Consider the following parametrization of the hypersurface:

(t1, t2, t3)→ [1, t1, t2, ]× [−t21 − t22t3, 1, t3].
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and
∂

∂t1
= ∂

∂z1
− 2t1

∂

∂w1
,
∂

∂t2
= ∂

∂z2
− 2t2t3

∂

∂w1
,
∂

∂t3
= −t22

∂

∂w1
+ ∂

∂w2
.

The corresponding ĝ induced from the product of Fubini–Study metric
on CP2 × CP2 is g11̄ + 4|t1|2h11̄ g12̄ + 4t1t2t3h11̄ 2t1t2

2
h11̄ − 2t1h12̄

g21̄ + 4t1t2t3h11̄ g22̄ + 4|t2|2|t3|2h11̄ 2|t2|2t2t3t2h11̄ − 2t2t3h12̄
t22t1h11̄ − 2t1h21̄ 2|t2|2t2t2t3h11̄ − 2t2t3t3h21̄ |t2|4h11̄ + h22̄


If we only calculate the curvature at (t1, t2, t3) = (0, 0, 0), we already en-

counter some negativity of H. First note that ( ∂
∂t1
, ∂
∂t2
, ∂
∂t3

) is orthonormal
at (0, 0, 0), then it follows that

R11̄11̄ = −∂
2ĝ11̄
∂t1t1

= −4h11̄ −
∂2g11̄
∂z1z1

= −2.

The same problem occurs for a general bidegree (2, 1) hypersurface in
CPn×CPn. Of course, this just means that for a bidegree (2, 1) hypersurface
in CPn × CPn, the restriction of the product of the Fubini–Study metric
on the hypersurface does not have H > 0. But presumably there could be
other metrics on it with H > 0. This is indeed the case and we have the
following result:

Proposition 4.2. — Let Mn be any smooth bidegree (p, 1) hypersur-
face in CPr × CPs, where n = r + s − 1, p > 1, and r, s > 2. Then Mn

admits a Kähler metric with H > 0. Morever, when p > r + 1, the Kähler
classes of all the Kähler metrics with H > 0 form a proper subset of the
Kähler cone of Mn.

Proof of Proposition 4.2. — Let [z] and [w] be the homogeneous coor-
dinates of CPr and CPs, respectively. Let π : CPr × CPs → CPr be the
projection map. Suppose that Mn is defined by

s+1∑
i=1

fi(z1, . . . , zr+1)wi = 0,

where each fi is a homogeneous polynomial of degree p. Consider the sheaf
map h : O⊕(s+1) → O(p) on CPr defined by

h(ei) = fi(z), 1 6 i 6 s+ 1,

where ei = (0, . . . , 0, 1, 0, . . . , 0) has 1 at the i-th position. Clearly, h is
surjective, and its kernel sheaf E is locally free. Since Mn = P(E) over
CPr, by the result of [2], we know that Mn admits Kähler metrics with
H > 0.
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To see the second part of the statement, let us denote by H1, H2 the
hyperplane section from the two factors restricted on M , then we have
c1(M) = (r + 1 − p)H1 + sH2. Clearly, Hr+1

1 = 0, Hs+1
2 = 0, and since

Mn ∼ pH1 +H2, we have Hr
1H

s−1
2 = 1 and Hr−1

1 Hs
2 = p on Mn. For any

Kähler class [ω] = aH1 + bH2 where a > 0 and b > 0, we have

c1(M) · [ω]n−1 = ar−2bs−2
[(

n− 1
r

)
sa2 +

(
n− 1
r − 1

)
(r + 1 + sp− p)ab

+
(
n− 1
r − 2

)
(r + 1− p)b2

]
.

So when p > r + 1 and b >> a, we know that the total scalar curvature
of (Mn, ω) is negative. Thus the Kähler classes of metrics with H > 0 can
not fill in the entire Kähler cone. �

For a smooth bidegree (p, 2) hypersurface Mn in CPr ×CPs, where n =
r+s−1 and p > 2, one may raise the question of whetherMn admits Kähler
metrics with H > 0? The answer might be yes in view of Proposition 4.2.
Note that if we project to CPr, then M becomes a holomorphic fibration
over CPr whose generic fiber are smooth quadrics.

Conjecture 4.3. — If M3 is a compact Kähler manifold with local
holomorphic pinching constant strictly greater 1

4 , then is it biholomorphic
to a compact Hermitian symmetric space, i.e. CP3, CP2×CP1, CP1×CP1×
CP1, or Q3 which is the smooth quadric in CP4?

Let us conclude the discussion here by a couple of general remarks. First,
if we want to construct metrics with H > 0 from the submanifold point of
view, in particular, as complete intersections. Then it seems difficult to find
examples other than those already known (such as Hermitian symmetric
spaces or Kähler C-spaces, or projectivized vector bundles covered in [2]).
For instance, if we consider a cubic hypersurfaceMn ⊂ CPn+1 and g be the
restriction on M of the Fubini–Study metric. Then it is unclear if (Mn, g)
can have H > 0, though we expect the answer is no. As another example,
if we consider the restriction of the ambient Fubini–Study metric onto a
complete intersection, where typically we need to restrict to degree 1 or
2. Let us consider Mn as the intersection of two quadrics, in the case of
n = 2, it is the del Pezzo surface of degree 4, or CP2 blowing up 5 points.
It is unlikely that the induced metric on Mn admits H > 0.
Secondly, it is a general belief that the existence of a Kähler metric of

H > 0 is a “large open” condition, as illustrated in this paper on any
Hirzebruch manifold. Therefore, it is reasonable to expect if a projective
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manifold M admits a Kähler metric g0 of H > 0, then there exsits a small
deformation of such a metric g1 which lies in a Hodge class and still has
H > 0. hence one can conclude from a theorem of Tian ([41]) that g1
can be approximated by pull backs of Fubini–Study metrics by a sequence
of projective embeddings φk : M → CPNk . However, it seems difficult to
construct examples of Kähler metrics of H > 0 in this way because of the
implicit nature of φk and Nk.

In a sequel of this paper, we will study examples of Kähler metrics with
H > 0 on other rational surfaces, other Kähler C-spaces, and higher di-
mensional projective manifolds.
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