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TOPOLOGICAL RIGIDITY OF GENERIC
UNFOLDINGS OF TANGENT TO THE IDENTITY

DIFFEOMORPHISMS

by Javier RIBÓN (*)

Abstract. — We prove that a homeomorphism conjugating two generic 1-
parameter unfoldings, of local 1-variable tangent to the identity biholomorphisms
with a double fixed point at the origin, is real analytic outside the origin by re-
striction to the unperturbed parameter. Moreover if one of the unfoldings has a
restriction to the unperturbed parameter that is not analytically trivial, mean-
ing that is not the time 1 flow of a holomorphic vector field, then the restriction
of the conjugating map to the unperturbed parameter is holomorphic or anti-
holomorphic. We provide examples that show that the non-analytically trivial hy-
pothesis is necessary. Moreover we characterize the possible behavior of conjugacies
for the unperturbed parameter in the analytically trivial case.

We describe the structure of the limits of orbits when we approach the unper-
turbed parameter. The proof of the rigidity results is based on the study of the
action of a topological conjugacy on the limits of orbits.
Résumé. — On considère des germes de biholomorphisme φ0 et η0 tangents

à l’identité et avec un point fixe double. On montre qu’un homéomorphisme qui
conjugue deux déploiements génériques à un paramètre de φ0 et η0 est analytique
réel si l’on se restreint au paramètre initial (sauf peut-être à l’origine). De plus
si φ0 ou η0 n’est pas analytiquement trivial, i.e. n’est pas contenu dans un group
à un paramètre, la conjugaison induite sur le paramètre initial est holomorphe
ou anti-holomorphe. L’hypothèse de non-trivialité est nécessaire. On détermine
aussi la nature des conjugaisons sur le paramètre initial se φ0 ou η0 ne sont pas
analytiquement triviaux.

On décrit la structure des limites d’orbites quand on approche le paramètre ini-
tial. Les resultats de rigidité sont conséquences de l’étude de l’action d’une conju-
gaison topologique sur les limites d’orbites.

Keywords: resonant diffeomorphism, bifurcation theory, topological classification, nor-
mal form.
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1. Introduction

Consider an arc of diffeomorphisms (φx(y)) defined in some neighborhood
of 0 in R where the parameter x also varies in a neighborhood of 0 in R.
We can express the arc in the form φ(x, y) = (x, φx(y)). Suppose

φ0(0) = 0, ∂φ0

∂y
(0) = 1, ∂

2φ0

∂y2 (0) 6= 0 and ∂φx(y)
∂x

(0, 0) 6= 0.

The first three conditions guarantee that φ0 is a local tangent to the iden-
tity diffeomorphism that has a double fixed point at the origin. The last
property is a genericity condition for the arc of diffeomorphisms. Arcs of
diffeomorphisms of the above form, where φx(y) is C6 as a function of x
and y and φ0 is C∞ as a function of y, are called saddle-node arcs by
Newhouse, Palis and Takens [14]. They study the properties of saddle-node
arcs for the topological conjugacy.
The diffeomorphism φ0 has a unique C∞ infinitesimal generator such

that φ0 is the time 1 flow exp(X0) of X0 [24]. This vector field is also
called the Szekeres vector field [23]. Newhouse, Palis and Takens show the
following results:

Theorem 1.1 ([14, Theorem 3.1]). — Two saddle-node arcs are locally
conjugated.

Theorem 1.2 ([14, Theorem 3.2]). — Let (φx) and (ηx) be two saddle-
node arcs conjugated by a local homeomorphism σ. Then σ0 conjugates
the infinitesimal generators of φ0 and η0. In particular σ0 is C∞ outside
the origin.

We are studying conjugacies of unfoldings (or families of diffeomor-
phisms). Thus all the conjugacies in this paper are of the form σ(x, y) =
(σ1(x), σ2(x, y)). In particular the restriction σ0 of σ to the unperturbed
line x = 0 is well-defined and we have σ0(y) = σ2(0, y).
Our goal is studying this kind of properties in the holomorphic case.

Analogously as for saddle-node arcs we say that a local biholomorphism
φ(x, y) = (x, f(x, y)), defined in a neighborhood of the origin in C2, is a
saddle-node unfolding if

f(0, 0) = 0, ∂f
∂y

(0, 0) = 1, ∂
2f

∂y2 (0, 0) 6= 0, and ∂f

∂x
(0, 0) 6= 0.

In other words φ is a generic unfolding of a tangent to the identity dif-
feomorphism φ0 that has a double fixed point at the origin. We prove the
following rigidity theorem:
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Theorem 1.3 (Main Theorem). — Let φ, η ∈ Diff(C2, 0) be saddle-
node unfoldings that are topologically conjugated by a local homeomor-
phism σ. Suppose that either φ0 or η0 is non-analytically trivial. Then σ0
is holomorphic or anti-holomorphic.

By definition a tangent to the identity local biholomorphism in one com-
plex variable φ is analytically trivial if it is embedded in an analytic flow,
i.e. φ is the time 1 flow exp(X) of an analytic singular local vector field
X = g(y)∂/∂y. Analytic triviality is non-generic by the Ecalle–Voronin an-
alytic classification of tangent to the identity diffeomorphisms [5, 11, 25].

The Main Theorem implies that Theorem 1.1 does not hold true in the
holomorphic case. Consider the saddle-node unfoldings

φ(x, y) = exp
(

(y2 − x) ∂
∂y

)
and η(x, y) = (x, y + y2 − x).

The diffeomorphism φ0 = exp(y2∂/∂y) is analytically trivial whereas
η0(y) = y+ y2 is not analytically trivial since it is a non-trivial polynomial
tangent to the identity local biholomorphism (cf. [1]). Since analytic triv-
iality is obviously invariant by analytic conjugacy, it follows that φ and η
are not topologically conjugated. Analogously η is not topologically conju-
gated to the time 1 map of any local holomorphic vector field of the form
g(x, y)∂/∂y.

Anyway, the rigidity result provided by the Main Theorem can be inter-
preted as a first analogue of Theorem 1.2. Indeed under generic conditions
a topological conjugacy σ between analytic unfoldings also conjugates the
complex flows of the infinitesimal generators of φ0 and η0 in their attract-
ing (resp. repelling) petals (if σ0 is orientation-preserving). This is far from
trivial since a topological class of conjugacy of a tangent to the identity
diffeomorphism in one variable contains a continuous infinitely dimensional
moduli of analytic classes of conjugacy.
A natural problem is determining the classes of conjugacy of unfold-

ings up to topological, formal or analytic equivalence. The study of the
analytic properties of unfoldings is an active field of research. We denote
by Diff(Cn, 0) and Diff1(Cn, 0) the group of complex analytic biholomor-
phisms defined in a neighborhood of the origin of Cn and their subgroup
of tangent to the identity diffeomorphisms respectively. A natural idea to
study an unfolding φ(x, y) = (x, f(x, y)) ∈ Diff(C2, 0) is comparing the
dynamics of φ and exp(Y ) where Y = g(x, y)∂/∂y is a vector field with
Fix(φ) = Sing(Y ) whose time 1 flow “approximates” φ. This point of view
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has been developed by Glutsyuk [6]. In this way extensions of the Ecalle–
Voronin invariants [5, 25] to some sectors in the parameter space are ob-
tained. The extensions are uniquely defined. The sectors of definition have
to avoid a finite set of directions of instability, typically associated (but not
exclusively) to small divisors phenomena. The rich dynamics of φ around
the directions of instability prevents the extension of the Ecalle–Voronin
invariants to be defined in the neighborhood of the instability directions.
Interestingly the study of the dynamics around instability directions is one
of the key elements of the proof of the Main Theorem.
A different point of view was introduced by Shishikura for codimension 1

unfoldings [22]. The idea is constructing appropriate fundamental domains
bounded by two curves with common ends at singular points: one curve is
the image of the other one. Pasting the boundary curves by the dynamics
yields (by quasiconformal surgery) a Riemann surface that is conformally
equivalent to the Riemann sphere. The logarithm of an appropriate affine
complex coordinate on the sphere induces a Fatou coordinate for φ. These
ideas were generalized to higher codimension unfoldings by Oudkerk [15].
In this approach the first curve is a phase curve of an appropriate vector
field transversal to the real flow of X. In both cases the Fatou coordi-
nates provide Lavaurs vector fields Xφ such that φ = exp(Xφ) [9]. The
Shishikura’s approach was used by Mardesic, Roussarie and Rousseau to
provide a complete system of invariants for unfoldings of codimension 1 tan-
gent to the identity diffeomorphisms [12]. Rousseau and Christopher classi-
fied the generic unfoldings of codimension 1 resonant diffeomorphisms [21].
The analytic classification for the unfoldings of finite codimension resonant
diffeomorphisms was completed in [17] by using the Oudkerk’s point of
view.
We described the formal invariants for n-parameter unfoldings of 1-

variable tangent to the identity biholomorphisms in [16] for any n ∈ N.

1.1. Topological classification

In contrast with the analytic and formal cases there is no topological
classification of unfoldings of tangent to the identity diffeomorphisms. One
of the obstacles is the absence of a complete system of topological invariants
for elements of Diff(C, 0). More precisely the problem is associated with
small divisors; it is not known the topological classification of elements
φ(z) = λz +O(z2) ∈ Diff(C, 0) such that λ ∈ S1 is not a root of unity and
φ is not analytically linearizable.

ANNALES DE L’INSTITUT FOURIER
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A key point in the proof of Theorems 1.1 and 1.2 is a shadowing prop-
erty. Indeed given a saddle-node arc φ there exists an adapted vector field
Y = g(x, y)∂/∂y with Fix(φ) = Sing(Y ) such that every orbit of φ can be
approximated by an orbit of exp(Y ) [14, Lemma 3.7]. As a consequence the
continuous dynamical system defined by the real flow Re(Y ) of Y is a good
model of the topological behavior of φ. In spite of this, generically there
is no shadowing for unfoldings of tangent to the identity biholomorphisms,
establishing a difference between the real and the complex cases. Indeed if
a saddle-node unfolding has a shadowing property then it is embedded in
an analytic flow [18]. Our strategy in this paper includes, as in [14], ap-
proximating a saddle-node unfolding φ with exp(Y ) for some local vector
field Y = g(x, y)∂/∂y and then profiting of the properties of Y to obtain
interesting dynamical phenomena associated to φ. Since there is no shad-
owing property for all orbits of φ we have to show that the dynamics of
Re(Y ) that we are trying to replicate for φ takes place in regions in which
the orbits of exp(Y ) and φ remain close. We will see that these regions are
domains of definition of extensions of Fatou coordinates of φ0 to the nearby
parameters. Moreover such Fatou coordinates can be used to compare φ
and exp(Y ).

The main tool in this paper is the study of Long Orbits of saddle-node
unfoldings. These concepts were introduced in [14] (even if they do not have
an explicit name) and we used them in [19] to classify topologically multi-
parabolic unfoldings, i.e. unfoldings φ(x, y) = (x, f(x, y)) ∈ Diff(C2, 0)
such that (∂f∂y )|Fix(φ) ≡ 1. They are analogous to the concept of homoclinic
trajectories for polynomial vector fields introduced by Douady, Estrada
and Sentenac [4]. Let us focus on vector fields since the concepts are anal-
ogous and the presentation is a little simpler. Consider a local vector field
Y = g(x, y)∂/∂y with g(0) = 0, (∂g/∂y)(0) = 0, (∂2g/∂y2)(0) 6= 0 and
(∂g/∂x)(0) 6= 0. In particular exp(tY ) is a saddle-node unfolding for any
t ∈ C∗. Roughly speaking a Long Trajectory is given by the choice of a
point y+ 6= 0, a curve β in the parameter space and a continuous function
T : β → R+ such that

(0, y−) def= lim
x∈β,x→0

exp(T (x)Y )(x, y+)

exists and limx∈β,x→0 T (x) = ∞. In general (0, y−) does not belong to
the trajectory of Re(Y ) through (0, y+). We go from (0, y+) to (0, y−) by
following the real flow of Y an infinite time. Denote φ = exp(Y ). The
point (0, y−) is in the limit of the orbits of φ passing through points (x, y+)
with x ∈ T−1(N) when x → 0. We say that (φ, y+, β, T ) is a Long Orbit
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containing (0, y−). By replacing T with T + s for s ∈ R we obtain that
exp(sY )(0, y−) is in the Long Orbit generated by (φ, y+, β, T + s). The
rest of the points in a neighborhood of (0, y−) in x = 0 are also in Long
Orbits of φ through (0, y+). They are obtained by varying the curve β.
In particular the complex flow of the infinitesimal generator of φ0 in the
repelling petal containing (0, y−) can be retrieved from Long Orbits through
(0, y+). In other words such complex flow is in the topological closure of
the pseudogroup generated by φ.
Long Orbits are related to instable behavior in the unfolding. For instance

consider the saddle-node unfolding φ = exp((y2−x)∂/∂y). The multiplica-
tors of the vector field at the singular points (x,

√
x) and (x,−

√
x) are 2

√
x

and −2
√
x respectively. These points are hyperbolic outside the direction

R− in the parameter space where the character of the fixed points change
(from attractor to repeller or vice versa). The direction R− is the direction
of instability of the unfolding and all other directions are stable. Indeed
given a point y+ in the attracting petal of Re(y2∂/∂y) and a direction
λR+ different than R− (λ ∈ S1\{−1}), we have that exp(tY )(x, y+) is well-
defined for any t ∈ R+ and for any x in a neighborhood of 0 such that x/|x|
is in a neighborhood of λ. Moreover the set Kx := exp([0,∞)Y )(x, y+) con-
verges to K0 (in the Hausdorff topology for compact sets) when x tends to
0 and x/|x| is in a neighborhood of λ (These properties are consequences of
Lemma 6.13 of [17]). So the limit of trajectories through the points (x, y+)
is the trajectory through the limit point (0, y+) and hence Long Orbits are
not possible in the neighborhood of any direction λR+ in the parameter
space different than R−.

In spite of being scarce Long Orbits somehow vary continuously. For
instance the function T in the definition can be calculated by applying
conveniently the residue theorem. The residue formula allows to describe
the evolution of the Long Orbits when we replace β with nearby curves. On
the one hand Long Orbits appear in the regions of instability of the unfold-
ing and generically together with small divisors phenomena. On the other
hand they have a (rich) regular structure. The main technical difficulty
regarding Long Orbits is proving their existence and properties. Once the
setup is established the Main Theorem is obtained by a relatively simple
description of the action of topological conjugacies on Long Orbits.

1.2. Rigidity of unfoldings

Now we introduce the most general rigidity result.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.4 (General Theorem). — Let φ, η ∈ Diff(C2, 0) be saddle-
node unfoldings that are topologically conjugated by a local homeomor-
phism σ. Then σ0 is affine in Fatou coordinates. Moreover σ0 is orientation-
preserving if and only if the action of σ on the parameter space is orient-
ation-preserving. In particular σ is orientation-preserving.

Topological conjugacies are of the form σ(x, y) = (σ1(x), σ2(x, y)). We
say that the action of σ in the parameter space is orientation-preserving
if σ1 is. Analogously we define the concept of holomorphic action on the
parameter space.
The definition of affine in Fatou coordinates is provided in Subsection 2.5.

Affine in Fatou coordinates implies real analytic outside the origin. In order
to compare the Main Theorem and Theorem 1.4 let us point out that holo-
morphic conjugacies between elements of Diff1(C, 0)\{Id} are translations
in Fatou coordinates. The Main Theorem is a consequence of Theorem 1.4.
Indeed we show that affine in Fatou coordinates implies holomorphic or
anti-holomorphic in the non-analytically trivial case.
Theorem 1.4 can also be interpreted as an analogue of Theorem 1.2 for

the complex case. Indeed the affine nature of σ0 implies that the real flows
of the infinitesimal generators (Lavaurs vector fields) of φ0 and η0 (in the
corresponding attracting and repelling petals) are conjugated. Anyway the
analogy is not perfect, since the complex flows of the Lavaurs vector fields
are not conjugated in general.
How to strengthen the General Theorem? A first approach is provided

by the Main Theorem by considering generic classes of analytic conjugacy.
Another possibility is trying to impose conditions on the action of conjuga-
cies on the parameter space. Finally we notice that for analytically trivial
elements of Diff1(C, 0) the formal and analytic conjugacy classes coincide.
So it is interesting to study the action of σ0 on formal invariants. The
next propositions establish a relation between the topological, formal and
analytic classifications.

Proposition 1.5. — Let φ, η ∈ Diff(C2, 0) be saddle-node unfoldings.
Let σ be a local homeomorphism such that σ ◦φ = η ◦ σ. Suppose that the
action of σ on the parameter space is holomorphic (resp. anti-holomorphic).
Then σ0 is holomorphic (resp. anti-holomorphic).

It is simple to reduce the setting of Proposition 1.5 to the case where σ is
of the form σ(x, y) = (x, f(x, y)) and satisfies σ|Fix(φ) ≡ Id. The analogue
of Proposition 1.5 in absence of small divisors (multi-parabolic case) has
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been studied in [19]. A complete system of topological invariants is pre-
sented in [19] for the classification of multi-parabolic diffeomorphisms un-
der the assumption that the conjugating map σ(x, y) = (x, f(x, y)) satisfies
σ|Fix(φ) ≡ Id. In the non-trivial case, where the fixed point set {f(x, y) = y}
is not of the form {y = a(x)} for some a ∈ C{x}, one of the topological
invariants is the analytic class of conjugacy of the unperturbed diffeomor-
phism of the unfolding. As in Proposition 1.5 the map σ0 is a local biholo-
morphism.
Let φ(y) = y + cyν+1 + h.o.t. ∈ Diff(C, 0) with ν ∈ N and c ∈ C∗.

The number ν determines the class of topological conjugacy of φ. The
diffeomorphism φ is formally conjugated to a unique diffeomorphism y +
yν+1 + ((ν + 1)/2 − λ)y2ν+1 for some λ ∈ C. The pair (ν, λ) provides a
complete system of formal invariants. We define Resφ = λ.

Proposition 1.6. — Let φ, η ∈ Diff(C2, 0) be saddle-node unfoldings
that are topologically conjugated by a local homeomorphism σ. Then
Re(Resφ0) and Re(Resη0) have the same sign.

The sign of a real number can be positive, negative or zero by conven-
tion. The above proposition implies that the analogue of Theorem 1.1 for
unfoldings of saddle-node vector fields [14, Theorem 3.5] does not hold in
the complex setting. More precisely, consider

Y = (y2 − x) ∂
∂y

and Z = y2 − x
1 + y

∂

∂y
.

We have that exp(tY ) and exp(tZ) are saddle-node unfoldings for any
t ∈ C∗. Denote φ = exp(Y ) and η = exp(Z). We have Resφ0 = 0 and
Resη0 = 1 by a simple calculation. Hence φ and η are not topologically
conjugated by Proposition 1.6. The existence of a conjugacy σx between
φx and ησ1(x), for any x ∈ C in a neighborhood of 0, provides a monodromy
condition when we turn around x = 0 that does not appear for saddle-node
arcs.

Proposition 1.7. — Let φ, η ∈ Diff(C2, 0) be saddle-node unfoldings
that are topologically conjugated by a local homeomorphism σ. Suppose
that either φ0 or η0 is analytically trivial. Suppose that either Resφ0 6∈ iR
or Resη0 6∈ iR. Then

• If σ0 is orientation-preserving then σ0 is holomorphic iff Resφ0 =
Resη0 .

• If σ0 is orientation-reversing then σ0 is anti-holomorphic if and only
if Resφ0 = Resη0 .
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On the one hand it is possible to construct examples of diffeomorphisms
φ, η satisfying the hypotheses of the previous proposition such that φ0
and η0 are neither holomorphically nor anti-holomorphically conjugated
(Section 6). On the other hand if they are holomorphically conjugated
(in the orientation-preserving case) then σ0 is also holomorphic. In other
words given a saddle-node unfolding φ as in Proposition 1.7 the analytic
class of η0 is not determined for η in the class of topological conjugacy of φ
but the conjugacy σ0 is determined up to composition with a holomorphic
diffeomorphism (see Proposition 2.39). The condition Resφ0 6∈ iR on formal
invariants implies flexibility in the analytic classes of η0 but once they are
fixed there is rigidity of the conjugating maps.
Next we consider the case of purely imaginary formal invariants.

Proposition 1.8. — Let φ, η ∈ Diff(C2, 0) be saddle-node unfoldings
that are topologically conjugated by a local homeomorphism σ. Suppose
that either φ0 or η0 is analytically trivial. Suppose that either Resφ0 ∈ iR
or Resη0 ∈ iR. Then φ0 and η0 are holomorphically conjugated (resp. anti-
holomorphically conjugated) if σ is orientation-preserving (resp. orient-
ation-reversing) on the parameter space.

The roles of analytic classes and conjugacies are reversed with respect to
Proposition 1.7. Indeed there are at most 2 classes of analytic conjugacy
of η0 in the set consisting of the saddle-node unfoldings η in the topo-
logical class of φ. In spite of the rigidity of analytic classes, conjugacies
are not rigid. Even if φ0 and η0 are analytically conjugated the map σ0
is not necessarily holomorphic. Examples of this behavior are presented in
Section 6.
Proposition 1.8 provides new counterexamples for the analogue of The-

orem 1.1 for saddle-node vector fields. Indeed consider

Y = y2 − x
1 + i y

∂

∂y
, Z = y2 − x

1 + 2 i y
∂

∂y
, φ = exp(Y ) and η = exp(Z).

Since Resφ0 = i and Resη0 = 2 i, it follows that Resη0 6∈ {Resφ0 ,Resφ0}.
Therefore φ0 and η0 are neither holomorphically nor anti-holomorphically
conjugated and then φ and η are not topologically conjugated.

A very simple consequence of our results is that a homeomorphism con-
jugating two generic unfolding of saddle-nodes of the form

x2dy − f(x, y)dx = 0

is either transversaly conformal or transversaly anti-conformal by restric-
tion to the unperturbed parameter.
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2. Fatou affine conjugacy

The goal of this section is introducing a new notion of conjugacy be-
tween local tangent to the identity diffeomorphisms in dimension 1, the
so called Fatou affine conjugacy. This concept is interesting because the
restriction to the unperturbed line of a topological conjugacy of unfold-
ings is Fatou affine by Theorem 1.4. Generically Fatou affine conjugacies
are holomorphic or anti-holomorphic (Proposition 2.34). Moreover we will
describe the action of Fatou affine conjugacies on formal invariants (Propo-
sition 2.36). Along the way we classify local tangent to the identity diffeo-
morphisms modulo Fatou affine conjugacy (Proposition 2.34, Corollary 2.38
and Proposition 2.40).

2.1. Basic definitions

Let us introduce some well-known concepts.

Definition 2.1. — We denote by Diff(Cn, 0) the group of local biholo-
morphisms defined in a neighborhood of 0 in Cn. Their elements are of the
form

φ(y1, . . . , yn) = (φ1(y1, . . . , yn), . . . , φn(y1, . . . , yn))

where φ1, . . . , φn belong to the maximal ideal of the ring of convergent com-
plex power series C{y1, . . . , yn} and the Jacobian at the origin is invertible.
Analogously we define the group of formal diffeomorphisms as the set of
expressions

φ(y1, . . . , yn)

=

 ∑
j1+···+jn>1

aj1···jn;1y
j1
1 · · · yjnn , . . . ,

∑
j1+···+jn>1

aj1···jn;ny
j1
1 · · · yjnn


in the ring of formal complex power series C[[y1, · · · , yn]]n such that its
linear part

j1φ(y) =

 ∑
j1+···+jn=1

aj1...jn;1y
j1
1 . . . yjnn , . . . ,

∑
j1+···+jn=1

aj1···jn;ny
j1
1 . . . yjnn


at the origin is invertible. The group operation is the composition defined
in the natural way.
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Definition 2.2. — Let φ be an element of the group Diff(C, 0) of local
biholomorphisms defined in a neighborhood of 0 in C. We say that φ is
tangent to the identity if φ′(0) = 1. We denote by Diff1(C, 0) the subgroup
of Diff(C, 0) of tangent to the identity diffeomorphisms.

Definition 2.3. — Let φ ∈ Diff1(C, 0) \ {Id}. The diffeomorphism φ is
of the form

(2.1) φ(y) = y +
∞∑

j=ν(φ)

aj+1y
j+1

for some power series
∑∞
j=ν(φ) aj+1y

j+1 ∈ C{y} with aν(φ)+1 6= 0. We say
that ν(φ) is the order of tangency of φ with the identity map.

Definition 2.4. — Let φ ∈ Diff1(C, 0) \ {Id}. Consider a local vector
field Y = f(y)∂/∂y singular at 0, i.e. f ∈ C{y} and f(0) = 0. We say
Y is an adapted vector field of φ if φ(y) − exp(Y )(y) belongs to the ideal
(y2(ν(φ)+1)) of C{y}.

We can consider the ideal (yν(φ)+1) as the ideal of fixed points since
it is generated by the equation φ(y) − y of the fixed point set. The ideal
(y2(ν(φ)+1)) is then the square of the ideal of fixed points.

Remark 2.5. — Let φ be an element of Diff1(C, 0) \ {Id}. The formal
classification of tangent to the identity diffeomorphisms in dimension 1
implies that there exists a unique

Y ′ = yν(φ)+1

1 + λyν(φ)
∂

∂y
,

where λ ∈ C, such that there exists σ′ ∈ D̂iff(C, 0) with σ′ ◦ exp(Y ′) =
φ◦σ′ (cf. [7, Theorem 4.26] and [10]). Now consider a local diffeomorphism
σ ∈ Diff(C, 0) such that the 2(ν(φ) + 1)-jet of σ and σ′ at 0 coincide. Then
σ∗Y

′ is an adapted vector field of φ.

Definition 2.6. — We denote Resφ(0) = λ or Resφ = λ.

Remark 2.7. — The order ν(φ) is a complete topological invariant in
Diff1(C, 0) [2]. The pair (ν(φ),Resφ) is a complete system of formal invari-
ants in Diff1(C, 0) (cf. [7, Theorem 4.26] and [10]).

Remark 2.8. — Given an adapted vector field Y = a(y)∂/∂y of φ ∈
Diff1(C, 0) \ {Id} we can consider the dual form ω of Y , i.e. the unique
meromorphic 1-form such that ω(Y ) ≡ 1. We have ω = dy/a(y). Its residue
at 0 coincides with Resφ(0), thus justifying the notation.
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Definition 2.9. — Let

φ(y) = y +
∞∑

j=ν(φ)

aj+1y
j+1 ∈ Diff1(C, 0) \ {Id}.

We denote

D+ = {λ ∈ S1 : aν(φ)+1λ
ν(φ) ∈ R−}, D− = {λ ∈ S1 : aν(φ)+1λ

ν(φ) ∈ R+}

and D = D+ ∪ D−. Fix a small open neihborhood U of 0 in C. Given
λ ∈ D± the set

Pλ =
{
y0 ∈ U \ {0} : φ±j(y0) ∈ U for all j ∈ N and lim

j→∞

φ±j(y0)
|φ±j(y0)| = λ

}
is a petal of φ in U (or φ|U ) bisected by the direction λ. If λ ∈ D+ then
Pλ is an attracting petal, otherwise it is a repelling petal.

Remark 2.10. — Two petals Pλ and Pµ have non-empty intersection if
and only if they are consecutive, i.e. µ ∈ {λ e− iπ/ν(φ), λ eiπ/ν(φ)}.

Remark 2.11. — Let U = B(0, ε) for a sufficiently small ε > 0, where
B(0, ε) is the open ball in C of center 0 and radius ε. It can be proved that
Pλ is simply connected for any λ ∈ D. Moreover U is equal to the union
∪λ∈DPλ.

2.2. Fatou coordinates

Next, we define Fatou coordinates both for vector fields and diffeomor-
phisms.

Definition 2.12. — Let Y be a holomorphic vector field defined in
an open set U of Cn. We say that a holomorphic ψ : U → C is a Fatou
coordinate of Y if Y (ψ) ≡ 1 in U .

Remark 2.13. — If n = 1, U is simply connected and Y has no singular
points then the Fatou coordinate is well-defined up to an additive complex
constant.

Definition 2.14. — Let φ be a biholomorphism defined in an open set
U of Cn. We say that a holomorphic ψ : U → C is a Fatou coordinate of φ
if ψ ◦ φ = ψ + 1 where both sides of the equality are well-defined.

Definition 2.15. — Let φ ∈ Diff1(C, 0)\{Id}. Consider a petal P of φ
(in some neighborhood of 0) and an adapted vector field Y of φ. We denote
by ψYP a Fatou coordinate of Y in P.
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Definition 2.16. — Let φ ∈ Diff1(C, 0)\{Id}. Consider a petal P of φ
(in some neighborhood of 0). In this case the Fatou coordinates of φ in P
are always supposed to be injective. We denote by ψφP a Fatou coordinate
of φ in P.

Remark 2.17. — Fatou coordinates in Definition 2.15 are well-defined up
to an additive complex constant by Remark 2.13. The analogous property
for the Fatou coordinates in Definition 2.16 also holds true [10] (here the
injective hypothesis is necessary).
Definition 2.18. — Let φ ∈ Diff1(C, 0) \ {Id}. Consider a petal P of

φ. There is a unique holomorphic vector field Y φP = gφP(y)∂/∂y such that
Y φP (ψφP) ≡ 1 for some (and then for every) Fatou coordinate ψφP of φ in P.
It is called the Lavaurs vector field of φ in P [9].

2.3. Analytically trivial diffeomorphisms

Definition 2.19. — Let φ ∈ Diff1(C, 0) \ {Id}. We say that φ is an-
alytically trivial if there exists a local holomorphic singular vector field
Y = f(y)∂/∂y such that φ = exp(Y ). This condition is equivalent to
ψφP − ψ

φ
Q being locally constant for all petals P, Q of φ (or also Y φP ≡ Y φQ

in P ∩Q) such that P ∩Q 6= ∅.
Remark 2.20. — Notice that if φ is analytically trivial then Y ≡ Y φP in

every petal P of φ.
The condition of being non-analytically trivial is generic among the tan-

gent to the identity local diffeomorphisms in one variable. More precisely,
every formal class of conjugacy (i.e. a class of equivalence for the relation
given by the formal conjugacy) contains a continuous moduli of analytic
classes of conjugacy and a unique analytically trivial class. These properties
are a consequence of the analytic classification of tangent to the identity
diffeomorphisms (cf. [10]).

Remark 2.21. — The pair (ν(φ),Resφ) is a complete system of analytic
invariants for analytically trivial diffeomorphisms in Diff1(C, 0) (cf. [7, The-
orem 5.25] and [10]).

2.4. Adapted vector fields

Let us consider the holomorphic local vector field

Y =
∞∑

j=ν+1
ajy

j ∂

∂y
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where ν > 1 and aν+1 6= 0. Fix a small domain of definition B(0, ε) for
ε > 0. Given µ ∈ S1 we denote by Re(µY ) the real flow of µY , i.e. the flow
of the vector field µY restricted to real times.

Figure 2.1. Dynamics of Re(µY )

We want to describe the dynamics of Re(Y )|B(0,ε). We divide B(0, ε) in
connected sets (or regions in the following discussion) whose Re(µY )|B(0,ε)
trajectories have similar behavior. There are 2ν regions that are invariant
by Re(µY )|B(0,ε) and are shaped as petals (cf. Figure 2.1 where one of
these regions is denoted by R). There are ν regions that are invariant by
the positive flow of Re(µY ) but not for the negative flow (P is one of such
regions in Figure 2.1) and ν regions that are invariant by the negative flow
of Re(µY ) but not for the positive flow (N is an example in Figure 2.1).
Consider now µ ∈ S1 \ {−1, 1}. Then ν of the Re(µY )-invariant regions
are positively invariant by Re(Y ) (the dashed lines in Figure 2.1 corre-
spond to trajectories of Re(Y ) and R is positively invariant). Each of these
regions is contained exactly in one attracting petal of exp(Y ) and every
petal of exp(Y ) contains exactly one of these regions. Moreover if R is a
Re(µY )|B(0,ε)-invariant region contained in the attracting petal P then ev-
ery point y0 ∈ P satisfies φj(y0) ∈ R for any j > j0 and some j0 > 0. Thus
every (injective) Fatou coordinate ψφ of φ defined in R can be extended to
P by using the equation ψφ ◦ φ ≡ ψφ + 1. The other ν invariant regions by
Re(µY ) are in bijective correspondence with the repelling petals of exp(Y )
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and have analogous properties. Such Re(µY )-invariant regions can be gen-
eralized for unfoldings of tangent to the identity maps and thus they can be
used to extend Fatou coordinates to the perturbed parameters x0 6= 0 [17].
The Fatou coordinates of φ ∈ Diff1(C, 0) and an adapted vector field Y

are very similar.

Lemma 2.22 (cf. [10]). — Let φ ∈ Diff(C, 0) \ {Id}. Consider a petal
P of φ. Let Y be a local holomorphic vector field adapted to φ. Then we
obtain

(2.2) lim
y∈P, |Im(ψYP (y))|→∞

(ψφP − ψ
Y
P )(y) = c

for some c ∈ C.

Remark 2.23. — We have limy∈P, y→0 ψ
Y
P (y)yν = −1/(νaν+1) for any

λ ∈ D where aν+1 is given by Expression (2.1). Thus y ∈ P tends to 0 if
and only if ψYP (y) tends to∞. The property Im(ψφP ◦φ) ≡ Im(ψφP) and (2.2)
imply that given y ∈ P the condition |Im(ψYP (y))| → ∞ is equivalent to the
point φj(y) being well-defined for any j ∈ Z and infj∈Z |ψYP (φj(y))| → ∞.
Therefore |Im(ψYP (y))| → ∞ is equivalent to the orbit (φj(y))j∈Z tending
uniformly to the origin. More precisely given ε > 0 there exists C > 0 such
that if y ∈ P and |Im(ψYP (y))| > C then φj(y) is well-defined and belong
to B(0, ε) ∩ P for any j ∈ Z. Reciprocally given ε > 0 there exists M > 0
such that if the orbit (φj(y))j∈Z is well-defined and contained in B(0, ε)∩P
then |Im(ψYP (y))| > M .
The previous discussion implies that the property |Im(ψYP (y))| → ∞

is invariant by topological conjugacy. Indeed if φ is conjugated to η ∈
Diff1(C, 0) (with adapted vector field Z) by a local homeomorphism σ we
obtain

lim
y∈P, |Im(ψYP (y)|→∞

|Im(ψZσ(P)(σ(y))| =∞

where ψZσ(P) is the Fatou coordinate of Z in the petal of η containing σ(P).

2.5. Fatou affine conjugacies

We are ready to introduce the Fatou affine conjugacy and then discussing
its main properties.

Definition 2.24. — Let φ, η ∈ Diff1(C, 0) \ {Id}. Consider a local
homeomorphism σ conjugating φ and η. We say that σ is affine in Fatou
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coordinates (of φ and η) in a petal P of φ|B(0,ε) if there exists a R-linear
isomorphism hP : C→ C such that

(2.3) ψησ(P)(σ(y′))− ψησ(P)(σ(y)) = hP(ψφP(y′)− ψφP(y))

for all y, y′ ∈ P. We say that σ is a Fatou affine conjugacy if it is affine in
Fatou coordinates for every petal of φ|B(0,ε) and some ε > 0.

Remark 2.25. — Since ψφP(y′)−ψφP(y) does not depend on the choice of
the Fatou coordinate ψφP the definition does not depend on the choices of
ψφP and ψησ(P).

Remark 2.26. — The properties ψφP ◦ φ ≡ ψ
φ
P + 1, ψησ(P) ◦ η ≡ ψ

η
σ(P) + 1

and σ ◦ φ ≡ η ◦ σ imply hP(1) = 1 for any petal P of φ.

Remark 2.27. — We claim that the function hP in Definition 2.24 is
uniquely defined in each petal of φ. By fixing y ∈ P and considering y′ ∈ P
in a neighborhood of y we obtain that hP is uniquely defined in a neigh-
borhood of 0. Since hP it R-linear, it is uniquely defined.

Remark 2.28. — Fatou affine conjugacies are real analytic in a pointed
neighborhood of 0.

Next we see that the linear map that describes a Fatou affine conjugacy
is canonically determined and does not depend on the petal.

Lemma 2.29. — Let φ1, φ2 ∈ Diff1(C, 0) \ {Id} that are conjugated by
a Fatou affine conjugacy σ. Then we obtain hP ≡ hQ for all petals P and
Q of φ1.

Proof. — We denote by Yj a vector field adapted to φj for j ∈ {1, 2}. It
suffices to prove hP ≡ hQ for two consecutive petals P and Q of φ1. We
denote by ψ1 a Fatou coordinate of Y1 defined in P ∪ Q. Analogously we
denote by ψ2 a Fatou coordinate of Y2 defined in σ(P ∪Q). We have

(2.4)
lim

y∈P, |Im(ψ1(y))|→∞
(ψφ1
P − ψ1)(y) = 0,

lim
y∈Q, |Im(ψ1(y))|→∞

(ψφ1
Q − ψ1)(y) = 0

and

(2.5)
lim

y∈σ(P),|Im(ψ2(y))|→∞
(ψφ2
σ(P) − ψ2)(y) = 0,

lim
y∈σ(Q),|Im(ψ2(y))|→∞

(ψφ2
σ(Q) − ψ2)(y) = 0
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by Lemma 2.22 up to add additive constants to ψφ1
P , ψφ1

Q , ψφ2
σ(P) and ψ

φ2
σ(Q).

We deduce

(2.6) lim
y∈P∩Q, |Im(ψ1(y))|→∞

(ψφ1
P − ψ

φ1
Q )(y) = 0

and

(2.7) lim
y∈σ(P∩Q), |Im(ψ2(y))|→∞

(ψφ2
σ(P) − ψ

φ2
σ(Q))(y) = 0.

Consider a sequence yn in P ∩ Q such that |Im(ψ1(yn))| → ∞. Fix z ∈ C.
We denote by y′n the point in P such that ψφ1

P (y′n)−ψφ1
P (yn) = z for n� 1.

We have limn→∞ |Im(ψ1(y′n)| =∞ by (2.4). We denote

zn = ψφ1
Q (y′n)− ψφ1

Q (yn)

for n� 1. The sequence (zn)n>1 satisfies limn→∞ zn = z by (2.6). We have

hP(z) = ψφ2
σ(P)(σ(y′n))− ψφ2

σ(P)(σ(yn))

and

hQ(zn) = ψφ2
σ(Q)(σ(y′n))− ψφ2

σ(Q)(σ(yn))

by definition. Since limn→∞ |Im(ψ1(yn))| =∞ and limn→∞ |Im(ψ1(y′n))| =
∞, we obtain

lim
n→∞

|Im(ψ2(σ(yn)))| =∞ and lim
n→∞

|Im(ψ2(σ(y′n)))| =∞

by Remark 2.23. (2.7) implies limn→∞(hP(z) − hQ(zn)) = 0. Since
limn→∞ zn = z and hQ is continuous, we obtain hP(z) = hQ(z) for any
z ∈ C. �

Definition 2.30. — Let φ, η ∈ Diff1(C, 0) \ {Id} that are conjugated
by a Fatou affine conjugacy σ. We denote by hφ,η,σ any of the functions hP
in Definition 2.24. We denote h = hφ,η,σ if the data are implicit.

Remark 2.31. — Let φ, η ∈ Diff1(C, 0) \ {Id} that are conjugated by a
Fatou affine conjugacy σ. It is clear that σ is orientation-preserving if and
only if hφ,η,σ is orientation-preserving.

Remark 2.32. — Let φ, η, ρ ∈ Diff1(C, 0) \ {Id}. Consider a Fatou affine
map σ conjugating φ and η and a Fatou affine map σ′ conjugating η and
ρ. It is immediate to prove that σ′ ◦ σ is a Fatou affine map conjugating φ
and ρ. Moreover we have

hφ,ρ,σ′◦σ = hη,ρ,σ′ ◦ hφ,η,σ and hη,φ,σ−1 = h−1
φ,η,σ.

Fatou affine conjugacies are well-behaved for compositions.
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Next, we see that holomorphic and anti-holomorphic conjugacies are Fa-
tou affine. Moreover such conjugacies can be characterized in terms of the
function h.

Lemma 2.33. — Let φ, η ∈ Diff1(C, 0) \ {Id} that are conjugated by a
local homeomorphism σ. Then σ is holomorphic if and only if σ is Fatou
affine and hφ,η,σ ≡ z. Moreover σ is anti-holomorphic if and only if σ is
Fatou affine and hφ,η,σ ≡ z.

Proof. — Suppose that σ is holomorphic. Given a petal P of φ the map
ψφP ◦ σ−1 is a Fatou coordinate of η in σ(P). As a consequence we obtain
hφ,η,σ ≡ Id.

Suppose that σ is anti-holomorphic. Then the complex conjugate
ψφP ◦ σ−1 of ψφP ◦ σ−1 is a Fatou coordinate of η in σ(P). Hence we get
hφ,η,σ ≡ z.

Suppose hφ,η,σ ≡ z. Hence σ is holomorphic in every petal of φ and it
follows that σ is holomorphic in a pointed neighborhood of the origin. We
obtain that σ is holomorphic by Riemann’s removable singularity theorem.
The anti-holomorphic nature of σ if hφ,η,σ ≡ z is proved analogously. �

Fatou affine conjugacies are interesting because of their connection with
unfoldings. Anyway it is natural to compare this conjugacy with the formal
and analytic conjugacies. It is possible to construct Fatou affine conjugacies
that are not holomorphic or anti-holomorphic if both φ and η are embedded
in analytic flows (see Section 6). They are essentially the only examples.

Proposition 2.34. — Let φ, η ∈ Diff1(C, 0) \ {Id} that are conjugated
by a Fatou affine conjugacy σ. Suppose that either φ or η is non-analytically
trivial. Then either σ is holomorphic or anti-holomorphic.

Proof. — The isomorphism hη,φ,σ−1 is the inverse of hφ,η,σ (Remark 2.32).
Thus we can suppose that φ is non-analytically trivial.
Let P be a petal of φ. Fix y0 ∈ P. We have

ψησ(P)(σ(y)) = ψησ(P)(σ(y0)) + h(ψφP(y)− ψφP(y0))

and then
(ψησ(P) ◦ σ)(y) = ((z + cP) ◦ h ◦ ψφP)(y)

for some cP ∈ C and any y ∈ P. Consider two consecutive petals P and Q
of φ. We consider the change of charts

ψησ(Q) ◦ (ψησ(P))
−1 = (ψησ(Q) ◦ σ) ◦ (ψησ(P) ◦ σ)−1

= (z + cQ) ◦ h ◦ ψφQ ◦ (ψφP)−1 ◦ h−1 ◦ (z − cP).
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Since the left hand side is holomorphic, h ◦ψφQ′ ◦ (ψφP′)−1 ◦h−1 is also holo-
morphic. We denote H = ψφQ′ ◦ (ψφP′)−1, it is holomorphic. The isomor-
phisms h and h−1 are of the form h(z) = ς0z + ς1z and h−1(z) = %0z + %1z

where %0 = ς0/(|ς0|2 − |ς1|2) and %1 = −ς1/(|ς0|2 − |ς1|2). We have

∂(h ◦H ◦ h−1)
∂z

= ∂h

∂z

∂(H ◦ h−1)
∂z

+ ∂h

∂z

∂(H ◦ h−1)
∂z

= ς0
∂H

∂z
%1 + ς1

∂H

∂z
%0 = ς0ς1

|ς0|2 − |ς1|2

(
∂H

∂z
− ∂H

∂z

)
.

Suppose ς1 = 0. Since h(1) = 1 we deduce h ≡ z. Hence σ is holomorphic
by Lemma 2.33. Suppose ς0 = 0. Since h(1) = 1 we deduce h ≡ z. Hence
σ is anti-holomorphic by Lemma 2.33. So we can suppose ς0ς1 6= 0 from
now on. Since h ◦ H ◦ h−1 is holomorphic, we obtain ∂H/∂z ≡ ∂H/∂z.
The function ∂H/∂z is real and then locally constant by the open map
theorem. Therefore H is of the form az + b for some constants a, b ∈ C in
every connected component of P ∩ Q. The constant a is equal to 1 since
H(z+ 1) ≡ H(z) + 1. We obtain ∂(ψφQ−ψ

φ
P)

∂y ≡ 0. The last property does not
hold true for every pair of consecutive petals of φ by hypothesis. Thus σ is
either holomorphic or anti-holomorphic. �

Corollary 2.35. — Let φ, η ∈ Diff1(C, 0) \ {Id} that are Fatou affine
conjugated. Then φ is analytically trivial if and only if η is analytically
trivial.

Proposition 2.34 describes the generic invariance of the analytic classes of
the diffeomorphisms by Fatou affine conjugacy in the orientation-preserving
case. The next result describes the action on formal invariants.

Proposition 2.36. — Let φ, η ∈ Diff1(C, 0) \ {Id} that are conjugated
by a Fatou affine conjugacy σ. Then we have

hφ,η,σ(2π i Resφ) = 2π i Resη or hφ,η,σ(2π i Resφ) = −2π i Resη
(see Definition 2.6) depending on whether or not σ is orientation-preserving.
In particular Re(Resφ) and Re(Resη) have the same sign.

Proof. — By convention the sign of a real number can be positive, neg-
ative or 0. We denote Rφ = Resφ and Rη = Resη. Suppose that either φ
or η is non-analytically trivial. If σ is orientation-preserving then h ≡ z

and σ is holomorphic by Proposition 2.34. The result is a consequence of
the residues being analytic invariants. If σ is orientation-reversing then σ
is anti-holomorphic and h ≡ z by Proposition 2.34. The equation Rη = Rφ
implies h(2π iRφ) = −2π iRη.
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Suppose that both φ and η are analytically trivial. Let Y and Z be the
local vector fields such that φ = exp(Y ) and η = exp(Z). Consider Fatou
coordinates ψY and ψZ of Y and Z respectively. The complex number
2π iRφ is the additive monodromy of ψY along a path turning once around
the origin in counter clock wise sense. Since we have

(ψZ ◦ σ)(y) ≡ (h ◦ ψY )(y) + c

for some c ∈ C then h(2π iRφ) = ±2π iRη depending on whether h is
orientation-preserving or orientation-reversing.
Suppose that h is orientation-preserving. We obtain

sign(Re(Rη)) = sign(Im(h(2π iRφ))) = sign(Im(2π iRφ)) = sign(Re(Rφ)).

We have

sign(Re(Rη)) =− sign(Im(h(2π iRφ))) = sign(Im(2π iRφ)) = sign(Re(Rφ))

when h is orientation-reversing. �

2.6. Analytically trivial case

In this section we further study the properties of Fatou affine conjugacies
in the analytically trivial case. Examples of the specific kind of behavior
described in next propositions for unfoldings are presented in Section 6.

Consider φ, η ∈ Diff1(C, 0)\{Id} and a Fatou affine topological conjugacy
σ. Suppose that φ is analytically trivial. The R-linear map hφ,η,σ satisfies
two conditions, namely

(2.8) h(1) = 1 and h(2π i Resφ) = ±2π i Resη .

The sign in the second equation depends on whether σ is orientation-
preserving or orientation-reversing. These equations are independent if and
only if {1, 2π i Resφ} is a base of C as a R-vector space. Indeed if Resφ ∈ iR
then (2.8) does not impose any condition on h(i). As a consequence there
are plenty of Fatou affine maps conjugating φ and η but φ and η are always
analytically or anti-analytically conjugated. On the other hand if Resφ 6∈ iR
then (2.8) determines h and there is rigidity of conjugacies. In fact there
are at most two conjugacies (up to precomposition with elements of the
center of φ in Diff(C, 0)) and in general none of them is holomorphic or
anti-holomorphic.
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Proposition 2.37. — Let φ, η ∈ Diff1(C, 0) \ {Id} that are conjugated
by a Fatou affine conjugacy σ. Suppose that either φ or η is analytically
trivial. Suppose that either Resφ ∈ iR or Resη ∈ iR. Then φ and η are ana-
lytically conjugated (resp. anti-analytically conjugated) if σ is orientation-
preserving (resp. orientation-reversing).

Proof. — Notice that ν(φ) = ν(η) by Remark 2.7. Both residues Resφ
and Resη belong to iR by Proposition 2.36. Suppose that σ is orientation-
preserving. The map h satisfies h|R ≡ Id since h is R-linear and h(1) = 1
by Remark 2.26. Then we have

2π i Resφ = h(2π i Resφ) = 2π i Resη
by Proposition 2.36. Since ν(φ) = ν(η), Resφ = Resη and φ, η are an-
alytically trivial, we obtain that φ and η are analytically conjugated by
Remark 2.21.
Suppose that σ is orientation-reversing on the parameter space. We have

2π i Resφ = h(2π i Resφ) = −2π i Resη = 2π i Resη
by Proposition 2.36. Since ν(φ) = ν(η), Resφ = Resη and φ, η are analyti-
cally trivial, φ, η are anti-holomorphically conjugated. �

Corollary 2.38. — Let φ, η be analytically trivial elements of
Diff1(C, 0)\{Id} such that either Resφ ∈ iR or Resη ∈ iR. Then φ and η are
Fatou affine conjugated if and only if ν(φ) = ν(η) and Resη ∈ {Resφ,Resφ}.

Now we deal with the case in which we have rigidity of conjugating maps.

Proposition 2.39. — Let φ, η ∈ Diff1(C, 0) \ {Id} that are conjugated
by a Fatou affine conjugacy σ. Suppose that either φ or η is analytically
trivial. Suppose that either Resφ 6∈ iR or Resη 6∈ iR. Then

• If σ is orientation-preserving then σ is holomorphic iff Resφ = Resη.
• If σ is orientation-reversing then σ is anti-holomorphic iff Resφ =

Resη.
• If Resφ = Resη ∈ R∗ then σ is holomorphic or anti-holomorphic.
• If Resφ 6∈ {Resη,Resη} then φ and η are neither holomorphically
nor anti-holomorphically conjugated. In particular σ is neither holo-
morphic nor anti-holomorphic.

Consider a pair of homeomorphisms σ, σ̃ conjugating φ, η and such that
both are orientation-preserving or orientation-reversing. Then we obtain
σ̃ = σ ◦ υ for some holomorphic υ ∈ Diff(C, 0) commuting with φ.

Proof. — We denote Rφ = Resφ and Rη = Resη. The isomorphism h sat-
isfies h(2π iRφ) = ±2π iRη (Proposition 2.36) and h|R ≡ Id (Remark 2.26).
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Thus h depends only on whether or not σ is orientation-preserving. We de-
duce

hφ,φ,σ−1◦σ̃ = h−1
φ,η,σ ◦ hφ,η,σ̃ = Id

if σ, σ̃ have the same orientation by Remark 2.32. The map σ−1 ◦ σ̃ is
holomorphic (Lemma 2.33) and commutes with φ.

Suppose that σ is orientation-preserving. The equation h(2π iRφ) =
2π iRη in Proposition 2.36 implies that h ≡ z is equivalent to Rφ = Rη.
Hence σ is holomorphic if and only if Rφ = Rη by Lemma 2.33.

Suppose that σ is orientation-reversing. The equation h(2π iRφ) =
−2π iRη in Proposition 2.36 implies that h ≡ z is equivalent to Rφ = Rη.
Hence σ is anti-holomorphic if and only if Rφ = Rη by Lemma 2.33.
The third item is a consequence of the previous ones. Suppose Rφ 6∈

{Rη, Rη}. Then φ and η are neither holomorphically nor anti-holomorphi-
cally conjugated. �

In the cases that we described so far we have that φ, η ∈ Diff1(C, 0) are
conjugated by an orientation-preserving (resp. orientation-reversing) local
Fatou affine conjugacy if and only if they are holomorphically (resp. anti-
holomorphically) conjugated. This is not always the case by next proposi-
tion.

Proposition 2.40. — Let φ, η be analytically trivial elements of
Diff1(C, 0) \ {Id} such that either Resφ 6∈ iR or Resη 6∈ iR. Then φ and η
are Fatou affine conjugated if and only if ν(φ) = ν(η) and Re(Resφ) and
Re(Resη) have the same sign.

Proof. — The sufficient part is a consequence of Remark 2.7 and Propo-
sition 2.36. Let us show the necessary part. We have φ = exp(Y ) and
η = exp(Z) where Y, Z are local holomorphic vector fields defined in a
neighborhood of 0 such that Y (0) = Z(0) = 0 by hypothesis. We denote
by ψY and ψZ Fatou coordinates of Y and Z respectively.
We denote Rφ = Resφ and Rη = Resη. Since Re(Rφ) Re(Rη) > 0, there

exists an orientation-preserving R-linear isomorphism h such that

h(1) = 1 and h(2π iRφ) = 2π iRη.

Given a petal P of φ we consider the function h◦ψY . It is a Fatou coordinate
since

(h ◦ ψY )(φ(y)) = h(ψY (y) + 1) = (h ◦ ψY )(y) + 1
except for the fact that h◦ψY is not holomorphic. Then σ := (ψZ)−1◦h◦ψY
is defined in every petal of φ and conjugates φ and η. The unique problem
to obtain a conjugacy defined in a neighborhood of 0 is that the Fatou
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coordinates ψY and ψZ are not univalued. The monodromy of ψY and ψZ
is 2π iRφ and 2π iRη respectively. It suffices to show that

(ψZ)−1 ◦ h ◦ ψY = [(z + 2π iRη) ◦ ψZ ]−1 ◦ h ◦ [(z + 2π iRφ) ◦ ψY ]

in order to show that σ is univalued. But such property holds since we have

(z + 2π iRη)−1 ◦ h ◦ (z + 2π iRφ) ≡ h

by construction of h. �

Remark 2.41. — Let

φ = exp
(
yν+1

1 + yν
∂

∂y

)
and η = exp

(
yν+1

1 + 2yν
∂

∂y

)
for some fixed ν > 1. Since Resφ = 1 and Resη = 2, they are conjugated
by an orientation-preserving Fatou affine local conjugacy σ by the proof of
Proposition 2.40. Moreover y ◦η ◦y = η implies that y ◦σ is an orientation-
reversing local homeomorphism conjugating φ and η and indeed it is a
Fatou affine conjugacy. Anyway φ and η are neither holomorphically nor
anti-holomorphically conjugated since Resφ 6∈ {Resη,Resη}.

3. Unfoldings of tangent to the identity diffeomorphisms

We study the properties of the topological conjugacy of unfoldings of
tangent to the identity diffeomorphisms in one variable. In order to treat
this problem the main tools are the so called Long Orbits (Section 4). In
this section we prepare the unfoldings to make the description of Long
Orbits simpler.

3.1. Preparation results for unfoldings

Next, we introduce the unfoldings that are the object of this paper.

Definition 3.1. — Given un unfolding φ(x, y) = (x, f(x, y)) we denote
by φx0 the restriction to φ to the line x = x0, i.e. we have φx0(y) = f(x0, y).

Definition 3.2. — Let φ0 ∈ Diff(C, 0) be a local diffeomorphism that
has a double fixed point at the origin. We say that an unfolding φ(x, y) =
(x, f(x, y)) of φ0 is generic if ∂f∂x (0, 0) 6= 0. In this case we also say that φ
is a saddle-node unfolding.
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We will establish at several points the parallelisms and differences be-
tween this setting and the case of saddle-node arcs treated in the introduc-
tion. For instance in [14] the authors compare the dynamics of a saddle-node
arc φ with the time 1 flow of a suitable vector field Y , the so called adapted
vector field. The dynamics of exp(Y ) is simpler than the dynamics of φ but
anyway is a “good” approximation. We also provide a definition of adapted
vector field in our context.

Definition 3.3. — Let φ ∈ Diff(C2, 0) be a saddle-node unfolding. Let

Y = g(x, y) ∂
∂y

be a local vector field singular at the origin (i.e. g ∈ C{x, y} and g(0) = 0).
We say that Y is adapted to φ if y ◦ φ − y ◦ exp(Y ) belongs to the ideal
(f(x, y)− y)2.

The definition is analogous to the Definition 2.4 for dimension 1. In
both cases we require that the components of φ − exp(Y ) belong to the
square of the ideal of fixed points. Our condition is not the same as in [14];
ours involves the Taylor expansion along Fix(φ) whereas theirs is about the
Taylor expansion at 0 (plus the property φ0 = exp(Y )0 that can not happen
in our setting whenever φ0 is not analytically trivial). Our definition implies
that φ and exp(Y ) are formally conjugated by a map σ(x, y) = (x, ĝ(x, y)) ∈
D̂iff(C2, 0) such that σ|Fix(φ) ≡ Id, i.e. ĝ(x, y) − y belongs to the radical
ideal of the ideal (y◦φ−y) of the ring C[[x, y]] [16, Propositions 1.3 and 5.12].

Let us prepare a saddle-node unfolding such that it has a simple adapted
vector field.

Proposition 3.4. — Let φ(x, y) = (x, f(x, y)) ∈ Diff(C2, 0) be an un-
folding of a local diffeomorphism φ0(y) that has a double fixed point at
the origin. Then up to a holomorphic change of coordinates of the form
(x, g2(x, y)) we can suppose that φ is of the form

(3.1) φ(x, y) = exp
(
y2 − a(x)
1 + b(x)y

∂

∂y

)
+
(
0, O((y2 − a(x))2)

)
.

Proof. — We denote h(x, y) = f(x, y) − y. The diffeomorphism φ is of
the form

φ(x, y) = exp
(
ûh

∂

∂y

)
=

x, ∞∑
j=0

(
ûh

∂

∂y

)j
(y)


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where û ∈ C[[x, y]] is a formal unit [16, Proposition 3.3]. Let us clarify that
(ûh∂/∂y)j(y) is the power series obtained by applying j times the deriva-
tion ûh∂/∂y to y where (ûh∂/∂y)0(y) ≡ y. If û belongs to C{x, y} then φ
is just the time 1 flow of ûh∂/∂y. Moreover there exists a unit u ∈ C{x, y}
such that û− u belongs to the ideal (h) of C[[x, y]] [16, Proposition 4.4 and
Lemma 4.7]. We denote Y = uh∂/∂y and η = exp(Y ). Since y ◦ φ − y ◦ η
belongs to the ideal (h2), η0 has a double fixed point.

Kostov’s theorem on versal deformations of vector fields implies that up
to a conjugacy of the form (x,d(x, y)) the vector field Y is of the form
y2−a(x)
1+b(x)y

∂
∂y ([8], cf. [16, Proposition 5.14]). Since h = 0 is the equation of

the fixed point set of the unfolding and y ◦ φ− y ◦ η ∈ (h2), the conjugacy
that transforms η into exp

(y2−a(x)
1+b(x)y

∂
∂y

)
it also transforms φ into Expres-

sion (3.1). �

Proposition 3.5. — Let φ be a saddle-node unfolding. Then up to
a holomorphic change of coordinates of the form (g1(x), g2(x, y)) we can
suppose that φ is of the form

(3.2) φ(x, y) = exp (Y ) (x, y) +
(
0, O((y2 − x)2)

)
where Y = y2−x

1+b(x)y
∂
∂y . In particular the vector field Y is adapted to φ.

This result is analogous to Theorem 2.1 of [3].
Proof. — We consider the notations in Proposition 3.4. Since y ◦ φ −

y ◦ η belongs to the ideal (h2), we have ∂(y◦η)
∂x (0, 0) 6= 0. This implies

∂a(x)
∂x (0, 0) 6= 0. The vector field Y is of the form y2−a(x)

1+c(x)y
∂
∂y by the proof of

Proposition 3.4. It follows that Y is of the form y2−x
1+b(x)y

∂
∂y up to a change of

coordinates in the x variable. Since h = 0 is the equation of the fixed point
set of the unfolding and y ◦φ− y ◦ η ∈ (h2), the conjugacy that transforms
η into exp

(
y2−x

1+b(x)y
∂
∂y

)
also transforms φ into Expression (3.2). �

Definition 3.6. — Given an unfolding φ in prepared form (3.2) we
denote the function b(x) by bφ(x).

3.2. Topological invariance of genericity

Consider an unfolding φ(x, y) = (x, f(x, y)) ∈ Diff(C2, 0) that is con-
jugated to an unfolding η of a local diffeomorphism η0 that has a double
fixed point at the origin. Then obviously φ0 has a double fixed point at the
origin. Moreover we will see that φ is a saddle-node unfolding when η is a
saddle-node unfolding.
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Let φ(x, y) = (x, f(x, y)) ∈ Diff(C2, 0) be an unfolding of a local diffeo-
morphism φ0(y) that has a double fixed point at the origin in prepared
form (3.1).

Definition 3.7. — We say that a parameter x0 is neutral if it supports
a neutral fixed point of φ. More precisely, the set Nφ of neutral parameters
is defined by

Nφ =
{
x ∈ C :

∣∣∣∣∂f∂y (x,
√
a(x))

∣∣∣∣ = 1 or
∣∣∣∣∂f∂y (x,−

√
a(x))

∣∣∣∣ = 1
}
.

We say that x0 is neutral of multiplicity 1 if just one of the fixed points
(x0,

√
a(x0)), (x0,−

√
a(x0)) is neutral. If both points (x0,

√
a(x0)),

(x0,−
√
a(x0)) are neutral then we say that x0 is neutral of multiplicity 2.

The set of neutral parameters is a topological invariant. Roughly speak-
ing it depends uniquely on the curve of fixed points.

Lemma 3.8. — Let φ be an unfolding in prepared form (3.1) with a 6≡ 0.
Then up to ramification x = w2 the set of neutral parameters is a union of
finitely many branches of real analytic curves. Moreover there are 2ν such
branches of neutral parameters counted with multiplicity where ν is the
vanishing order of a(x) at x = 0.

Proof. — The set Nφ of neutral parameters satisfies
(3.3)

Nφ =
{
x∈C : Re

(
2
√
a(x)

1+b(x)
√
a(x)

)
= 0 or Re

(
−

2
√
a(x)

1− b(x)
√
a(x)

)
= 0
}
.

by (3.1). Consider the ramification x = w2. We denote

h±(x) =
±2
√
a(x)

1± b(x)
√
a(x)

and E± = {w ∈ C∗ : Re(h±(w2)) = 0}.

The function h±(w2) is holomorphic in a neighborhood of 0 and its vanish-
ing order at w = 0 is equal to ν. Up to a holomorphic change of coordinates
w = η(w′), it is of the form (w′)ν . We deduce that Re(h+(w2)) = 0 con-
sists of 2ν branches of real analytic curves. Analogously Re(h−(w2)) = 0
consists of 2ν branches of real analytic curves. Notice that a branch of
E+ ∪ E− has multiplicity 2 if and only if it is contained in E+ ∩ E−. As
a consequence E+ ∪ E− consists of 4ν branches counted with multiplicity.
By undoing the ramification we obtain that Nφ has 2ν branches counted
with multiplicity. �
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Remark 3.9. — In general an unfolding has no multiplicity 2 branches
of neutral parameters. Consider an unfolding in prepared form (3.1). A
neutral parameter x0 of multiplicity 2 satisfies

Re
(

1 + b(x0)
√
a(x0)

2
√
a(x0)

)
= 0 and Re

(
−1 + b(x0)

√
a(x0)

2
√
a(x0)

)
= 0.

By adding the previous expressions we obtain that b(x0) is a purely imag-
inary number. Moreover since (2

√
a(x0))−1 + b(x0)/2 is purely imaginary,

it follows that a(x0) is a negative real number. Therefore

N ′ = {x ∈ C∗ : a(x) ∈ R− and Re(b(x)) = 0}

is the set of neutral parameters of multiplicity 2. In general N ′ is empty,
for instance if b(0) ∈ R∗.

Next we show the main result of this subsection.

Proposition 3.10. — Let φ be a saddle-node unfolding. Suppose that
φ is topologically conjugated to a holomorphic unfolding

η(x, y) = (x, g(x, y)) ∈ Diff(C2, 0).

Then η is a saddle-node unfolding.

Proof. — We can suppose

η(x, y) = exp
(
y2 − a(x)
1 + bη(x)y

∂

∂y

)
+
(
0, O((y2 − a(x))2)

)
by Proposition 3.4. There are two fixed points of η in every line x = x0 with
x0 6= 0 except if a ≡ 0. In particular any unfolding topologically conjugated
to a generic one satisfies a 6≡ 0. We denote by ν the vanishing order of
a(x) at x = 0. There are 2ν branches of neutral parameters counted with
multiplicity by Lemma 3.8. Analogously a generic unfolding has 2 branches
of neutral parameters counted with multiplicity. Since neutral fixed points
are topological invariants, we deduce that φ and η have the same number of
branches of neutral parameters counted with multiplicity. We obtain ν = 1
and as a consequence η is a generic unfolding. �

Remark 3.11. — In all results in the introduction it suffices to suppose
that at least one of the unfoldings φ, η is a saddle-node unfolding by Propo-
sition 3.10
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3.3. Example

Let φ(x, y) = (x, f(x, y)) ∈ Diff(C2, 0) be a saddle-node unfolding. Sup-
pose f ∈ R{x, y}. We consider the following questions: is it possible to have
neutral parameters of multiplicity 2? When? What is the relation between
the properties of φ and the saddle-node arc (φx(y))x∈R?
The multiplicators of φx at its fixed points are of the form

λ+(x) := exp
(

2
√
α(x)

1 + β(x)
√
α(x)

)
and λ−(x) := exp

(
−

2
√
α(x)

1− β(x)
√
α(x)

)
for some α, β ∈ C{x} such that (∂α/∂x)(0) 6= 0. Indeed given a prepared
unfolding η topologically conjugated to φ of the form (3.1) the multiplica-
tors of ηx a its fixed points are

exp
(

2
√
a(x)

1 + b(x)
√
a(x)

)
and exp

(
−

2
√
a(x)

1− b(x)
√
a(x)

)
.

As a consequence we obtain α = a◦σ and β = b◦σ for some σ ∈ Diff(C, 0).
Analogously as in Remark 3.9 we have that

(3.4) N ′ := {x ∈ C∗ : α(x) ∈ R− and Re(β(x)) = 0}

is the set of neutral parameters of multiplicity 2.
We define

Σ(x) = 1
log λ+(x) + 1

log λ−(x) and D(x) =
(

1
log λ+(x) −

1
log λ−(x)

)2
.

The function Σ is holomorphic in a neighborhood of the origin since Σ ≡ β.
The function D(x) is meromorphic with a pole of order 1 at 0 since D ≡
α−1.

The condition f ∈ R{x, y} implies {λ+(x), λ−(x)} = {λ+(x), λ−(x)} for
any x ∈ C∗ in a neighborhood of 0. Therefore we obtain Σ(x) ≡ Σ(x)
and D(x) ≡ D(x). As a consequence α and β belong to R{x}. Since
(∂α/∂x)(0) 6= 0 and α ∈ R{x}, the set {x ∈ C∗ : α(x) ∈ R−} is con-
tained in R. Since the image of β|R is contained in R, we get N ′ ⊂ {x ∈
C∗ : β(x) = 0}. In particular if N ′ is non-empty then β ≡ 0 by the isolated
zeros principle. The reciprocal also holds by (3.4). Notice that the property
β ≡ 0 is equivalent to b ≡ 0. We proved

Proposition 3.12. — Let φ(x, y) = (x, f(x, y)) ∈ Diff(C2, 0) be a
saddle-node unfolding. Suppose f ∈ R{x, y}. Then there exists a branch of
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neutral parameters of multiplicity 2 if and only if the prepared form of φ
is of the form

φ(x, y) = exp
(

(y2 − x) ∂
∂y

)
+
(
0, O((y2 − x)2)

)
.

Remark 3.13. — Let φ(x, y) = (x, f(x, y)) ∈ Diff(C2, 0) be a saddle-node
unfolding with f ∈ R{x, y}. Since φ(R2) ⊂ R2, φ induces a saddle-node arc
and we can apply the ideas in [14]. In particular the orbits through points
of the form (x, y0) where x < 0 is close to 0 and y0 < 0 accumulate
to any point of the form (0, y1) with y1 > 0. As an example consider
φ = exp((y2−x)∂/∂y). Given y0 < 0 and y1 > 0 let (xn)n>1 be a sequence
of negative real numbers such that limn→∞ xn = 0 and

Tn := −1
y1

+ 1
y0

+ π√
|xn|

∈ N

for any n ∈ N. We have limn→∞ φTn(xn, y0) = (0, y1). We do not make here
the calculations. The property is a consequence of (4.3) in Proposition 4.18.
The orbits through points of the form (x, y0) with x ∈ R can not accu-

mulate in points of the form (0, y) with y 6∈ R since φ(R2) ⊂ R2. The value
of a topological conjugacy σ at points (0, y) with y > 0 is related to the
value at the point (0, y0). This is a key property in showing the rigidity
results in [14]. In our case the petal P of φ0 containing R+ is an open set
and then we are missing almost the whole petal. We are forced to leave the
setting in [14] and consider orbits outside of R2 to relate σ(0, y0) with the
value of σ at every point of P, namely φ-orbits through points of the form
(x, y0) where x lies in an open set β and x is close to 0. As a consequence
of using non-real parameters, we can not suppose anymore that φx is a
1-dimensional real dynamical system and we are in a pure 2-dimensional
case for x ∈ β.

4. Long Orbits

Consider a saddle-node unfolding φ in prepared form (3.2). Now our
goal is introducing Long Orbits, showing their existence, properties and
connections with [14]. Roughly speaking, we consider sections (x, υ′(x)) :
β ∪ {0} → C × B(0, ε), where υ′(0) belongs to the attracting petal of φ0
and β is a connected set with 0 ∈ β, such that the limit of the orbits
of φ through (x, υ′(x)) splits in two orbits in the limit. One of the orbits
is obviously the orbit through υ′(0) whereas the other orbit consists of
points y− in the repelling petal of φ0 such that to go from (x, υ′(x)) to a
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neighborhood of (0, y−) we have to iterate φ a number of times T (x) that
tends to ∞ when x → 0. This is a non-generic phenomenon that happens
in the neighborhood of the negative real line in the parameter space. An
example is provided in Remark 3.13.
In [14] the dynamics of a saddle-node arc is compared to the dynamics

of the time 1 flow of its adapted vector field. We will develop the same
strategy but we do not need to work with estimates of the deviation of the
dynamics of a saddle-node unfolding φ with respect to exp(Y ) where Y is
an adapted vector field. The comparison result that we need can be deduced
immediately of the properties of the extension of the Fatou coordinates of
φ0 to the nearby parameters that we obtained in [17] and more precisely
of Proposition 7.3.

4.1. The polynomial vector field (t2 + 1)∂/∂t.

Let us recap briefly some results of [17]. Let φ be a saddle-node unfolding
in prepared form (3.2). We consider unfoldings in [17] whose fixed point set
is of the form {f(x, y) = 0} where f(x, y) is of the form

∏a
j=1(y−gj(x))nj .

In order to bring our case to such a setting, we make a ramification x =
−w2. The vector field Y and the diffeomorphism φ are transformed into

y2 + w2

1 + b(−w2)y
∂

∂y

and
φ(w, y) = exp

(
y2 + w2

1 + b(−w2)y
∂

∂y

)
+
(
0, O((y2 + w2)2)

)
.

Next we associate to φ a polynomial vector field Z whose properties de-
termine the domains of definition of extensions of Fatou coordinates (of
the petals) of φ0 to the nearby parameters. We consider the blow-up of
the origin of C2 and coordinates w = w, y = wt in the first chart of the
blow-up. The transform of Y in the new coordinates (w, t) is equal to

Y = w2 t2 + 1
1 + b(−w2)wt

1
w

∂

∂t
= w

t2 + 1
1 + b(−w2)wt

∂

∂t
.

We define the vector field

Z ′ = (t2 + 1) ∂
∂t

;

it is a polynomial vector field in the variable t. The vector field

Z = w(t2 + 1) ∂
∂t
.
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is the polynomial vector field associated to Y . Let us explain the idea
behind the definition of Z. The real flows of Re(Y ) and Re(|w|−1Y ) have
the same trajectories outside w = 0 up to a reparametrization of time.
Given a sequence of points (wn)n>1 in C∗ such that limn→0 wn = 0 and
limn→∞ wn/|wn| = λ ∈ S1, the vector field Re(|w|−1Y )|w=wn tends to
Re(λZ ′) when n→∞ in any domain of the form

(4.1) {(w, t) ∈ B(0, δ)×B(0, ε0)} = {(w, y) ∈ B(0, δ)× C : |y| < ε0|w|}.

This is also the limit of Re(|w|−1Z)|w=wn when n→∞. So it makes sense
to consider the simpler vector field Z when studying the real flow of Y
in “infinitesimal domains” of the form (4.1). In order to obtain extensions
of Fatou coordinates of φ0 ∈ Diff1(C, 0) for a general unfolding φ, further
blow-ups are considered (and hence more polynomial vector fields are as-
sociated to φ) until all the irreducible components of f = 0 separate. In
our case the curve t2 + 1 = 0 has two irreducible components t+ i = 0 and
t− i = 0 that pass through different points of w = 0. So they are separated
in the first step and we do not need to continue the process.
Notice that given w0 and w1 such that w1/w0 ∈ R+ the dynamics of

Re(Z)|w=w0 and Re(Z)|w=w1 are orbitally equivalent.

Definition 4.1. — A direction λR+ in the w-parameter space is a sta-
ble direction of Re(Y ) if Re(µλZ ′) is orbitally equivalent to Re(λZ ′) for
any µ ∈ S1 in a neighborhood of 1.

Remark 4.2. — It is easy to see that in our case λR+ is an unstable
direction if and only if the multiplicator of λZ ′ at both singular points
is an imaginary number. Indeed it is known that λR+ is unstable if and
only if Re(λZ ′) has homoclinic trajectories, i.e. trajectories γ : (a, b) → C
of Re(λZ ′) such that lims→a γ(s) = ∞ = lims→b γ(s) [4]. Moreover, if
]Sing(Z ′) = 2 then Re(λZ ′) has a homoclinic trajectory if and only if the
multiplicators in the singular points are imaginary (cf. [17, Lemma 6.7]).
Since − i and i are the singular points of Z and the multiplicator of Z at
these points is −2 iw and 2 iw respectively, we obtain that

U := {R+,R−}

is the set of unstable directions of Re(Y ). Since x = −w2, it follows that
these directions correspond to the direction R− in the x-parameter. Notice
that the directions in U are stable for Re(iZ). The vector field Re(iY ) can
be used to construct regions that support Fatou coordinates [17].

Remark 4.3. — The existence of Long Orbits is related to the existence
of unstable directions. Indeed the Long Orbits will be constructed in the
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neighborhood of the unique direction of instability R− in the x-parameter
space.

Remark 4.4. — Even if there are no multiplicity 2 branches of neutral
parameters in general, somehow they can be found in the infinitesimal
setting. Notice that both singular points of Re((t2 + 1)∂/∂t) are neutral.
Roughly speaking, we can say that the direction R− (in the x-parameter)
is infinitesimally a direction of neutral parameters of multiplicity 2.

4.2. Construction of extensions of Fatou coordinates

The unperturbed diffeomorphism φ0 (of the saddle-unfolding φ) has two
petals.

Definition 4.5. — We denote by P+ (resp. P−) the attracting (resp.
repelling) petal of (φ0)|B(0,ε) for some ε > 0 small enough.

We are going to extend the Fatou coordinates of φ0 in P+ and P− to
the nearby parameters in the neighborhood of the direction R− of the
parameter space. We will follow the approach in [17] (see also [12]).

4.2.1. Domains of definition of Fatou coordinates

Given any ε > 0 sufficiently small consider the set T εY (x0) of tangency
points between {x0} × ∂B(0, ε) and Re(iY ); it has exactly two points.
Moreover we have T εY (x0) = {T+(x0), T−(x0)} where T± is continuous and
defined in a neighborhood of x0 = 0 [17, Remark 6.1].

We can suppose up to renaming the tangent points that Re(Y ) points to-
wards the interior (resp. exterior) of {x0}×B(0, ε) at T+(x0) (resp. T−(x0))
for any x0 in a neighborhood of 0 in C (see Figure 4.1 where the contin-
uous lines are trajectories of Re(iY ) and the dashed lines are trajectories
of Re(Y )). Both points T+(x0) and T−(x0) are convex, meaning that for
any x0 close to 0, there exists a > 0 such that exp(i tY )(T±(x0)) belongs
to {x0} ×B(0, ε) for any t ∈ (−a, 0) ∪ (0, a) [17, Lemma 6.1].
Let us study the dynamics of =(Y ) = Re(iY ) for the x-parameters in the

neighborhood of the direction R−. It depends on the polynomial vector field
Z. All vector fields of the form Re(ei θ iZ ′) are pairwise orbitally conjugated
for any θ ∈ (−π/2, π/2). This is key to define Fatou coordinates of φ over
sectors of the form {r ei θ : r ∈ R+, θ ∈ (−ι, ι)} in the w-coordinate where
0 < ι < π/2, or equivalently sectors of the form

Sι := {−r ei θ : r ∈ R+ ∪ {0}, θ ∈ [−ι, ι]}
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in the x-variable where ι ∈ (0, π) (cf. Definition 4.6). The stability of
Re(ei θ iZ ′) for θ ∈ (−π/2, π/2) implies the stability of =(Y ) over Sι. In
particular we obtain

{exp(i tY )(T+(−r ei θ)), exp(i tY )(T−(−r ei θ))} ⊂ C×B(0, ε)

for all r ∈ R+ ∪ {0} in a neighborhood of 0, θ ∈ [−ι, ι] and t ∈ R \ {0} [17,
Lemma 6.13]. Consider a determination

√
x of the square root in Sι such

that
√
−1 = i. We have

lim
t→∞

exp(i tY )(T+(x)) = lim
t→∞

exp(i tY )(T−(x)) = (x,
√
x)

and

lim
t→−∞

exp(i tY )(T+(x)) = lim
t→−∞

exp(i tY )(T−(x)) = (x,−
√
x)

for all x ∈ Sι in a neighborhood of 0 [17, Lemma 6.13]. Notice that the point
y =
√
x (resp. y = −

√
x) is an attractor (resp. a repeller) of =(Y )(x, ·) for

any x close to 0 in Sι \ {0}.
Let x0 ∈ Sι in a neighborhood of 0. Consider the support γ±(x0) of the

trajectory of =(Y ) through T±(x0). We denote

γ(x0) = γ+(x0) ∪ γ−(x0) ∪ {
√
x0,−

√
x0},

it is a curve contained in the line x = x0. Moreover γ(x0) is a closed simple
curve for any x0 in Sι \ {0} close to 0.

Definition 4.6. — We denote by H+(x0) (resp. H−(x0)) the bounded
connected of the complementary of γ(x0) in x = x0 whose closure contains
T+(x0) (resp. T−(x0)). We denote

H(x0) = H+(x0) ∪H−(x0).

We have H+(x0) = H−(x0) if x0 6= 0 and H+(x0) ∩H−(x0) = ∅ if x0 = 0.
We denote

H+ = ∪x∈Sι,|x|<δH+(x), H− = ∪x∈Sι,|x|<δH−(x)

and
H = ∪x∈Sι,|x|<δH(x)

for some δ > 0 sufficiently small.

Notice that Figure 4.1 for x = 0 corresponds to the dynamics in Fig-
ure 2.1 for the case of just two petals.
By construction the vector field Re(Y ) points towards the interior (resp.

exterior) of H(x0) at the point T+(x0) (resp. T−(x0)) for any x0 ∈ Sι close
to 0.
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Figure 4.1. Dynamics of Re(iY )

4.2.2. Construction of Fatou coordinates

Next we define a Fatou coordinate ψY+ of the vector field Y in H+ Since
H+(x0) is simply connected for any x0 ∈ Sι, it suffices to define ψY+ in a
neighborhood of T+(0) and then extending ψY+ to H+ by analytic contin-
uation. We can define ψY− in a neighborhood of T−(0) by making analytic
continuation of ψY+ along a simple path in {0}×∂B(0, ε) going from T+(0)
to T−(0) in counterclockwise sense. Analogously as for ψY+ we can extend
analytically ψY− to H−.

The dual form of Y is equal to

ω := 1 + bφ(x)y
y2 − x

dy,

i.e. we have ω(Y ) ≡ 1. Since Fatou coordinates are primitives of ω in the
lines x = x0, the difference ψY−(x0, · )− ψY+(x0, · ) in H(x0) is equal to the
integral of ω along a simple closed path turning once around the point
−√x0 once in counterclockwise sense in the line x = x0. We obtain

(4.2) ψY−(x, y)− ψY+(x, y) = 2π i
(
−1

2
√
x

+ bφ(x)
2

)
= − π i√

x
+ π i bφ(x)

by the residue formula.
The following results can be found in [17].

Lemma 4.7 ([17, Lemma 7.8]). — There exists a Fatou coordinate ψφ+
(resp. ψφ−) of φ defined in H+ (resp. H−). Moreover we can choose ψφ+ and
ψφ− such that

ψφ+ − ψY+ ≡ ψ
φ
− − ψY− .

Proposition 4.8 ([17, Proposition 7.2]). — The map (x, ψφ±) is contin-
uous and injective in H± and holomorphic in the interior of H.
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Definition 4.9. — We define ψφ − ψY as either ψφ+ − ψY+ or ψφ− − ψY−
in H.

Proposition 4.10 ([17, Proposition 7.3]). — The function ψφ − ψY

extends continuously to H. Moreover we can define ψφ+ and ψφ− such that
(ψφ − ψY )(x,

√
x) ≡ 0.

Remark 4.11. — Let us remind the reader that we can extend ψY+ and ψφ+
to a neighborhood of the attracting petal P+ of φ0 by using the equations
Y (ψY+) ≡ 1 and ψφ+ ◦ φ ≡ ψφ+ + 1. Analogously we can extend ψY− and ψφ−
to a neighborhood of the repelling petal P− of φ0.

4.3. Existence of Long Orbits

We are ready to introduce Long Orbits and prove their existence via
extensions of Fatou coordinates. We consider points of the form φT (x)(x, y+)
for some y+ ∈ P+ and their accumulation points when x ∈ Sι tends to 0.
What is the function T that determines how much we must iterate? We
will see that it is basically the additive inverse of the residue function in
the right hand side of (4.2).

Definition 4.12. — We define

T (x) = Re
(
π i√
x

)
where

√
−1 = i.

Next, we define sets in the parameter space in which the structure of the
Long Orbits is particularly simple.

Definition 4.13. — We define the wedge

βM =
{
x ∈ C∗ :

∣∣∣∣Im( π i√
x

)∣∣∣∣ 6M} =
{
x ∈ C∗ :

∣∣∣∣Re
(
π√
x

)∣∣∣∣ 6M}
for any M ∈ R+.

Remark 4.14. — Notice that any x ∈ βM near 0 is contained in Sι.

Lemma 4.15. — Let φ ∈ Diff(C2, 0) be a saddle-node unfolding in pre-
pared form (3.2). The curves of neutral parameters are contained in βM
for M > 0 sufficiently big.
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Proof. — We have to show that the curves given by the equations

Re
(

1 + bφ(x)
√
x

2
√
x

)
= 0 and Re

(
−1 + bφ(x)

√
x

2
√
x

)
= 0

respectively, are contained in βM for M � 1. It is clear that in both
cases Re(π/

√
x) is bounded in a neighborhood of 0. Thus both curves are

contained in βM for M � 1. �

Next, we define Long Orbits. Given a real number s its ceiling dse is the
smallest integer greater or equal than s. Given a set S in the parameter
space we say that υ : S → C2 is a section if υ(x0) belongs to x = x0 for
any x0 ∈ S.

Definition 4.16. — Let φ ∈ Diff(C2, 0) be a saddle-node unfolding in
prepared form (3.2). Let β be a connected set in the x-parameter space
such that 0 ∈ β, β contains the curves of neutral parameters and there
exists M ∈ R+ with β ⊂ βM . Let T : β → R+ be a continuous function
such that limx∈β, x→0 T (x) = ∞. We say that O = (φ, y+, β, T ) is a Long
Orbit if (0, y+) belongs to the attracting petal of φ|{0}×B(0,ε) and there
exists a continuous section υO : β∪{0} → C×B(0, ε) with υO(0) = (0, y+)
such that

• φj(υO(x)) is well-defined and belongs to C × B(0, ε) for any 0 6
j 6 [T (x)] + 1 and any x ∈ β in a neighborhood of 0.

• Given any ε′ > 0 there exists M ′′ ∈ N such that

{φM
′′
(υO(x)), . . . , φdT (x)e−M ′′(υO(x))}

is contained in C×B(0, ε′) for any x ∈ β in a neighborhood of 0.
Moreover we require the existence of a continuous function ϑO : β → R
such that SO := ϑO(β) is a connected compact set containing 0 and there
exists a continuous map χO : [0, 1] + iSO → {0}× (B(0, ε) \ {0}) such that

• χO(1 + iu) = φ(χO(iu)) for any u ∈ SO.
• Given any z = s+ iu ∈ [0, 1] + iSO and a sequence {xn} in β with
xn → 0 and

s = lim
n→∞

(dT (xn)e − T (xn)), lim
n→∞

ϑO(xn) = u

we obtain limn→∞ φdT (xn)e(υO(xn)) = χO(z).

Remark 4.17. — We skip the subindex O in υO, ϑO, SO and χO when
the Long Orbit O is implicit.

In order to understand better the concept let us consider a saddle-node
unfolding of the form exp(Y ) where Y is in prepared form (3.2). Suppose
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O = (exp(Y ), y+, β, T ) is a Long Orbit. We denote by Γ(x,y) the trajectory
of Re(Y ) with initial condition Γ(x,y)(0) = (x, y). Fix u ∈ SO. Then the set
Γ(x,y+)[0, T (x)] converges to

Γ(0,y+)[0,∞) ∪ {(0, 0)} ∪ ΓχO(iu)(−∞, 0]

when x ∈ ϑ−1
O (u) tends to 0 and we consider the Hausdorff topology for

compact sets. Outside of the origin such limit is the union of two trajectories
of Re(Y ) by the second bullet property of Definition 4.16. The limit depends
on the value of the function ϑO. If we replace T with T + 1 then we have
to replace χO(iu) with φ(χO(iu)). This makes natural the third bullet
property. In the case of general saddle-node unfoldings the properties in
Definition 4.16 are adapted from the case of vector fields. For instance we
have to work with the ceiling function dT (x)e in the fourth bullet point
since we can only consider integer iterates.
The definition of Long Orbit was introduced in [19]. There the section

υO is defined in a curve denoted by β ∪ {0} in [19] and whose analogue in
this paper is ϑ−1

O (0) ∪ {0}. Then the evolution of the Long Trajectories is
studied when that curve varies in a family as {ϑ−1

O (s)}s∈SO . In this paper
we can deal with all the curves simultaneously as a consequence of the
properties of the extensions of Fatou coordinates.
The main goal of this section is proving next proposition.

Proposition 4.18. — Let φ ∈ Diff(C2, 0) be a saddle-node unfolding
in prepared form (3.2). Let (0, y′+) be a point in P+ and υ : B(0, δ) → C2

be a section such that υ(0) = (0, y′+). There exists M ′ ∈ N such that
O′ := (φ, y′+, βM , T − M ′) is a Long Orbit for any M > M0 such that
υO′ = υ|β∪{0}. Moreover any Long Orbit O := (φ, y+, β, T ) satisfies the
residue formula, i.e. we have

(4.3) ψφ−(φdT (x)e(υO(x)))− ψφ+(υO(x)) = dT (x)e − π i√
x

+ π i bφ(x)

for any x ∈ β in a neighborhood of 0. In particular we obtain

(4.4) ψφ−(χO(s+ iu))− ψφ+(0, y+)

=
dT (x)e−T (x)→s

lim
ϑO(x)→u, x→0

(
dT (x)e − π i√

x
+ π i bφ(x)

)
for any s+ iu ∈ [0, 1] + iSO.

We will see in the proof that the functions ϑO′ and χO′ do not depend
on M . Hence we do not include the subindex M in O′.
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Proof. — Given any point x ∈ βM close to 0, x belongs to Sι. So we can
apply the techniques and to use the tools in Subsection 4.1. Up to replace
x 7→ υ(x) with x 7→ φk0(υ(x)) for some k0 ∈ N we can suppose that υ(0)
belongs to H+.
The value |Re(ψY−(x, y1)− ψY+(x, y0))|, where (x, y0) ∈ γ+(x) and

(x, y1) ∈ γ−(x), is the width of the strip H(x) in Fatou coordinates. It
is of the form Re(π i /

√
x) + O(1) by (4.2). Since ψφ+ − ψY+ is bounded by

Proposition 4.10, it follows that there exists M ′ ∈ N such that φj(υ(x)) is
well-defined and belongs to H(x) for any 0 6 j 6 [T (x)] + 1−M ′ and any
x ∈ βM in a neighborhood of 0. We denote T ′ = T −M ′. We have

ψφ+(φj(υ(x))) = j + ψφ+(υ(x))

and
ψφ−(φj(υ(x))) = ψφ+(υ(x)) + j − π i√

x
+ π i bφ(x).

The second equation follow from ψY− − ψY+ ≡ ψφ− − ψφ+ (Lemma 4.7)
and (4.2). Thus given C > 0 there exists M ′′ ∈ N such that

Re(ψY+(φj(υ(x)))) > C

for all x ∈ Sι close to 0 and M ′′ 6 j 6 dT ′(x)e. Analogously we get

Re(ψY−(φj(υ(x)))) < −C

for all x ∈ Sι close to 0 and 0 6 j 6 dT ′(x)e − M ′′ by considering if
necessary a greater M ′′. Since the values of ψY+ in H+ \C×B(0, ε′) (resp.
ψY− in H− \C×B(0, ε′)) are bounded for any ε′ > 0 we deduce the second
property of a Long Orbit.
We have

ψφ+(φdT
′(x)e(υ(x)))− ψφ+(υ(x)) = dT ′(x)e.

The equality ψY− − ψY+ ≡ ψ
φ
− − ψ

φ
+ and (4.2) imply (4.3) for O′. We define

the function ϑO′ by ϑO′(x) = − Im
(
π i√
x

)
. We denote SO′ = [−M,M ]. We

have

dT ′(x)e − π i√
x

+ π i bφ(x) = s+ iϑO′(x)−M ′ + π i bφ(x)

if dT ′(x)e − T ′(x) = s. Given z = s + iu ∈ [0, 1] + iSO′ we have that
whenever x ∈ βM tends to 0, dT ′(x)e − T ′(x) tends to s and ϑO′(x) tends
to u, the point φdT ′(x)e(x, y+) tends to a point χO′(z) ∈ {0}×(B(0, ε)\{0})
such that

(4.5) ψφ−(χO′(z)) = (ψφ+(0, y+)−M ′ + π i bφ(0)) + z
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as we want to prove. In particular χO′ is continuous and χO′(1 + iu) =
φ(χO′(iu)) for any u ∈ S. We found a Long Orbit (φ, φk0

0 (y′+), βM , T ′). It
induces a Long Orbit (φ, y′+, βM , T ′+k0) that still satisfies (4.3) and (4.4).
Let us consider now any Long Orbit (φ, y+, β, T ). The set β is contained

by definition in some set βM . There exists a Long Orbit (φ, y+, βM , T −M ′)
for some M ′ ∈ N by the first part of the proof. The second bullet point of
the definition of a Long Orbit implies that T − (T −M ′) is bounded in a
neighborhood of 0 in β. We can suppose T−(T −M ′) > 0 in a neighborhood
of 0 in β by considering a greater M ′ ∈ N if necessary. (4.3) for the Long
Orbit (φ, y+, βM , T −M ′) implies (4.3) for (φ, y+, β, T ) since we just have
to add dT (x)e− (dT (x)−M ′e) to both terms. We also obtain (4.4) for the
Long Orbit (φ, y+, β, T ) since such a equation is a consequence of (4.3). �
The residue formulas (4.3) and (4.4) are fundamental in the sequel since

they allow to describe the quantitative properties of Long Orbits.

Remark 4.19. — The Long Orbit O′ := (φ, y′+, βM , T ′) (for M > M0)
constructed in Proposition 4.18 satisfies

(4.6) ψφ−(χO′(z))− ψφ−(χO′(0)) = z

for any z ∈ [0, 1] + iR by (4.5). This property does not necessarily hold for
any Long Orbit O := (φ, y+, β, T ). The reason is that the functions ϑO′
and ϑO can be different. For instance if h ◦ ϑO = ϑO′ then we obtain

χO(s+ iu) ≡ χO′(s+ ih(u))

and then

ψφ−(χO(s+ iu))− ψφ−(χO(0)) = s+ i(h(u)− h(0)).

For a general function, for instance h(u) = 2u, we do not get (4.6).

Remark 4.20. — Suppose that we have the setting of a Long Orbit as
in Definition 4.16 but we consider that the first, second and fourth bullet
points hold for a subset β′ of β instead of the whole set β. The last para-
graph in the proof of Proposition 4.18 shows that (4.3) holds for the points
of β′.

We want to use Long Orbits to study topological conjugacies of unfold-
ings. Hence we have to prove that Long Orbits are topological invariants.

Proposition 4.21. — Let φ, η ∈ Diff(C2, 0) be saddle-node unfold-
ings in prepared form (3.2). Consider a local homeomorphism σ(x, y) =
(σ1(x), σ2(x, y)) conjugating φ and η. Then the image of a Long Orbit
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of φ by σ is a Long Orbit of η. More precisely consider ε, ε′ > 0 suf-
ficiently small such that σ(B(0, δ) × B(0, ε)) ⊂ C × B(0, ε′) and sup-
pose that O := (φ, y+, β, T ) is a Long Orbit in C × B(0, ε). Then O′ :=
(η, σ0(y+), σ1(β), T ◦ σ−1

1 ) is a Long Orbit of η.

We have σ ◦ υO ≡ υO′ , ϑO ◦ σ−1
1 ≡ ϑO′ , SO = SO′ and σ0 ◦ χO ≡ χO′ .

Proof. — All the conditions of the definition of Long Orbit are automat-
ically verified except that σ1(β) ⊂ βM for some M ∈ R+. We consider
β′ = σ1(β) ∩ βM . Since β contains the curves of neutral parameters of
φ, the set σ1(β) contains the curves of neutral parameters of η. Moreover
such curves are contained in βM for M � 1 by Lemma 4.15. Therefore β′
contains the curves of neutral parameters of η for M � 1.
We denote T ′ = T ◦ σ−1

1 . Next we apply Remark 4.20 to β′. We obtain

(4.7) ψη−(ηdT
′(x)e(σ(υO(x)))− ψη+(σ(υO(x))) = dT ′(x)e − π i√

x
+ π i bη(x)

for any x ∈ β′ in a neighborhood of 0. The points of the form
ηdT

′(x)e(σ(υ(x))) are in the neighborhood of the compact subset (σ0 ◦
χO)([0, 1] + iSO) of {0} × (B(0, ε) \ {0}) when x ∈ β′ is close to 0. As
a consequence the left hand side of (4.7) is bounded for x ∈ β′ close to
0 independently of M > 0. Hence |Im(π i /

√
x)| < C for any x ∈ β′ close

to 0 and C does not depend on M . By considering M > C we obtain
σ1(β) ⊂ βM . �

Long Orbits are invariant under translations in Fatou coordinates.

Proposition 4.22. — Let φ ∈ Diff(C2, 0) be a saddle-node unfolding
in prepared form (3.2). Consider a Long Orbit O = (φ, y+, β, T ). Let y′+
be a point in P+ such that there exists χ′ : [0, 1] + iS → P− satisfying

ψφ−(χ′(z))− ψφ+(0, y′+) = ψφ−(χO(z))− ψφ+(0, y+)

for any z ∈ [0, 1] + iSO. Then O′ = (φ, y′+, β, T ) is a Long Orbit such that
χO′ ≡ χ′.

The analogue propery for saddle-node arcs is described in [14]. As a
consequence they show that any topological conjugacy also conjugates the
infinitesimal generators of the restriction of the saddle-node arcs to 0. Anal-
ogously we will obtain that a topological conjugacy σ between saddle-node
unfoldings φ, η, also conjugates translations in Fatou coordinates of φ0 and
η0. We will deduce that σ0 is a Fatou affine conjugacy (Proposition 5.1).
Proof. — We have

ψφ+(φdT (x)e(υO(x)))− ψφ+(υO(x)) = dT (x)e
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for any x ∈ β in a neighborhood of 0. We denote d = ψφ+(0, y′+)−ψφ+(0, y+).
We are going to translate the orbit of υO(x) by d in the coordinate ψφ+. We
define continuous sections υO′ : β ∪ {0} → C2 and α : β → C2 such that
υO′(0) = (0, y′+), α(x) is in the neighborhood of P− and

ψφ+(υO′(x))− ψφ+(υO(x)) = d and ψφ−(α(x))− ψφ−(φdT (x)e(υO(x))) = d

for any x ∈ β in a neighborhood of 0. Notice that in the left hand side of the
previous equations we can replace ψφ− with ψφ+ or vice versa since ψφ−−ψ

φ
+

depends only on x. The hypothesis on χO implies that α is well-defined
and satisfies

dT (x)e−T (x)→s
lim

ϑ(x)→u, x→0
α(x) = χ′(s+ iu)

for all s ∈ [0, 1] and u ∈ SO. Our choice of α and υO′ implies

ψφ+(α(x))− ψφ+(υO′(x)) = ψφ+(φdT (x)e(υO(x)))− ψφ+(υO(x)) = dT (x)e

for any x ∈ β in a neighborhood of 0. It follows α(x) = φdT (x)e(υO′(x)) for
any x ∈ β in a neighborhood of 0. Since ψφ+(φj(υO′(x)) = ψφ+(φj(υO(x))+d
for all x ∈ β close to 0 and 0 6 j 6 dT (x)e + 1 and ψφ − ψY is bounded,
we deduce that there exists C > 0 such that

|ψY+(φj(υO′(x))− ψY+(φj(υO(x))| < C.

More precisely there exists ε0 > 0 such that if x ∈ β ∩ B(0, ε0), 0 6 j 6
dT (x)e+1 and |(y◦φj)(υO(x))| < ε0 then φj(υO′(x)) = exp(tY )(φj(υO(x)))
holds for some t ∈ B(0, C). Since (0, 0) is a singular point of Y , the second
condition defining a Long Orbit is satisfied. �

5. Topological conjugacies

We present some consequences of the existence of Long Orbits and their
properties for saddle-node unfoldings. We are interested in the study of the
rigidity properties of topological conjugacies at the unperturbed line x = 0.
More precisely we want to describe the behavior of σ0 where σ is a homeo-
morphism conjugating saddle-node unfoldings φ, η ∈ Diff(C2, 0). Let us re-
mark that we always consider that the topological conjugacy σ preserves the
fibration dx = 0. In other words σ is of the form σ(x, y) = (σ1(x), σ2(x, y)).
The dynamics of φ can be very rich, containing for instance small divisors
phenomena. It is then natural to think that conjugating all the dynamics
of φ, η for the lines x = cte should impose heavy restrictions on the conju-
gacy at x = 0. We prove that σ0 is a Fatou affine conjugacy and generically
holomorphic or anti-holomorphic.
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5.1. Fatou affine conjugacies

In the next proposition we analyze the behavior of topological conjugacies
in a petal of the unperturbed line x = 0.

Proposition 5.1. — Let φ, η ∈ Diff(C2, 0) be saddle-node unfoldings.
Let σ(x, y) = (σ1(x), σ2(x, y)) be a local homeomorphism such that σ ◦φ =
η ◦ σ. Then σ0 is a local Fatou affine conjugacy.

Proof. — Up to replace φ and η by saddle-unfoldings analytically con-
jugated to them we can suppose that both are in prepared form (3.2).
Consider a petal P of φ0. We denote by ψφP a Fatou coordinate of φ0 in
P. Given z ∈ C and y ∈ P there exists at most one point y′ ∈ P such
that ψφP(y′) − ψφP(y) = z. If such a point exists we denote it by EP(z, y).
Let ψησ0(P) be a Fatou coordinate of η0 in the petal σ0(P). We define the
function

hP(y, z) = ψησ0(P)(σ0(EP(z, y)))− ψησ0(P)(σ0(y))

whenever it is defined.
Consider the Long Orbit O′ := (φ, y′+, βM , T ′) provided by Proposi-

tion 4.18 for M > M0 and defined in C × B(0, ε) where T ′ := T −M ′

for some M ′ ∈ N. The equality

(5.1) ψφ−(χO′(z))− ψφ−(χO′(0)) = z

holds for any z ∈ [0, 1] + iR ((4.6) in Remark 4.19). Given w ∈ C close
to 0, O′w := (φ,EP+(w, y′+), βM , T ′) is a Long Orbit in C × B(0, ε) for
any M > M0 where χO′w(z) = EP−(w,χO′(z)) for any z ∈ [0, 1] + iR by
Proposition 4.22. As a consequence Õw := (η, σ0(EP+(w, y′+)), σ1(βM ), T ′◦
σ−1

1 ) is a Long Orbit for anyM >M0 by Proposition 4.21. Proposition 4.22
implies

(5.2) hP+(y′+, w) = hP−(χO′(z), w)

for all w ∈ C close to 0 and z ∈ [0, 1]+iR. Since hP−(φ0(y), w) ≡ hP−(y, w)
and every orbit of φ in P− intersects χO′([0, 1] + iR) by (5.1), we obtain
that hP−(y, w) does not depend on y ∈ P− for any w in a neighborhood
B(0, c) of 0 in C. Consider z ∈ C, it satisfies |z/m| < c for some m ∈ N.
Since

hP−(y, z) =
m∑
j=1

hP−

(
EP−

(
(j − 1) z

m
, y
)
,
z

m

)
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holds, hP−(y, z) does not depend on y ∈ P− for any z ∈ C. We have

hP−(z1 + z2) = hP−(y, z1 + z2) = hP−(EP−(z2, y), z1) + hP−(y, z2)
= hP−(z1) + hP−(z2)

for any z1, z2 ∈ C. Since hP− is continuous by definition, hP− is R-linear.
The function hP− is injective in a neighborhood of 0, hence hP− is an
isomorphism. Thus σ0|P− is Fatou affine. Since σ conjugates φ−1 and η−1

and P+ is the repelling petal of φ−1
0 , we obtain that σ0|P+ is Fatou affine

analogously. �

Remark 5.2. — We obtain hP− = hP+ by Lemma 2.29. It could also be
deduced from (5.2).

Remark 5.3. — Analogously as in [14] we use the property in Proposi-
tion 4.22 to show that σ0 conjugates translations in Fatou coordinates (this
is equivalent to h not depending on y) and a consequence h is a R-linear
map such that h(1) = 1. In the case of saddle-node arcs where h : R → R
this implies h ≡ Id and hence σ0 conjugates the infinitesimal generators of
φ0 and η0 [14]. Since in our case we still have h(s) = s for any s ∈ R, it
follows that σ0 conjugates the real flows of the Lavaurs vector fields Y φ0

P± ,
Y η0
σ0(P±) of φ0 and η0 in the attracting and repelling petals. Anyway, in

general it does not conjugate the complex flows since h(1) = 1 does not
imply h ≡ Id. For instance we could have h(z) = 2z − z.

Definition 5.4. — Let φ, η ∈ Diff(C2, 0) be saddle-node unfoldings.
Let σ(x, y) = (σ1(x), σ2(x, y)) be a local homeomorphism such that σ ◦φ =
η ◦ σ. We say that the action of σ on the parameter space is holomorphic
(resp. anti-holomorphic, orientation-preserving) if σ1 is holomorphic (resp.
anti-holomorphic, orientation-preserving).

The orientation properties of the restriction of the conjugating map to
x = 0 and of its action on the parameter space are the same.

Lemma 5.5. — Let φ, η ∈ Diff(C2, 0) be saddle-node unfoldings. Let σ
be a local homeomorphism such that σ ◦ φ = η ◦ σ. Then the following
properties are equivalent:

(1) σ0 is orientation-preserving,
(2) hφ0,η0,σ0 is orientation-preserving,
(3) the action of σ on the parameter space is orientation-preserving.

In particular σ is orientation-preserving.

Proof. — The map σ0 is a Fatou affine conjugacy by Proposition 5.1.
Thus the first two properties are equivalent (Remark 2.31). Up to replace
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φ and η by saddle-node unfoldings analytically conjugated to them we can
suppose that both are in prepared form (3.2). Suppose that σ does not
preserve orientation in the parameter space. We denote

ζ(x, y) = (x, y), η̃ = ζ ◦ η ◦ ζ and σ̃ = ζ ◦ σ

where x is the complex conjugation. The diffeomorphism η̃ is a saddle-
node unfolding and σ̃ ◦ φ = η̃ ◦ σ̃. The action of σ̃ on the parameter space
is orientation-preserving. We have

hφ0,η̃0,σ̃0(z) = hφ0,η0,σ0(z)

for any z ∈ C by Remark 2.32 and Lemma 2.33. Therefore it suffices to
prove that if the action of σ in the parameter space is orientation-preserving
so is h = hφ0,η0,σ0 .
Consider the notations in Proposition 5.1. We have

ψησ0(P−)(χÕ0
(z))− ψησ0(P+)(σ(0, y′+))

=
dT ′(x)e−T ′(x)→s

lim
ϑO′ (x)→u, x→0

(
dT ′(x)e − π i√

σ1(x)
+ π i bη(0)

)
for any z = s + iu ∈ [0, 1] + iR by Proposition 4.18. Since h|R ≡ Id,
χÕ0
≡ σ ◦ χO′ and ψφP−(χO′(z))− ψφP−(χO′(0)) ≡ z we deduce that

(5.3) lim
x∈ϑ−1

O′
(u), x→0

− Im
(

π i√
σ1(x)

)
= cu

and lim
x∈ϑ−1

O′
(u), x→0

Re
(

π i√
σ1(x)

)
=∞.

where cu = Im(ψησ0(P−)(σ(χO′(iu))) − ψησ0(P+)(σ(0, y′+)) − π i bη(0)). We
obtain

lim
x∈ϑ−1

O′
(u), x→0

−Im
(

π i√
σ1(x)

)
− lim
x∈ϑ−1

O′
(0), x→0

−Im
(

π i√
σ1(x)

)
= Im(h(iu))

for any u ∈ R.
The curves

ϑ−1
O′ (u) =

{
− Im

(
π i√
x

)
= u and Re

(
π i√
x

)
∈ R+

}
move in counterclockwise sense when we increase u ∈ R. Since σ1 is orien-
tation-preserving, σ1(ϑ−1

O′ (u)) move in counterclockwise sense when we in-
crease u. (5.3) implies that the curves ϑ−1

O′ (cu) move in counterclockwise
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sense when u increases. Hence cu is an increasing function of u. We obtain

Im(h(i)) = c1 − c0 > 0.

As a consequence h is orientation-preserving. �

Proof of Theorem 1.4. — The map σ0 is a Fatou affine conjugacy by
Proposition 5.1. Lemma 5.5 implies that σ0 is orientation-preserving if and
only if the action of σ in the parameter space is orientation-preserving. In
particular σ is orientation-preserving. �

Proof of the Main Theorem (Theorem 1.3). — The map σ0 is a Fatou
affine conjugacy by the General Theorem 1.4. Hence σ0 is holomorphic or
anti-holomorphic by Proposition 2.34. �

Proof of Proposition 1.5. — Suppose that the action of σ on the param-
eter space is holomorphic. Consider the notations in Proposition 5.1. We
have

ψφP−(χO′(z))− ψφP+
(0, y′+) =

dT ′(x)e−T ′(x)→s
lim

ϑO′ (x)→u, x→0

(
dT ′(x)e − π i√

x
+ π i bφ(0)

)
and

ψησ0(P−)(χÕ0
(z))− ψησ0(P+)(σ(0, y′+))

=
dT ′(x)e−T ′(x)→s

lim
ϑO′ (x)→u, x→0

(
dT ′(x)e − π i√

σ1(x)
+ π i bη(0)

)
for any z = s+ iu ∈ [0, 1] + iR by Proposition 4.18. Thus the function

G(x) := π i√
σ1(x)

− π i√
x

is bounded in βM for any M >M0. Since G(x2) is meromorphic, the limit
limx→0G(x) exists and belongs to C. Hence there exists a constant C ∈ C
such that

ψησ0(P−)(σ(χO′(z)))− ψφP−(χO′(z)) = C

for any z ∈ [0, 1] + iR. We obtain

ψησ0(P−)(σ(χO′(z)))−ψησ0(P−)(σ(χO′(0))) =ψφP−(χO′(z))−ψφP−(χO′(0)) = z

for z ∈ [0, 1]+iR. Since ψφP−(χO′(z))−ψφP−(χO′(0)) = z, it follows h(z) = z

for any z ∈ [0, 1] + iR. Since h(z + 1) ≡ h(z) + 1, we get h(z) = z for any
z ∈ C. Hence σ0 is holomorphic by Lemma 2.33.
Suppose that the action of σ on the parameter space is anti-holomorphic.

Denote ζ(x, y) = (x, y), η̃ = ζ ◦ η ◦ ζ and σ̃ = ζ ◦ σ. We have σ̃ ◦ φ = η̃ ◦ σ̃.
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The action of σ̃ on the parameter space is holomorphic. Therefore σ̃0 is
holomorphic and σ0 is anti-holomorphic. �

Proof of Proposition 1.6. — The map σ0 is a Fatou affine conjugacy
by Theorem 1.4. Hence Re(Resφ0) and Re(Resη0) have the same sign by
Proposition 2.36. �

Proof of Proposition 1.7. — The map σ0 is a Fatou affine conjugacy by
the General Theorem. The result is a consequence of Proposition 2.39. �
Proof of Proposition 1.8. — The map σ0 is a Fatou affine conjugacy by

the General Theorem. The result is a consequence of Proposition 2.37 and
Lemma 5.5. �

6. Building examples

Let us construct topological conjugacies between real flows of vector fields
of the form

y2 − x
1 + a(x)y

∂

∂y

whose restrictions to x = 0 are neither holomorphic nor anti-holomorphic.
This section provides examples for the exceptional cases covered by Propo-
sitions 1.7 and 1.8.

6.1. Description of the construction

Consider complex numbers a, b ∈ C and a R-linear orientation-preserving
isomorphism h : C → C such that h(1) = 1 and h(2π i a) = 2π i b. In
particular Re(a) and Re(b) have the same sign. Denote

Y = y2 − x
1 + ay

∂

∂y
and Z = y2 − x

1 + by

∂

∂y
.

We define

ResY (x,
√
x) = 1

2

(
1√
x

+ a

)
, ResY (x,−

√
x) = 1

2

(
−1√
x

+ a

)
.

Notice that ResY (x0,±
√
x0) is the residue of the dual form

ωY = 1 + ay

y2 − x
dy

restricted to x = x0 at the point ±√x0. Analogously we can define

ResZ(x,
√
x) = 1

2

(
1√
x

+ b

)
, ResZ(x,−

√
x) = 1

2

(
−1√
x

+ b

)
.
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Consider a germ of homeomorphism σ1 defined in a neighborhood of 0 in
C such that h(π i /

√
x) = π i /

√
σ1(x) for any x defined in a neighborhood

of 0. In this way we obtain

(6.1) h(2π i ResY (x,±
√
x)) = 2π i ResZ(σ1(x),±

√
σ1(x))

for any x in a neighborhood of 0. The isomorphism h is of the form h(z) =
ς0z + ς1z with |ς0| > |ς1|. We obtain

(6.2) ς0√
x
− ς1
√
x
≡ 1√

σ1(x)
=⇒

√
x√

σ1(x)
≡ ς0 − ς1

√
x
√
x
.

Fix a point y0 ∈ B(0, ε) \ {0} close to 0. Let ψY , ψZ be Fatou coordi-
nates of Y , Z such that ψY (x, y0) ≡ ψZ(x, y0) ≡ 0. We want to define a
homeomorphism σ conjugating Re(Y ) and Re(Z) such that

• σ is of the form σ(x, y) = (σ1(x), σ2(x, y)).
• σ(x, y0) = (σ1(x), y0) for any x in a neighborhood of 0.
• ψZ ◦ σ ◦ exp(zY )− ψZ ◦ σ ≡ h(z) for any z ∈ C.

Let us remark that the monodromies of (h ◦ ψY )(x0, y) and ψZ(σ1(x0), y)
around (x0,±

√
x0) and (σ1(x0),±

√
σ1(x0)) respectively coincide by (6.1).

The natural way of defining σ is by using the equation h ◦ ψY ≡ ψZ ◦ σ.

6.2. The method of the path

In order to prove the existence of σ satisfying h ◦ ψY ≡ ψZ ◦ σ we
apply the method of the path (cf. [13, 20]). First we relocate the points in
Sing(Z) by considering the change of coordinates y = y

√
σ1(x)/x for the

parameter σ1(x). This corresponds to the change of coordinates σ̃(x, y) =
(x, y

√
x/σ−1

1 (x)). We obtain

Z(σ1(x), y) =

(√
σ1(x)√
x

y

)2
− σ1(x)

1 + by
√
σ1(x)/

√
x

√
x√

σ1(x)
∂

∂y

=
√
σ1(x)√
x

y2 − x
1 + by

√
σ1(x)/

√
x

∂

∂y

in the new coordinates. Let us point out that the change of coordinates
σ̃ is not well-defined at x = 0. It is not very pathological either since√
x/σ−1

1 (x) is bounded away from 0 and ∞ for x in a neighborhood of 0
(cf. (6.2)).
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Let us consider the function

Ψ = (1− s)(h ◦ ψY )(x, y) + sψZ

(
σ1(x),

√
σ1(x)√
x

y

)
= Ψ1 + i Ψ2.

In general Ψ is neither holomorphic nor anti-holomorphic. Roughly speak-
ing all the functions Ψ(s0, x, y) have the same poles and the monodromy
around those poles does not depend on s0. We are trying to conjugate Re(Y )
and σ̃∗(Re(Z)). In order to do this we want to find a continuous vector field
W defined in coordinates (x, y, s) in a neighborhood of {(0, 0)} × [0, 1] in
((C∗ × C) ∪ {(0, 0)})× C of the form

W = ∂

∂s
+ c1(x, y, s) ∂

∂y1
+ c2(x, y, s) ∂

∂y2

where y = y1 + i y2. Moreover we require W to satisfy
• W (Ψ) ≡ 0.
• cj is a continuous function defined in a neighborhood of {(0, 0)} ×

[0, 1] in ((C∗ × C) ∪ {(0, 0)}) × C and vanishing at y2 − x = 0 for
any j ∈ {1, 2}.

The idea is that for suchW the map exp(W )(x, y, 0) conjugates Re(Y ) and
σ̃∗(Re(Z)) in a neighborhood of (0, 0) in (C∗ × C) ∪ {(0, 0)}. We define

ρ = (h ◦ ψY )(x, y)− ψZ

(
σ1(x),

√
σ1(x)√
x

y

)
.

The equation W (Ψ) ≡ 0 is equivalent to{
c1
∂Ψ1
∂y1

+c2 ∂Ψ1
∂y2

=Re(ρ)
c1
∂Ψ2
∂y1

+c2 ∂Ψ2
∂y2

=Im(ρ).

The solutions are

(6.3) c1 =
det
(

Re(ρ) ∂Ψ1
∂y2

Im(ρ) ∂Ψ2
∂y2

)

det
(
∂Ψ1
∂y1

∂Ψ1
∂y2

∂Ψ2
∂y1

∂Ψ2
∂y2

) , c2 =
det
(
∂Ψ1
∂y1

Re(ρ)
∂Ψ2
∂y1

Im(ρ)

)

det
(
∂Ψ1
∂y1

∂Ψ1
∂y2

∂Ψ2
∂y1

∂Ψ2
∂y2

) .

The denominator D of the previous expressions satisfies D = |∂Ψ/∂y|2 −
|∂Ψ/∂y|2. We have

∂Ψ
∂y =(1− s)ς0 1+ay

y2−x + s
√
x√

σ1(x)
1+by
√
σ1(x)/

√
x

y2−x

∂Ψ
∂y =(1− s)ς1

(
1+ay
y2−x

)
.

Lemma 6.1. — The function D|y2−x|2 is bounded away from 0 and∞.
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Proof. — Consider the function κ = (1− s)ς0 + s
√
x/
√
σ1(x). It suffices

to prove that κ is bounded by below for x in a neighborhood of 0 and s in
a neighborhood of [0, 1] and that we have |κ(x, s)|/|(1− s)ς1| > C > 1 for
some constant C ∈ R+. Notice that κ is bounded by above. The property√
x/
√
σ1(x) ≡ ς0 − ς1

√
x/
√
x implies

|κ(x, s)| =

∣∣∣∣∣ς0 − sς1
√
x
√
x

∣∣∣∣∣ > |ς0| − |ς1| > 0

for all s ∈ [0, 1] and x ∈ C∗ in a neighborhood of 0. We have

|κ(x, s)|2 = (1− s)2|ς0|2 + s2

∣∣∣∣∣
√
x√

σ1(x)

∣∣∣∣∣
2

+ 2s(1− s) Re
(
ς0

√
x√

σ1(x)

)
and

ς0

√
x√

σ1(x)
= ς0

(
ς0 − ς1

√
x√
x

)
=⇒ Re

(
ς0

√
x√

σ1(x)

)
> |ς0|2 − |ς0||ς1| > 0.

We deduce that |κ| > |(1−s)ς0| > C|(1−s)ς1| for some constant C > 1. �
The next step of the proof is showing that (y2 − x)ρ can be extended

as a continuous function vanishing at y2 − x = 0. We define the auxiliary
functions

R± = ±1
2
√
x

(
ς0 −

√
x√

σ1(x)

)
+ 1

2(ς0a− b)

and
ρ̃ = R+(x) ln |y −

√
x|2 +R−(x) ln |y +

√
x|2.

Notice that h(2π i a) = 2π i b implies b = ς0a− ς1a. We have
∂ρ̃

∂y
= R+(x)(y +

√
x) +R−(x)(y −

√
x)

y2 − x
= ∂ρ

∂y

and
∂ρ̃

∂y
= (ς0a− b)y + ς1

y2 − x
= ς1

(
1 + ay

y2 − x

)
= ∂ρ

∂y

by (6.2).

Lemma 6.2. — The function ρ− ρ̃ is a bounded function of x.

Proof. — It is obvious that ρ − ρ̃ is constant in each line x = x0. Since
ρ(x, y0) is bounded by construction, it suffices to show that ρ̃(x, y0) is
bounded in the neighborhood of 0. We have

ρ̃(x, y) = 1
2
√
x

(
ς0 −

√
x√

σ1(x)

)
ln
∣∣∣∣y −√xy +

√
x

∣∣∣∣2 + (ς0a− b) ln |y2 − x|.

TOME 69 (2019), FASCICULE 3



1042 Javier RIBÓN

It suffices to prove that given

ρ̂(x, y) := 1
2
√
x

(
ς0 −

√
x√

σ1(x)

)
ln
∣∣∣∣y −√xy +

√
x

∣∣∣∣2
the function ρ̂(x, y0) is bounded. We have

ρ̂(x, y0) = 1
2
√
x

(
ς0 −

√
x√

σ1(x)

)
ln
(

1− 2
√
xy0 +

√
xy0

|y0|2 +
√
xy0 +

√
xy0 + |x|

)
and then

ρ̂(x, y0) ∼ −
(
ς0 −

√
x√

σ1(x)

)(
1
y0

+ 1
y0

√
x√
x

)
is bounded. �

Lemma 6.3. — We have lim(x,y)→(x0,y0) ρ(x, y)(y2 − x) = 0 for any
(x0, y0) in the curve y2 − x = 0.

Proof. — It suffices to show the result for ρ̂, see the proof of Lemma 6.2.
Suppose (x0, y0) = (0, 0), otherwise the proof is straightforward.
Suppose that |y/

√
x| 6 8. We have

|ρ̂(x, y)(y2 − x)|

6
9
2

∣∣∣∣∣ς0 −
√
x√

σ1(x)

∣∣∣∣∣ (|y −√x| |ln |y −√x|2|+ |y +
√
x| |ln |y +

√
x|2|
)
.

We deduce lim|y/√x|68, (x,y)→(0,0) ρ(x, y)(y2 − x) = 0.
Suppose that |y/

√
x| > 8. We have

|ρ̂(x, y)(y2 − x)| 6 1
2
√
|x|

∣∣∣∣∣ς0 −
√
x√

σ1(x)

∣∣∣∣∣ |y2 − x|

∣∣∣∣∣ ln
∣∣∣∣y −√xy +

√
x

∣∣∣∣2
∣∣∣∣∣

and then

|ρ̂(x, y)(y2 − x)| 6 1
2
√
|x|

∣∣∣∣∣ς0 −
√
x√

σ1(x)

∣∣∣∣∣ |y2 − x|C
√
|x|
|y|

for some C ∈ R+. We obtain

|ρ̂(x, y)(y2 − x)| 6 C

2

∣∣∣∣∣ς0 −
√
x√

σ1(x)

∣∣∣∣∣ |y|
∣∣∣∣1− x

y2

∣∣∣∣ 6 65C
128 |y|

∣∣∣∣∣ς0 −
√
x√

σ1(x)

∣∣∣∣∣.
We deduce lim|y/√x|>8, (x,y)→(0,0) ρ(x, y)(y2 − x) = 0. �

Lemma 6.4. — The functions c1 and c2 are continuous. They are defined
in a neighborhood of {(0, 0)}× [0, 1] in ((C∗×C)∪{(0, 0)})×C and vanish
at y2 − x = 0.
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Proof. — Let us prove the result for c1 without lack of generality. (6.3)
and Lemma 6.1 imply that it suffices to show that

|y2 − x|2 det
(

Re(ρ) ∂Ψ1
∂y2

Im(ρ) ∂Ψ2
∂y2

)
tends to 0 when we approach a point of y2 − x = 0. Since ∂Ψj/∂yk =
O(1/(y2 − x)) for all j, k ∈ {1, 2}, the property is a consequence of
Lemma 6.3. �

6.3. Consequences of the construction

We have all the ingredients required to provide examples of exceptional
conjugating maps that are not holomorphic or anti-holomorphic. Hence the
condition requiring the unperturbed diffeomorphisms to be non-analytically
trivial in the Main Theorem can not be removed.

Proposition 6.5. — The map σ[(x, y) = exp(W )(x, y, 0) conjugates
Re(Y ) and σ̃∗(Re(Z)) in a neighborhood of (0, 0) in (C∗ × C) ∪ {(0, 0)}.
Moreover the map σ = σ̃ ◦ σ[ is a homeomorphism conjugating Re(Y ) and
Re(Z) defined in a neighborhood of (0, 0). Moreover σ and σ−1 are real
analytic outside x(y2 − x) = 0.

Proof. — It is clear that σ[ and its inverse exp(−W )(x, y, 1) satisfy the
properties by construction. The map σ conjugates Re(Y ) and Re(Z). The
remaining issue is the study of the properties of σ in the neighborhood of
the line x = 0. Since σ̃, σ̃−1, σ[ and σ−1

[ are continuous in a neighborhood
of (0, 0) in (C∗ × C) ∪ {(0, 0)}, it follows that the same property is shared
by σ and σ−1.

Suppose a ∈ iR. Then we have a = b and we define hu(z) = (1 − u)z +
uh(z) and au = a for u ∈ [0, 1]. If a 6∈ iR the real parts of a and b have the
same sign since h is orientation preserving. We define au = (1 − u)a + ub

and hu : C→ C as the R-linear map such that hu(1) = 1 and hu(2π i a) =
2π i au for u ∈ [0, 1]. We define Yu = [(y2 − x)/(1 + auy)]∂/∂y and a Fatou
coordinate ψu of Yu such that ψu(x, y0) ≡ 0 for u ∈ [0, 1]. We denote by τu
the conjugating map obtained by applying the previous method to Y , Yu
and hu. We obtain τ0 = Id and τ1 = σ. Since τu depends continuously on
u and τu conjugates the functions hu ◦ ψY and ψu, we obtain τu(x, y0) =
(τu,1(x), y0) for all u ∈ [0, 1] and x in a neighborhood of 0. In particular we
deduce σ(x, y0) = (σ1(x), y0) for any x in a neighborhood of 0. Analogously
as in the proof of Proposition 2.40 the equation h ◦ ψY ≡ ψZ ◦ σ implies
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that σ0 and σ−1
0 are local homeomorphisms. We obtain that σ and σ−1 are

homeomorphisms that are real analytic outside {y2 − x = 0} ∪ {x = 0} by
another application of the equation h ◦ ψY ≡ ψZ ◦ σ. �

Example 6.6. — Consider b = a ∈ iR and a R-linear isomorphism such
that h(1) = 1.
Suppose h is orientation-preserving. Then the map σ provided by Propo-

sition 6.5 satisfies σ∗(Re(Y )) = Re(Y ) and σ ◦ exp(Y ) = exp(Y ) ◦σ. More-
over σ0 is holomorphic if and only if h ≡ z.

Suppose h is orientation-reversing. Consider the conjugacy σ associ-
ated to (Y, Y, z ◦ h). Now ζ ◦ σ conjugates Re(Y ) and Re(Z) where Z =
[(y2−x)/(1 +ay)]∂/∂y and ζ(x, y) = (x, y). The map hexp(Y0),exp(Z0),(ζ◦σ)0

is equal to h. We described both situations in Proposition 1.8 where the
diffeomorphisms by restriction to x = 0 are holomorphically (resp. anti-
holomorphically) conjugated but the conjugacy is not holomorphic (resp.
anti-holomorphic) in general.

Example 6.7. — Consider a, b 6∈ iR such that Re(a) Re(b) > 0. Let h be
the R-linear map such that h(1) = 1 and h(2π i a) = 2π i b. Then the map σ
provided by Proposition 6.5 satisfies σ∗(Re(Z)) = Re(Y ) and σ ◦ exp(Y ) =
exp(Z) ◦ σ. Moreover σ0 is holomorphic if and only if a = b.
Let h be the R-linear map such that h(1) = 1 and h(2π i a) = −2π i b.

We obtain (z ◦ h)(2π i a) = 2π i b. Then the map σ provided by Proposi-
tion 6.5 and associated to Y , Z̃ = [(y2−x)/(1+ by)]∂/∂y and z ◦h satisfies
σ∗(Re(Z̃)) = Re(Y ) and σ ◦ exp(Y ) = exp(Z̃) ◦ σ. The homeomorphism
ζ ◦ σ conjugates Re(Y ) and Re(Z). Moreover (ζ ◦ σ)0 is anti-holomorphic
if and only if a = b. We described these situations in Proposition 1.7.
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