Bordered Floer homology and incompressible surfaces
Annales de l'Institut Fourier, Volume 69 (2019) no. 4, pp. 1525-1573.

We show that bordered Heegaard Floer homology detects homologically essential compressing disks, and that bordered-sutured Floer homology detects partly boundary-parallel tangles and bridges, in natural ways. For example, there is a bimodule Λ so that the tensor product of CFD ^(Y) and Λ is Hom-orthogonal to CFD ^(Y) if and only if the boundary of Y admits a homologically essential compressing disk. In the process, we sharpen a nonvanishing result of Ni’s. We also extend Lipshitz–Ozsváth–Thurston’s “factoring” algorithm for computing HF ^  to compute bordered-sutured Floer homology, making both results on detecting essential incompressibility practical. In particular, this makes computing Zarev’s tangle invariant manifestly combinatorial.

Nous montrons que l’homologie de Heegaard Floer bordée détecte les disques de compression homologiquement essentiels et que l’homologie de Floer bordée-suturée détecte les enchevêtrements partiellement parallèles au bord, de manière naturelle. Par exemple, il y a un bimodule Λ tel que le produit tensoriel de CFD ^(Y) et Λ est Hom-orthogonal à CFD ^(Y) si et seulement si le bord de Y admet un disque du compression homologiquement essentiel. Nous affinons aussi un résultat de Ni sur la non annulation de l’homologie de Heegaard Floer et nous étendons l’algorithme “factorisation” de Lipshitz–Ozsváth–Thurston  pour calculer l’homologie de Floer bordée-suturée, de sorte que les deux résultats sur la détection des surfaces incompressibles sont effectifs. En particulier, nous montrons que le calcul de l’invariant de l’enchevêtrement de Zarev est combinatoire.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3276
Classification: 57M27, 53D40
Keywords: Heegaard Floer homology, bordered Floer homology, sutured manifolds, incompressible surfaces
Mot clés : Homologie de Heegaard Floer, homologie de Floer bordée, variétés suturées, surfaces incompressibles
Alishahi, Akram 1; Lipshitz, Robert 2

1 Department of Mathematics, Columbia University, New York, NY 10027
2 Department of Mathematics, University of Oregon, Eugene, OR 97403
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_4_1525_0,
     author = {Alishahi, Akram and Lipshitz, Robert},
     title = {Bordered {Floer} homology and incompressible surfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1525--1573},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.5802/aif.3276},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3276/}
}
TY  - JOUR
AU  - Alishahi, Akram
AU  - Lipshitz, Robert
TI  - Bordered Floer homology and incompressible surfaces
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1525
EP  - 1573
VL  - 69
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3276/
DO  - 10.5802/aif.3276
LA  - en
ID  - AIF_2019__69_4_1525_0
ER  - 
%0 Journal Article
%A Alishahi, Akram
%A Lipshitz, Robert
%T Bordered Floer homology and incompressible surfaces
%J Annales de l'Institut Fourier
%D 2019
%P 1525-1573
%V 69
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3276/
%R 10.5802/aif.3276
%G en
%F AIF_2019__69_4_1525_0
Alishahi, Akram; Lipshitz, Robert. Bordered Floer homology and incompressible surfaces. Annales de l'Institut Fourier, Volume 69 (2019) no. 4, pp. 1525-1573. doi : 10.5802/aif.3276. https://aif.centre-mersenne.org/articles/10.5802/aif.3276/

[1] Auroux, Denis Fukaya categories of symmetric products and bordered Heegaard–Floer homology, J. Gökova Geom. Topol. GGT, Volume 4 (2010), pp. 1-54 | MR | Zbl

[2] Bene, Alex James A chord diagrammatic presentation of the mapping class group of a once bordered surface, Geom. Dedicata, Volume 144 (2010), pp. 171-190 | DOI | MR | Zbl

[3] Colin, Vincent; Ghiggini, Paolo; Honda, Ko The equivalence of Heegaard Floer homology and embedded contact homology III: from hat to plus (2012) (https://arxiv.org/abs/1208.1526) | Zbl

[4] Colin, Vincent; Ghiggini, Paolo; Honda, Ko The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I (2012) (https://arxiv.org/abs/1208.1074) | Zbl

[5] Colin, Vincent; Ghiggini, Paolo; Honda, Ko The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II (2012) (https://arxiv.org/abs/1208.1077) | Zbl

[6] Ghiggini, Paolo; Lisca, Paolo Open book decompositions versus prime factorizations of closed, oriented 3-manifolds, Interactions between low-dimensional topology and mapping class groups (Geometry and Topology Monographs), Volume 19, Geometry and Topology Publications, 2015, pp. 145-155 | MR | Zbl

[7] Gillespie, Thomas J. L-space fillings and generalized solid tori (2016) (https://arxiv.org/abs/1603.05016)

[8] Haken, Wolfgang Some results on surfaces in 3-manifolds, Studies in modern topology, Mathematical Association of America, 1968, pp. 39-98 | MR | Zbl

[9] Hanselman, Jonathan Bordered Heegaard Floer homology and graph manifolds, Algebr. Geom. Topol., Volume 16 (2016) no. 6, pp. 3103-3166 | DOI | MR | Zbl

[10] Hedden, Matthew; Ni, Yi Manifolds with small Heegaard Floer ranks, Geom. Topol., Volume 14 (2010) no. 3, pp. 1479-1501 | DOI | MR | Zbl

[11] Hedden, Matthew; Ni, Yi Khovanov module and the detection of unlinks, Geom. Topol., Volume 17 (2013) no. 5, pp. 3027-3076 | DOI | MR | Zbl

[12] Hom, Jennifer; Lidman, Tye; Watson, Liam The Alexander module, Seifert forms, and categorification, J. Topol., Volume 10 (2017) no. 1, pp. 22-100 | DOI | MR | Zbl

[13] Juhász, András Holomorphic discs and sutured manifolds, Algebr. Geom. Topol., Volume 6 (2006), pp. 1429-1457 | DOI | MR | Zbl

[14] Juhász, András Floer homology and surface decompositions, Geom. Topol., Volume 12 (2008) no. 1, pp. 299-350 | MR | Zbl

[15] Kutluhan, Çağatay; Lee, Yi-Jen; Taubes, Clifford Henry HF=HM I: Heegaard Floer homology and Seiberg–Witten Floer homology (2010) (https://arxiv.org/abs/1007.1979)

[16] Kutluhan, Çağatay; Lee, Yi-Jen; Taubes, Clifford Henry HF=HM II: Reeb orbits and holomorphic curves for the ech/Heegaard–Floer correspondence (2010) (https://arxiv.org/abs/1008.1595)

[17] Kutluhan, Çağatay; Lee, Yi-Jen; Taubes, Clifford Henry HF=HM III: Holomorphic curves and the differential for the ech/Heegaard–Floer correspondence (2010) (https://arxiv.org/abs/1010.3456)

[18] Kutluhan, Çağatay; Lee, Yi-Jen; Taubes, Clifford Henry HF=HM IV: The Seiberg–Witten Floer homology and ech correspondence (2011) (https://arxiv.org/abs/1107.2297)

[19] Kutluhan, Çağatay; Lee, Yi-Jen; Taubes, Clifford Henry HF=HM V: Seiberg–Witten Floer homology and handle additions (2012) (https://arxiv.org/abs/1204.0115)

[20] Lipshitz, Robert; Ozsváth, Peter S.; Thurston, Dylan P. Bordered Heegaard Floer homology: Invariance and pairing (2008) (https://arxiv.org/abs/0810.0687v4) | Zbl

[21] Lipshitz, Robert; Ozsváth, Peter S.; Thurston, Dylan P. Heegaard Floer homology as morphism spaces, Quantum Topol., Volume 2 (2011) no. 4, pp. 381-449 | MR | Zbl

[22] Lipshitz, Robert; Ozsváth, Peter S.; Thurston, Dylan P. Computing HF ^ by factoring mapping classes, Geom. Topol., Volume 18 (2014) no. 5, pp. 2547-2681 | DOI | MR | Zbl

[23] Lipshitz, Robert; Ozsváth, Peter S.; Thurston, Dylan P. Bimodules in bordered Heegaard Floer homology, Geom. Topol., Volume 19 (2015) no. 2, pp. 525-724 | DOI | MR | Zbl

[24] Lipshitz, Robert; Treumann, David Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers, J. Eur. Math. Soc., Volume 18 (2016) no. 2, pp. 281-325 | DOI | MR | Zbl

[25] Ni, Yi Heegaard Floer homology and fibred 3-manifolds, Am. J. Math., Volume 131 (2009) no. 4, pp. 1047-1063 | DOI | MR | Zbl

[26] Ni, Yi Nonseparating spheres and twisted Heegaard Floer homology, Algebr. Geom. Topol., Volume 13 (2013) no. 2, pp. 1143-1159 | DOI | MR | Zbl

[27] Ozsváth, Peter S.; Szabó, Zoltán Holomorphic disks and genus bounds, Geom. Topol., Volume 8 (2004), pp. 311-334 | DOI | MR | Zbl

[28] Ozsváth, Peter S.; Szabó, Zoltán Holomorphic disks and three-manifold invariants: properties and applications, Ann. Math., Volume 159 (2004) no. 3, pp. 1159-1245 | DOI | MR | Zbl

[29] Ozsváth, Peter S.; Szabó, Zoltán Holomorphic disks and topological invariants for closed three-manifolds, Ann. Math., Volume 159 (2004) no. 3, pp. 1027-1158 | MR | Zbl

[30] Penner, Robert C. The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., Volume 113 (1987) no. 2, pp. 299-339 | MR | Zbl

[31] Sharko, Volodymyr V. Functions on surfaces. I, Some problems in contemporary mathematics (Russian) (Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos.), Volume 25, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 1998, pp. 408-434 | MR

[32] Taubes, Clifford Henry Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol., Volume 14 (2010) no. 5, pp. 2497-2581 | DOI | MR | Zbl

[33] Taubes, Clifford Henry Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol., Volume 14 (2010) no. 5, pp. 2583-2720 | DOI | MR | Zbl

[34] Taubes, Clifford Henry Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol., Volume 14 (2010) no. 5, pp. 2721-2817 | DOI | MR | Zbl

[35] Taubes, Clifford Henry Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol., Volume 14 (2010) no. 5, pp. 2819-2960 | DOI | MR | Zbl

[36] Taubes, Clifford Henry Embedded contact homology and Seiberg–Witten Floer cohomology V, Geom. Topol., Volume 14 (2010) no. 5, pp. 2961-3000 | DOI | MR | Zbl

[37] Zarev, Rumen Bordered Floer homology for sutured manifolds (2009) (https://arxiv.org/abs/0908.1106)

[38] Zarev, Rumen Joining and gluing sutured Floer homology (2010) (https://arxiv.org/abs/1010.3496)

[39] Zhan, Bohua bfh ̲python (https://github.com/bzhan/bfh_python)

Cited by Sources: