Nous estimons les normes de Gowers de suites automatiques classiques telles que les suites de Thue–Morse et de Rudin–Shapiro. Les méthodes utilisées sont assez robustes, et peuvent être étendues à des familles de suites plus générales.
Nous en déduisons une estimation asymptotique du nombre de progressions arithmétiques d’une longueur donnée parmi l’ensemble des indices où la suite de Thue–Morse (respectivement, la suite de Rudin–Shapiro) prend la valeur .
We estimate Gowers uniformity norms for some classical automatic sequences, such as the Thue–Morse and Rudin–Shapiro sequences. The methods are quite robust and can be extended to a broader class of sequences.
As an application, we asymptotically count arithmetic progressions of a given length in the set of integers where the Thue–Morse (resp. Rudin–Shapiro) sequence takes the value .
Révisé le :
Accepté le :
Publié le :
Keywords: Gowers norm, automatic sequence, Thue–Morse sequence, Rudin–Shapiro sequence
Mot clés : Norme de Gowers, suite automatique, suite de Thue–Morse, suite de Rudin–Shapiro
Konieczny, Jakub 1
@article{AIF_2019__69_4_1897_0, author = {Konieczny, Jakub}, title = {Gowers norms for the {Thue{\textendash}Morse} and {Rudin{\textendash}Shapiro} sequences}, journal = {Annales de l'Institut Fourier}, pages = {1897--1913}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {4}, year = {2019}, doi = {10.5802/aif.3285}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3285/} }
TY - JOUR AU - Konieczny, Jakub TI - Gowers norms for the Thue–Morse and Rudin–Shapiro sequences JO - Annales de l'Institut Fourier PY - 2019 SP - 1897 EP - 1913 VL - 69 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3285/ DO - 10.5802/aif.3285 LA - en ID - AIF_2019__69_4_1897_0 ER -
%0 Journal Article %A Konieczny, Jakub %T Gowers norms for the Thue–Morse and Rudin–Shapiro sequences %J Annales de l'Institut Fourier %D 2019 %P 1897-1913 %V 69 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3285/ %R 10.5802/aif.3285 %G en %F AIF_2019__69_4_1897_0
Konieczny, Jakub. Gowers norms for the Thue–Morse and Rudin–Shapiro sequences. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1897-1913. doi : 10.5802/aif.3285. https://aif.centre-mersenne.org/articles/10.5802/aif.3285/
[1] Automatic sequences. Theory, applications, generalizations, Cambridge University Press, 2003, xvi+571 pages | DOI | MR | Zbl
[2] Subsequences of automatic sequences indexed by and correlations, J. Number Theory, Volume 132 (2012) no. 9, pp. 1837-1866 | DOI | MR | Zbl
[3] Subsequences of automatic sequences and uniform distribution, Uniform distribution and quasi-Monte-Carlo methods (Radon Series on Computational and Applied Mathematics), Volume 15, Walter de Gruyter, 2014, pp. 87-104 | MR | Zbl
[4] The Thue–Morse sequence along squares is normal, 2013 (https://www.dmg.tuwien.ac.at/drmota/alongsquares.pdf) | Zbl
[5] Automatic sequences as good weights for ergodic theorems, Discrete Contin. Dyn. Syst., Volume 38 (2018) no. 8, pp. 4087-4115 | DOI | MR | Zbl
[6] Large values of the Gowers–Host–Kra seminorms, J. Anal. Math., Volume 117 (2012), pp. 133-186 | DOI | MR | Zbl
[7] Oscillating sequences of higher order and topological systems of quasi-discrete spectrum, 2018 (https://arxiv.org/abs/1802.05204)
[8] The theory of matrices. Vols. 1, 2, Chelsea Publishing, 1959 (Translated by K. A. Hirsch) | MR
[9] Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., Volume 13 (1968), pp. 259-265 | DOI | MR | Zbl
[10] Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer, 2001, xx+439 pages | DOI | MR | Zbl
[11] A new proof of Szemerédi’s theorem, Geom. Funct. Anal., Volume 11 (2001) no. 3, pp. 465-588 | DOI | MR | Zbl
[12] Higher-order Fourier analysis, I (Notes available from the author) | Zbl
[13] Matrix analysis, Cambridge University Press, 2013, xviii+643 pages | MR | Zbl
[14] Uniformity seminorms on and applications, J. Anal. Math., Volume 108 (2009), pp. 219-276 | DOI | MR | Zbl
[15] Automates finis et ensembles normaux, Ann. Inst. Fourier, Volume 36 (1986) no. 2, pp. 1-25 | DOI | MR | Zbl
[16] La somme des chiffres des carrés, Acta Math., Volume 203 (2009) no. 1, pp. 107-148 | DOI | MR | Zbl
[17] Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math., Volume 171 (2010) no. 3, pp. 1591-1646 | DOI | MR | Zbl
[18] Prime numbers along Rudin-Shapiro sequences, J. Eur. Math. Soc., Volume 17 (2015) no. 10, pp. 2595-2642 | DOI | MR | Zbl
[19] On finite pseudorandom binary sequences. II. The Champernowne, Rudin–Shapiro, and Thue–Morse sequences, a further construction, J. Number Theory, Volume 73 (1998) no. 2, pp. 256-276 | DOI | MR | Zbl
[20] The Rudin–Shapiro sequence and similar sequences are normal along squares, Can. J. Math., Volume 70 (2018) no. 5, pp. 1096-1129 | DOI | MR | Zbl
[21] Normality of the Thue–Morse sequence along Piatetski–Shapiro sequences, II, Isr. J. Math., Volume 220 (2017) no. 2, pp. 691-738 | DOI | MR | Zbl
[22] Higher order Fourier analysis, Graduate Studies in Mathematics, 142, American Mathematical Society, 2012, x+187 pages | MR | Zbl
Cité par Sources :