Conformal Scattering of Maxwell fields on Reissner–Nordström–de Sitter Black Hole Spacetimes
[Scattering Conforme des champs de Maxwell en l’espace-temps de trou noir de De Sitter–Reissner–Nordström]
Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 2291-2329.

Nous construisons une théorie complète de scattering conforme pour les champs de Maxwell dans l’extérieur statique de l’espace-temps de trou noir de De Sitter–Reissner–Nordström. Nous utilisons des résultats de décroissance que nous avons obtenus dans un article séparé, afin de montrer que les opérateurs de trace sont injectifs et d’images fermées. Ensuite, nous résolvons le problème de Goursat pour les champs de Maxwell sur la frontière isotrope ce qui montre que les opérateurs de trace sont surjectifs aussi.

We construct a complete conformal scattering theory for Maxwell fields in the static exterior region of a Reissner–Nordström–de Sitter black hole spacetime. We use uniform energy decay results, which we obtain in a separate paper, to show that the trace operators are injective and have closed ranges. We then solve the Goursat problem (characteristic Cauchy problem) for Maxwell fields on the null boundaries showing that the trace operators are also surjective.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/aif.3295
Classification : 35Q61,  35P25,  35Q75,  83C57,  83C50
Mots clés : Scattering conforme, trous noirs, équations de Maxwell, métrique de De Sitter–Reissner–Nordström, problème de Goursat
@article{AIF_2019__69_5_2291_0,
     author = {Mokdad, Mokdad},
     title = {Conformal {Scattering} of {Maxwell} fields on {Reissner{\textendash}Nordstr\"om{\textendash}de} {Sitter} {Black} {Hole} {Spacetimes}},
     journal = {Annales de l'Institut Fourier},
     pages = {2291--2329},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {5},
     year = {2019},
     doi = {10.5802/aif.3295},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3295/}
}
Mokdad, Mokdad. Conformal Scattering of Maxwell fields on Reissner–Nordström–de Sitter Black Hole Spacetimes. Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 2291-2329. doi : 10.5802/aif.3295. https://aif.centre-mersenne.org/articles/10.5802/aif.3295/

[1] Bachelot, Alain Gravitational scattering of electromagnetic field by Schwarzschild black-hole, Annales de l’I.H.P. Physique théorique, Tome 54 (1991) no. 3, pp. 261-320 | MR 1122656 | Zbl 0743.53037

[2] Chrusciel, Piotr T.; Delay, Erwann Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class. Quant. Grav., Tome 19 (2002) no. 9, L71 pages | MR 1902228 | Zbl 1005.83009

[3] Chrusciel, Piotr T.; Delay, Erwann On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mem. Soc. Math. France, Tome 94 (2003), pp. 1-103 | Zbl 1058.83007

[4] Corvino, Justin Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., Tome 214 (2000) no. 1, pp. 137-189 | MR 1794269 | Zbl 1031.53064

[5] Corvino, Justin; Schoen, Richard M. On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom., Tome 73 (2006) no. 2, pp. 185-217 | MR 2225517 | Zbl 1122.58016

[6] Dafermos, Mihalis; Rodnianski, Igor Lectures on black holes and linear waves, Evolution equations (Clay Mathematics Proceedings) Tome 17, Clay Mathematics Institute, 2008, pp. 97-205 | Zbl 1300.83004

[7] Friedlander, F. Gerard On the radiation field of pulse solutions of the wave equation, Proc. R. Soc. Lond., Ser. A, Tome 269 (1962), pp. 53-65 | MR 142888 | Zbl 0106.41501

[8] Friedlander, F. Gerard On the radiation field of pulse solutions of the wave equation. II, Proc. R. Soc. Lond., Ser. A, Tome 279 (1964), pp. 386-394 | MR 164132 | Zbl 0117.43904

[9] Friedlander, F. Gerard On the radiation field of pulse solutions of the wave equation. III, Proc. R. Soc. Lond., Ser. A, Tome 299 (1967), pp. 264-278 | MR 226218 | Zbl 0163.23702

[10] Friedlander, F. Gerard Radiation fields and hyperbolic scattering theory, Math. Proc. Camb. Philos. Soc., Tome 88 (1980), pp. 483-515 | Article | MR 583989 | Zbl 0465.35098

[11] Hörmander, Lars A remark on the characteristic Cauchy problem, J. Funct. Anal., Tome 93 (1990) no. 2, pp. 270-277 | Article | MR 1073287 | Zbl 0724.35060

[12] Joudioux, Jérémie Problème de Cauchy caractéristique et scattering conforme en relativité générale (2010) (Ph. D. Thesis)

[13] Joudioux, Jérémie Conformal scattering for a nonlinear wave equation, J. Hyperbolic Differ. Equ., Tome 09 (2012) no. 01, pp. 1-65 | Article | MR 2910977 | Zbl 1246.83063

[14] Leray, Jean Hyperbolic differential equations, Institute for advanced study, 1955 | Zbl 0067.07301

[15] Mason, Lionel J.; Nicolas, Jean-Philippe Conformal scattering and the goursat problem, J. Hyperbolic Differ. Equ., Tome 01 (2004) no. 02, pp. 197-233 | Article | MR 2070126 | Zbl 1074.83019

[16] Mason, Lionel J.; Nicolas, Jean-Philippe Regularity at space-like and null infinity, J. Inst. Math. Jussieu, Tome 8 (2009) no. 01, pp. 179-208 | Article | MR 2461904 | Zbl 1160.35348

[17] Mokdad, Mokdad Maxwell Field on the Reissner–Nordström–de Sitter Manifold: Decay and Conformal Scattering (2016) (Ph. D. Thesis)

[18] Mokdad, Mokdad Decay of Maxwell Fields on Reissner–Nordström–de Sitter Black Holes (2017) (http://arxiv.org/abs/1704.06441) | Zbl 1372.83048

[19] Mokdad, Mokdad Reissner–Nordström–de Sitter manifold: photon sphere and maximal analytic extension, Class. Quantum Grav., Tome 34 (2017) no. 17, 175014, 175014 pages | Article | MR 3687806 | Zbl 1372.83048

[20] Nicolas, Jean-Philippe Conformal scattering on the Schwarzschild metric, Ann. Inst. Fourier, Tome 66 (2016) no. 3, pp. 1175-1216 | Article | MR 3494169 | Zbl 1373.35050

[21] Penrose, Roger Asymptotic Properties of Fields and Space-Times, Phys. Rev. Lett., Tome 10 (1963) no. 2, pp. 66-68 | Article | MR 149912

[22] Penrose, Roger Conformal treatment of infinity, Relativité, Groupes et Topologie (Lectures, Les Houches, 1963 Summer School of Theoret. Phys., Univ. Grenoble), Gordon and Breach, New York, 1964, pp. 565-584 | Zbl 0148.46403

[23] Penrose, Roger Zero rest-mass fields including gravitation: asymptotic behaviour, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Tome 284 (1965) no. 1397, pp. 159-203 | Article | MR 175590 | Zbl 0129.41202

[24] Penrose, Roger; Rindler, Wolfgang Spinors and space-time: Volume 1, Two-spinor calculus and relativistic fields Tome 1, Cambridge University Press, 1987 | Zbl 0663.53013

[25] Penrose, Roger; Rindler, Wolfgang Spinors and space-time: Volume 2, Spinor and twistor methods in space-time geometry Tome 2, Cambridge University Press, 1988 | Zbl 0591.53002