We introduce two order relations on finite Coxeter groups which refine the absolute and the Bruhat order, and establish some of their main properties. In particular, we study the restriction of these orders to noncrossing partitions and show that the intervals for these orders can be enumerated in terms of the cluster complex. The properties of our orders permit to revisit several results in Coxeter combinatorics, such as the Chapoton triangles and how they are related, the enumeration of reflections with full support, the bijections between clusters and noncrossing partitions.
Nous introduisons deux relations d’ordre sur les groupes de Coxeter finis qui raffinent l’ordre absolu et l’ordre de Bruhat, et obtenons quelques propriétés essentielles. En particulier, nous étudions la restriction de ces ordres aux partitions non-croisées, et montrons que les intervalles pour ces ordres peuvent être comptés en termes du complexe d’amas. Les propriétés de nos ordres permettent de revoir divers résultats en combinatoire des groupes de Coxeter finis, tels que les triangles de Chapoton et leurs relations, l’énumération des réflexions à support pleins, les bijections entre partitions non-croisées et amas.
Revised:
Accepted:
Published online:
Classification: 05A15, 20F55
Keywords: Finite Coxeter groups, Noncrossing partitions, Bruhat order, cluster complex
@article{AIF_2019__69_5_2241_0, author = {Biane, Philippe and Josuat-Verg\`es, Matthieu}, title = {Noncrossing partitions, {Bruhat} order and the cluster complex}, journal = {Annales de l'Institut Fourier}, pages = {2241--2289}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {5}, year = {2019}, doi = {10.5802/aif.3294}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3294/} }
TY - JOUR TI - Noncrossing partitions, Bruhat order and the cluster complex JO - Annales de l'Institut Fourier PY - 2019 DA - 2019/// SP - 2241 EP - 2289 VL - 69 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3294/ UR - https://doi.org/10.5802/aif.3294 DO - 10.5802/aif.3294 LA - en ID - AIF_2019__69_5_2241_0 ER -
Biane, Philippe; Josuat-Vergès, Matthieu. Noncrossing partitions, Bruhat order and the cluster complex. Annales de l'Institut Fourier, Volume 69 (2019) no. 5, pp. 2241-2289. doi : 10.5802/aif.3294. https://aif.centre-mersenne.org/articles/10.5802/aif.3294/
[1] Generalized noncrossing partitions and combinatorics of Coxeter groups, Memoirs of the American Mathematical Society, Tome 202, American Mathematical Society, 2009 no. 949, x+159 pages | MR: 2561274 | Zbl: 1191.05095
[2] On some enumerative aspects of generalized associahedra, Eur. J. Comb., Tome 28 (2007), pp. 1208-1215 | Article | MR: 2305586 | Zbl: 1117.52013
[3] -vectors of generalized associahedra and noncrossing partitions, Int. Math. Res. Not., Tome 2006 (2006) no. 12, 69705, 28 pages | MR: 2249994 | Zbl: 1112.20032
[4] The local -vector of the cluster subdivision of a simplex, Sémin. Lothar. Comb., Tome 66 (2012), B66c, 21 pages | MR: 2971012 | Zbl: 1253.05150
[5] Coxeter-biCatalan combinatorics, J. Algebr. Comb., Tome 47 (2018) no. 2, pp. 241-300 | Article | MR: 3775222 | Zbl: 1387.05270
[6] -series and and a boolean Bercovici-Pata bijection for bounded -tuples, Adv. Math., Tome 217 (2008), pp. 1-41 | Article | MR: 2357321 | Zbl: 1129.46052
[7] The dual braid monoid, Ann. Sci. Éc. Norm. Supér., Tome 36 (2003) no. 5, pp. 647-683 | Article | MR: 2032983 | Zbl: 1064.20039
[8] Some properties of crossings and partitions, Discrete Math., Tome 175 (1997) no. 1-3, pp. 41-53 | Article | MR: 1475837 | Zbl: 0892.05006
[9] Minimal factorizations of a cycle: a multivariate generating function, FPSAC 2016 (Vancouver, 2016) (Discrete Mathematics and Theoretical Computer Science) (2016), pp. 239-250
[10] Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Tome 237, Springer, 2005 | Zbl: 1110.05001
[11] ’s for Artin groups of finite type, Geom. Dedicata, Tome 94 (2002) no. 1, pp. 225-250 (Proceedings of the conference on geometric and combinatorial group theory, Part I. (Haifa)) | Article | MR: 1950880 | Zbl: 1053.20034
[12] Non-crossing partition lattices in finite real reflection groups, Trans. Am. Math. Soc., Tome 360 (2008) no. 4, pp. 1983-2005 | Article | MR: 2366971 | Zbl: 1187.20051
[13] Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb., Tome 39 (2014) no. 1, pp. 17-51 | Article | MR: 3144391 | Zbl: 1286.05180
[14] Enumerative properties of generalized associahedra, Sémin. Lothar. Comb., Tome 51 (2004), B51b, 16 pages | MR: 2080386 | Zbl: 1160.05342
[15] Sur le nombre de réflexions pleines dans les groupes de Coxeter finis, Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2006) no. 4, pp. 585-596 | Zbl: 1150.20023
[16] On root posets for noncrystallographic root systems, Math. Comput., Tome 84 (2015) no. 291, pp. 485-503 | Article | MR: 3266972 | Zbl: 1337.06001
[17] On the “Bruhat graph” of a Coxeter system, Compos. Math., Tome 78 (1991) no. 2, pp. 185-191 | MR: 1104786 | Zbl: 0784.20019
[18] Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Not., Tome 2005 (2005) no. 44, pp. 2709-2757 | Article | MR: 2181310 | Zbl: 1117.52017
[19] Cluster algebras II. Finite type classification, Invent. Math., Tome 154 (2003) no. 1, pp. 63-121 | Article | MR: 2004457 | Zbl: 1054.17024
[20] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, Tome 29, Cambridge University Press, 1990 | MR: 1066460 | Zbl: 0725.20028
[21] Refined enumeration of noncrossing chains and hook formulas, Ann. Comb., Tome 19 (2015) no. 3, pp. 443-460 | Article | MR: 3395490 | Zbl: 1327.05027
[22] Sur les partitions non croisées d’un cycle, Discrete Math., Tome 1 (1972) no. 4, pp. 333-350 | Article | Zbl: 0231.05014
[23] Generalized associahedra via quiver representations, Trans. Am. Math. Soc., Tome 355 (2003) no. 10, pp. 4171-4186 | Article | MR: 1990581 | Zbl: 1042.52007
[24] Non-crossing linked partitions, the partial order on , and the -transform, Proc. Am. Math. Soc., Tome 138 (2010) no. 4, pp. 1273-1285 | Article | MR: 2578521 | Zbl: 1201.46060
[25] Ad-nilpotent ideals of a Borel subalgebra: generators and duality, J. Algebra, Tome 274 (2004), pp. 822-846 | Article | MR: 2043377 | Zbl: 1067.17005
[26] Explicit formulae for Kerov polynomials, J. Algebr. Comb., Tome 33 (2011), pp. 141-151 | Article | MR: 2747805 | Zbl: 1245.05134
[27] Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Am. Math. Soc., Tome 359 (2007) no. 12, pp. 5931-5958 | Article | MR: 2336311 | Zbl: 1189.05022
[28] Noncrossing arc diagrams and canonical join representations, SIAM J. Discrete Math., Tome 29 (2015) no. 2, pp. 736-750 | Article | MR: 3335492 | Zbl: 1314.05015
[29] Sortable elements in infinite Coxeter groups., Trans. Am. Math. Soc., Tome 363 (2011) no. 2, pp. 699-761 | Article | MR: 2728584 | Zbl: 1231.20036
[30] Boolean convolution, Free probability theory (Fields Institute Communications) Tome 12, American Mathematical Society, 1997, pp. 267-279 | MR: 1426845 | Zbl: 0872.46033
[31] On the -triangle of generalised nonnesting partitions, Eur. J. Comb., Tome 39 (2014), pp. 244-255 | Article | MR: 3168529 | Zbl: 1284.05336
Cited by Sources: