Topological rigidity of generic unfoldings of tangent to the identity diffeomorphisms
[Rigidité topologigue des déploiements génériques des difféomorphismes tangents à l’identité]
Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 993-1046.

On considère des germes de biholomorphisme φ 0 et η 0 tangents à l’identité et avec un point fixe double. On montre qu’un homéomorphisme qui conjugue deux déploiements génériques à un paramètre de φ 0 et η 0 est analytique réel si l’on se restreint au paramètre initial (sauf peut-être à l’origine). De plus si φ 0 ou η 0 n’est pas analytiquement trivial, i.e. n’est pas contenu dans un group à un paramètre, la conjugaison induite sur le paramètre initial est holomorphe ou anti-holomorphe. L’hypothèse de non-trivialité est nécessaire. On détermine aussi la nature des conjugaisons sur le paramètre initial se φ 0 ou η 0 ne sont pas analytiquement triviaux.

On décrit la structure des limites d’orbites quand on approche le paramètre initial. Les resultats de rigidité sont conséquences de l’étude de l’action d’une conjugaison topologique sur les limites d’orbites.

We prove that a homeomorphism conjugating two generic 1-parameter unfoldings, of local 1-variable tangent to the identity biholomorphisms with a double fixed point at the origin, is real analytic outside the origin by restriction to the unperturbed parameter. Moreover if one of the unfoldings has a restriction to the unperturbed parameter that is not analytically trivial, meaning that is not the time 1 flow of a holomorphic vector field, then the restriction of the conjugating map to the unperturbed parameter is holomorphic or anti-holomorphic. We provide examples that show that the non-analytically trivial hypothesis is necessary. Moreover we characterize the possible behavior of conjugacies for the unperturbed parameter in the analytically trivial case.

We describe the structure of the limits of orbits when we approach the unperturbed parameter. The proof of the rigidity results is based on the study of the action of a topological conjugacy on the limits of orbits.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3264
Classification : 37F45, 37F75, 37G10, 34E10
Keywords: resonant diffeomorphism, bifurcation theory, topological classification, normal form
Mot clés : difféomorphisme résonant, théorie des bifurcations, classification topologique, forme normale

Ribón, Javier 1

1 Universidade Federal Fluminense Instituto de Matemática e Estatística Campus do Gragoatá Rua Marcos Valdemar de Freitas Reis s/n, 24210 - 201 Niterói, Rio de Janeiro (Brasil)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_3_993_0,
     author = {Rib\'on, Javier},
     title = {Topological rigidity of generic unfoldings of tangent to the identity diffeomorphisms},
     journal = {Annales de l'Institut Fourier},
     pages = {993--1046},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {3},
     year = {2019},
     doi = {10.5802/aif.3264},
     zbl = {1203.37081},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3264/}
}
TY  - JOUR
AU  - Ribón, Javier
TI  - Topological rigidity of generic unfoldings of tangent to the identity diffeomorphisms
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 993
EP  - 1046
VL  - 69
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3264/
DO  - 10.5802/aif.3264
LA  - en
ID  - AIF_2019__69_3_993_0
ER  - 
%0 Journal Article
%A Ribón, Javier
%T Topological rigidity of generic unfoldings of tangent to the identity diffeomorphisms
%J Annales de l'Institut Fourier
%D 2019
%P 993-1046
%V 69
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3264/
%R 10.5802/aif.3264
%G en
%F AIF_2019__69_3_993_0
Ribón, Javier. Topological rigidity of generic unfoldings of tangent to the identity diffeomorphisms. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 993-1046. doi : 10.5802/aif.3264. https://aif.centre-mersenne.org/articles/10.5802/aif.3264/

[1] Ahern, Patrick; Rosay, Jean-Pierre Entire functions, in the classification of differentiable germs tangent to the identity, in one or two variables, Trans. Am. Math. Soc., Volume 347 (1995) no. 2, pp. 543-572 | DOI | MR | Zbl

[2] Camacho, Cesar On the local structure of conformal mappings and holomorphic vector fields in 2 ., Journees singulieres de Dijon (Dijon, 1978) (Astérisque), Volume 59-60, Société Mathématique de France, 1978, pp. 83-94 | MR | Zbl

[3] Christopher, Colin; Rousseau, Christiane The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point, Int. Math. Res. Not. (2014) no. 9, pp. 2494-2558 | MR | Zbl

[4] Douady, Adrien; Estrada, F.; Sentenac, Pierrette Champs de vecteurs polynômiaux sur . (To appear in the Proceedings of Boldifest)

[5] Écalle, Jean Théorie itérative: introduction à la théorie des invariants holomorphes, J. Math. Pures Appl., Volume 54 (1975), pp. 183-258 | MR | Zbl

[6] Glutsyuk, Alexey A. Confluence of singular points and nonlinear Stokes phenomenon, Trans. Mosc. Math. Soc., Volume 2001 (2001), pp. 49-95 | MR | Zbl

[7] Ilyashenko, Yulij; Yakovenko, Sergei Lectures on analytic differential equations, Graduate Studies in Mathematics, 86, American Mathematical Society, 2008, xiv+625 pages | MR | Zbl

[8] Kostov, Vladimir P. Versal deformations of differential forms of degree α on the line, Funkts. Anal. Prilozh., Volume 18 (1984) no. 4, pp. 81-82 | MR | Zbl

[9] Lavaurs, Pierre Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques, Ph. D. Thesis, Universit� de Paris-Sud (France) (1989)

[10] Loray, Frank Cinq leçons sur la structure transverse d’une singularité de feuilletage holomorphe en dimension 2 complexe., Monographies Red TMR Europea Sing. Ec. Dif. Fol. (1999) no. 1, pp. 1-92 | MR

[11] Malgrange, Bernard Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, S�minaire Bourbaki, Vol. 1981/1982 (Astérisque), Volume 92, Société Mathématique de France, 1982, pp. 59-73 | MR | Zbl

[12] Mardešić, Pavao; Roussarie, Robert; Rousseau, Christiane Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms, Mosc. Math. J., Volume 4 (2004) no. 2, pp. 455-502 | DOI | MR | Zbl

[13] Martinet, Jean Remarques sur la bifurcation nœud-col dans le domaine complexe, Singularités d’équations différentielles (Dijon, 1985) (Astérisque), Volume 150-151, Société Mathématique de France, 1987, pp. 131-149 | MR | Zbl

[14] Newhouse, Sheldon; Palis, Jacob; Takens, Floris Bifurcations and stability of families of diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., Volume 57 (1983), pp. 5-71 | DOI | Zbl

[15] Oudkerk, Richard The parabolic implosion for f 0 (z)=z+z ν+1 +O(z ν+2 ), Ph. D. Thesis, University of Warwick (UK) (1999)

[16] Ribón, Javier Formal classification of unfoldings of parabolic diffeomorphisms, Ergodic Theory Dyn. Syst., Volume 28 (2008) no. 4, pp. 1323-1365 | DOI | MR | Zbl

[17] Ribón, Javier Modulus of analytic classification for unfoldings of resonant diffeomorphisms, Mosc. Math. J., Volume 8 (2008) no. 2, pp. 319-395 | DOI | MR | Zbl

[18] Ribón, Javier Unfoldings of tangent to the identity diffeomorphisms, Differential equations and singularities (Valladolid, 2006) (Astérisque), Volume 323, Société Mathématique de France, 2009, pp. 325-370 | MR | Zbl

[19] Ribón, Javier Topological classification of families of diffeomorphisms without small divisors, Mem. Am. Math. Soc., Volume 207 (2010) no. 975, p. x+166 | DOI | MR | Zbl

[20] Roussarie, Robert Modèles locaux de champs et de formes, Astérisque, Société Mathématique de France, 1975, 181 pages | Zbl

[21] Rousseau, Christiane; Christopher, Colin Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle, Ann. Inst. Fourier, Volume 57 (2007) no. 1, pp. 301-360 | DOI | MR | Zbl

[22] Shishikura, Mitsuhiro Bifurcation of parabolic fixed points, The Mandelbrot set, theme and variations (London Mathematical Society Lecture Note Series), Volume 274, Cambridge University Press, 2000, pp. 325-363 | DOI | MR | Zbl

[23] Szekeres, George Regular iteration of real and complex functions., Acta Math., Volume 100 (1958), pp. 203-258 | DOI | MR | Zbl

[24] Takens, Floris Normal forms for certain singularities of vectorfields., Ann. Inst. Fourier, Volume 23 (1973) no. 2, pp. 163-195 | DOI | MR | Zbl

[25] Voronin, Sergey M. Analytic classification of germs of conformal mappings (C,0)(C,0), Funkts. Anal. Prilozh., Volume 15 (1981) no. 1, pp. 1-17 | DOI | MR | Zbl

Cité par Sources :