Gowers norms for the Thue–Morse and Rudin–Shapiro sequences
[Normes de Gowers pour les suites de Thue–Morse et de Rudin–Shapiro]
Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1897-1913.

Nous estimons les normes de Gowers de suites automatiques classiques telles que les suites de Thue–Morse et de Rudin–Shapiro. Les méthodes utilisées sont assez robustes, et peuvent être étendues à des familles de suites plus générales.

Nous en déduisons une estimation asymptotique du nombre de progressions arithmétiques d’une longueur donnée parmi l’ensemble des indices N où la suite de Thue–Morse (respectivement, la suite de Rudin–Shapiro) prend la valeur +1.

We estimate Gowers uniformity norms for some classical automatic sequences, such as the Thue–Morse and Rudin–Shapiro sequences. The methods are quite robust and can be extended to a broader class of sequences.

As an application, we asymptotically count arithmetic progressions of a given length in the set of integers N where the Thue–Morse (resp. Rudin–Shapiro) sequence takes the value +1.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3285
Classification : 11B85, 11B30
Keywords: Gowers norm, automatic sequence, Thue–Morse sequence, Rudin–Shapiro sequence
Mot clés : Norme de Gowers, suite automatique, suite de Thue–Morse, suite de Rudin–Shapiro

Konieczny, Jakub 1

1 Mathematical Institute, University of Oxford Andrew Wiles Building Radcliffe Observatory Quarter Woodstock Road, Oxford, OX2 6GG (UK)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_4_1897_0,
     author = {Konieczny, Jakub},
     title = {Gowers norms for the {Thue{\textendash}Morse} and {Rudin{\textendash}Shapiro} sequences},
     journal = {Annales de l'Institut Fourier},
     pages = {1897--1913},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.5802/aif.3285},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3285/}
}
TY  - JOUR
AU  - Konieczny, Jakub
TI  - Gowers norms for the Thue–Morse and Rudin–Shapiro sequences
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1897
EP  - 1913
VL  - 69
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3285/
DO  - 10.5802/aif.3285
LA  - en
ID  - AIF_2019__69_4_1897_0
ER  - 
%0 Journal Article
%A Konieczny, Jakub
%T Gowers norms for the Thue–Morse and Rudin–Shapiro sequences
%J Annales de l'Institut Fourier
%D 2019
%P 1897-1913
%V 69
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3285/
%R 10.5802/aif.3285
%G en
%F AIF_2019__69_4_1897_0
Konieczny, Jakub. Gowers norms for the Thue–Morse and Rudin–Shapiro sequences. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1897-1913. doi : 10.5802/aif.3285. https://aif.centre-mersenne.org/articles/10.5802/aif.3285/

[1] Allouche, Jean-Paul; Shallit, Jeffrey Automatic sequences. Theory, applications, generalizations, Cambridge University Press, 2003, xvi+571 pages | DOI | MR | Zbl

[2] Deshouillers, Jean-Marc; Drmota, Michael; Morgenbesser, Johannes F. Subsequences of automatic sequences indexed by n c and correlations, J. Number Theory, Volume 132 (2012) no. 9, pp. 1837-1866 | DOI | MR | Zbl

[3] Drmota, Michael Subsequences of automatic sequences and uniform distribution, Uniform distribution and quasi-Monte-Carlo methods (Radon Series on Computational and Applied Mathematics), Volume 15, Walter de Gruyter, 2014, pp. 87-104 | MR | Zbl

[4] Drmota, Michael; Mauduit, Christian; Rivat, Joël The Thue–Morse sequence along squares is normal, 2013 (https://www.dmg.tuwien.ac.at/drmota/alongsquares.pdf) | Zbl

[5] Eisner, Tanja; Konieczny, Jakub Automatic sequences as good weights for ergodic theorems, Discrete Contin. Dyn. Syst., Volume 38 (2018) no. 8, pp. 4087-4115 | DOI | MR | Zbl

[6] Eisner, Tanja; Tao, Terence Large values of the Gowers–Host–Kra seminorms, J. Anal. Math., Volume 117 (2012), pp. 133-186 | DOI | MR | Zbl

[7] Fan, Aihua Oscillating sequences of higher order and topological systems of quasi-discrete spectrum, 2018 (https://arxiv.org/abs/1802.05204)

[8] Gantmacher, Feliks R. The theory of matrices. Vols. 1, 2, Chelsea Publishing, 1959 (Translated by K. A. Hirsch) | MR

[9] Gel’fond, Aleksandr O. Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., Volume 13 (1968), pp. 259-265 | DOI | MR | Zbl

[10] Godsil, Chris; Royle, Gordon Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer, 2001, xx+439 pages | DOI | MR | Zbl

[11] Gowers, William T. A new proof of Szemerédi’s theorem, Geom. Funct. Anal., Volume 11 (2001) no. 3, pp. 465-588 | DOI | MR | Zbl

[12] Green, Ben Higher-order Fourier analysis, I (Notes available from the author) | Zbl

[13] Horn, Roger A.; Johnson, Charles R. Matrix analysis, Cambridge University Press, 2013, xviii+643 pages | MR | Zbl

[14] Host, Bernard; Kra, Bryna Uniformity seminorms on and applications, J. Anal. Math., Volume 108 (2009), pp. 219-276 | DOI | MR | Zbl

[15] Mauduit, Christian Automates finis et ensembles normaux, Ann. Inst. Fourier, Volume 36 (1986) no. 2, pp. 1-25 | DOI | MR | Zbl

[16] Mauduit, Christian; Rivat, Joël La somme des chiffres des carrés, Acta Math., Volume 203 (2009) no. 1, pp. 107-148 | DOI | MR | Zbl

[17] Mauduit, Christian; Rivat, Joël Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math., Volume 171 (2010) no. 3, pp. 1591-1646 | DOI | MR | Zbl

[18] Mauduit, Christian; Rivat, Joël Prime numbers along Rudin-Shapiro sequences, J. Eur. Math. Soc., Volume 17 (2015) no. 10, pp. 2595-2642 | DOI | MR | Zbl

[19] Mauduit, Christian; Sárközy, András On finite pseudorandom binary sequences. II. The Champernowne, Rudin–Shapiro, and Thue–Morse sequences, a further construction, J. Number Theory, Volume 73 (1998) no. 2, pp. 256-276 | DOI | MR | Zbl

[20] Müllner, Clemens The Rudin–Shapiro sequence and similar sequences are normal along squares, Can. J. Math., Volume 70 (2018) no. 5, pp. 1096-1129 | DOI | MR | Zbl

[21] Müllner, Clemens; Spiegelhofer, Lukas Normality of the Thue–Morse sequence along Piatetski–Shapiro sequences, II, Isr. J. Math., Volume 220 (2017) no. 2, pp. 691-738 | DOI | MR | Zbl

[22] Tao, Terence Higher order Fourier analysis, Graduate Studies in Mathematics, 142, American Mathematical Society, 2012, x+187 pages | MR | Zbl

Cité par Sources :