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THE RATIONAL STABLE HOMOLOGY OF MAPPING
CLASS GROUPS OF UNIVERSAL NIL-MANIFOLDS

by Markus SZYMIK

Abstract. — We compute the rational stable homology of the automorphism
groups of free nilpotent groups. These groups interpolate between the general linear
groups over the ring of integers and the automorphism groups of free groups, and
we employ functor homology to reduce to the abelian case. As an application, we
also compute the rational stable homology of the outer automorphism groups and
of the mapping class groups of the associated aspherical nil-manifolds in the TOP,
PL, and DIFF categories.
Résumé. — Nous calculons l’homologie rationnelle stable des groupes d’auto-

morphismes de groupes nilpotents libres. Ces groupes s’intercalent entre les groupes
généraux linéaires sur l’anneau des entiers et les groupes d’automorphismes de
groupes libres, et nous employons l’homologie de foncteurs pour nous réduire au
cas abélien. A titre d’application, nous calculons également l’homologie rationnelle
stable des groupes d’automorphismes extérieurs et des groupes modulaires des va-
riétés asphériques associées dans les catégories TOP, PL, et DIFF.

1. Introduction

For any integer r > 1, let Fr denote the free group on r generators. The
automorphism groups Aut(Fr) of these groups have been the subject of
plenteous research. Nielsen began his investigations in that direction about
a century ago, and more recent work has led to substantial progress in the
computation of their homology. This reckoning applies in particular after
stabilization: We can extend an automorphism of Fr to Fr+1 by sending
the new generator to itself, and in the (co)limit r →∞, we get the stable
automorphism group Aut(F∞). Note that this notation does not refer to an
automorphism group of a group F∞. The homology of the group Aut(F∞) is

Keywords: stable homology, automorphism groups, nilpotent groups, functor categories,
Hochschild homology, stable K-theory, spectral sequences.
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784 Markus SZYMIK

the colimit of the homologies of the groups Aut(Fr). This stable homology
has been computed by Galatius [14]. In particular, it is rationally trivial,
as had been conjectured by Hatcher and Vogtmann [18].
The descending sequence of normal subgroups of the free group Fr that

is given by Γ1(Fr) = Fr and Γc+1(Fr) = [ Fr,Γc(Fr) ] is the lower central
series. The quotient groups Nr

c = Fr/Γc+1(Fr) are the free nilpotent groups
of class c > 1.

For instance, the first case gives the free abelian groups Nr
1
∼= Zr. Their

automorphism groups are the general linear groups GLr(Z) over the ring Z
of integers, and their homology is related to the algebraic K-theory of the
ring Z. In contrast to the case of the groups Aut(Fr), we only know very
few of their stable homology groups integrally. This changes when we are
willing to work rationally. In that case, a complete computation of the
stable homology has been achieved by Borel [6] using analytic methods.
There is an isomorphism

(1.1) H∗(GL∞(Z);Q) ∼= ΛQ(r5, r9, r13, . . . )

between the rational stable cohomology ring and a rational exterior algebra
on generators in degrees 5, 9, 13, . . . , 4n+ 1, . . . . The methods that we will
use here are entirely algebraic and topological. They only provide new
information relative to the homology of the general linear groups, to which
we have nothing to add. We could, in principle, also attempt to use them
to obtain information on torsion in the relative homology. At present, such
computations are out of reach, however.
In this writing, we address the general (and therefore non-abelian) free

nilpotent groups Nr
c of class c > 2 and rank r > 2. Among these is the

famous Heisenberg group of unit upper-triangular (3, 3)-matrices with in-
tegral entries as the smallest example N2

2. Its classifying space is the 3-
dimensional Heisenberg manifold X2

2. In general, the groups Nr
c arise as fun-

damental groups of certain aspherical nil-manifolds Xr
c that we can present

as iterated torus bundles over tori.
We are interested in the symmetries of these groups and manifolds, be-

ginning with the automorphism groups Aut(Nr
c) of the groups Nr

c , and their
homology. Again, we can stabilize by passing from r to r + 1, extending
an automorphism by sending the new generator to itself. In the (co)limit
r →∞, we get the stable automorphism group Aut(N∞c ). Again, this no-
tation is not used to refer to the automorphism group of a group N∞c . The
homology of the group Aut(N∞c ) is the colimit of the homologies of the
groups Aut(Nr

c).
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The homology of a group with constant coefficients is arguably the most
fundamental case to consider. However, when we are dealing with families
of groups, it turns out that it is often helpful to set up the computations
to function in the much broader context of polynomial (or finite degree)
coefficients. See [4], [9], and [33], for instance, and the proofs of Theorem 1.1
and Theorem 1.3 below. The more comprehensive setting often allows to
feed inductions, and whenever possible, it is, therefore, appropriate to give
the results in that generality.

Theorem 1.1. — Let V be a polynomial functor from the category ab
of finitely generated free abelian groups to the category of rational vector
spaces. For every integer c > 1 the canonical homomorphism

H∗(Aut(N∞c );V∞) −→ H∗(GL∞(Z);V∞)

is an isomorphism.

By 2-out-of-3, it follows that for every integer c > 2 the canonical homo-
morphism

H∗(Aut(N∞c );V∞) −→ H∗(Aut(N∞c−1);V∞)
is an isomorphism.
In the case of the constant functor V with V (Zr) = Q, we see that

the natural homomorphism Aut(N∞c ) → GL∞(Z) is a rational homology
equivalence for every integer c > 1:

Corollary 1.2. — For all integers c > 2 the canonical homomorphisms

· · · −→ Aut(Nr
c) −→ Aut(Nr

c−1) −→ · · · −→ GLr(Z)

induce isomorphisms in rational stable homology.

As a geometric application, we consider the automorphism groups (in
various geometric categories) of the aspherical nil-manifolds Xr

c with fun-
damental groups isomorphic to Nr

c .
The group π0G(Xr

c) of components of the topological monoid G(Xr
c) of

homotopy self-equivalences of the classifying space Xr
c of the group Nr

c is
isomorphic to the group Out(Nr

c) of outer automorphism of the group Nr
c .

The following result is Theorem 6.1 in the main text.

Theorem 1.3. — For every class c > 1 the canonical projection induces
an isomorphism

Hd(Aut(Nr
c);V (Zr)) −→ Hd(Out(Nr

c);V (Zr))

in the stable range of Aut(Nr
c) for all finite degree functors V on ab with

values in rational vector spaces.

TOME 69 (2019), FASCICULE 2



786 Markus SZYMIK

In particular, for all integers c > 1 the canonical homomorphisms

Aut(Nr
c)→ Out(Nr

c)

of groups induce isomorphisms in rational stable homology.
The following result is Theorem 7.1 in the main text. Starting from the

isomorphisms Out(Nr
c) ∼= π0G(Xr

c) of groups, it allows us to extend the
preceding results from the homotopy category to the mapping class groups
(groups of components of the automorphism groups) in the TOP, PL,
and DIFF categories.

Theorem 1.4. — For all integers c > 1, if the nil-manifold Xr
c is of

dimension at least 5, the canonical homomorphisms

π0 DIFF(Xr
c) −→ π0 PL(Xr

c) −→ π0 TOP(Xr
c) −→ π0G(Xr

c)

of discrete groups induce isomorphisms in rational homology.

Taken together, Theorem 1.1, Theorem 1.3, and Theorem 1.4 compute
the rational stable homology of the mapping class groups of the universal
nil-manifolds Xr

c , justifying the title.
Stable homology computations such as those in the present paper pro-

duce most impact in the presence of homological stability: This guaran-
tees that the stable homology determines infinitely many unstable values.
Luckily, such results are already in place for the groups of interest here:
Rational homological stability for the general linear groups over the ring Z
of integers is due to Borel [6]. With integral coefficients, the result is due
to Charney [8], Maazen (unpublished), van der Kallen [22], and Suslin [32].
Homological stability results for the automorphism groups of free groups are
more recent than those for the general linear groups, see [16] and [17]. They
have been revisited by Bestvina [3] lately. For the automorphism groups
of free nilpotent groups of an arbitrary class c, the author has proven ho-
mological stability in [33]. In none of theses cases is the exact stable range
known, and we will not reproduce the estimates from the references. Our
goal is the computation of the stable homology, and the mere existence of
bounds for homological stability is enough to reach it.
An outline of this paper is as follows. Section 2 contains the necessary

background from homological algebra in functor categories and provides
for a basic rational vanishing result, Proposition 2.5. Section 3 is about
stable K-theory and recalls Scorichenko’s theorem. In Section 4 we review
the free nilpotent groups and their automorphisms. Section 5 provides a
proof of Theorem 1.1. Sections 6 and 7 contain the applications to the outer
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automorphism groups and the TOP, PL, and DIFF mapping class groups
of the associated aspherical nil-manifolds, respectively.

2. Functor homology

In this section, we briefly review some homological algebra in func-
tor (and bifunctor) categories to the extent that we will need in the fol-
lowing sections. We also prove Proposition 2.5, a rational vanishing result
that enters fundamentally into the proof of our main result.

2.1. Mac Lane homology

If C is a small (or essentially small) category, then we write F(C) for the
category of functors C→ Ab from the category C to the category Ab of all
abelian groups. This is an abelian category with enough projective objects
to do homological algebra in. Note that we are looking at all functors, even
if the category C is such that it would make sense for us to consider only
additive functors C→ Ab. For instance, we will be particularly interested
in the case when C = ab is the essentially small category ab of finitely gen-
erated free abelian groups. Then we have the inclusion functor I : ab→ Ab
at our disposal.
A pair of functors E : Cop → Ab and F : C→ Ab has an external tensor

product, defined by

(2.1) (E � F )(X,Y ) = E(X)⊗ F (Y ),

which gives a bifunctor E � F : Cop × C → Ab. Of course, not every
bifunctor has this form. But every bifunctor Cop ×C→ Ab has a coend,
and in the case of E � F this is the internal tensor product E ⊗ F , or
sometimes E⊗CF for emphasis. This is just an abelian group. The derived
functors will be denoted by TorF(C)

∗ or just TorC
∗ .

The following definition is due to Jibladze and Pirashvili, compare [21,
Def. 1.2].

Definition 2.1. — The Mac Lane homology of the ring Z of integers
with coefficients in a functor F ∈ F(ab) is defined as

HML∗(Z;F ) = TorF(ab)
∗ (I∨, F ),

where I∨ : abop → Ab is the dual of the inclusion I, so that I∨(X) =
Hom(X,Z).

TOME 69 (2019), FASCICULE 2
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Remark 2.2. — A functor F ∈ F(ab) is additive if and only if it is
given (up to isomorphism) by tensoring with an abelian group [21, p. 254].
In that case, the Mac Lane homology is the Hochschild homology of the
Q-construction Q(Z) with coefficients in that abelian group, thought of
as a (Z,Z)-bimodule, see [21, 2.1 and 6.2]. Also, in that case, the Mac
Lane homology agrees with the topological Hochschild homology (THH) of
the Eilenberg–Mac Lane spectrum HZ with coefficients in the associated
bimodule spectrum, see [30, Thm. 3.2] and [10, Thm. 2.10].

If Z also denotes the constant functor Cop → Ab with value the group Z
of integers, and F : C→ Ab is any functor, the homology of the category C
with coefficients in the functor F is defined as

(2.2) H∗(C;F ) = TorF(C)
∗ (Z, F ).

Both the Mac Lane homology as well as the homology of categories are
special cases of the Hochschild (bifunctor) homology, as we shall now see.

2.2. Hochschild (bifunctor) homology

Let D : Cop × C → Ab be a bifunctor. For instance, we might have
D = E�F as in (2.1). Or we might haveD = J, where J(X,Y ) = ZC(X,Y )
is the free abelian group on the set C(X,Y ) of morphismsX → Y in C. The
bifunctor J is useful even when C is already enriched in abelian groups: The
Hochschild homology of the category C with coefficients in the bifunctor D
is defined as

HH∗(C;D) = TorF(Cop×C)
∗ (J, D).

See Loday [26, App. C.10] and Franjou–Pirashvili [13, 2.5]. They use the
notation H for this, but we shall reserve it for the homology of categories
with coefficients in a plain functor (rather than a bifunctor) as in (2.2).
The latter is a special case:

Proposition 2.3. — For all functors F ∈ F(C) there is an isomor-
phism

(2.3) H∗(C;F ) ∼= HH∗(C;F ◦ pr2),

where pr2 : Cop ×C→ C is the projection.

Proof. — Note that we can write the composition of functors as F ◦pr2 =
Z� F , so that both sides of (2.3) are isomorphic to TorF(C)

∗ (Z, F ) by [13,
Prop. 2.10 on p. 115] which says TorF(C)

∗ (E,F ) ∼= HH∗(C;E � F ) in our
notation, when E takes values in free abelian groups. �
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Proposition 2.4. — For all functors F ∈ F(ab) there is an isomor-
phism

HML∗(Z;F ) ∼= HH∗(ab; I∨ � F ),

where I∨ � F is the bifunctor with (I∨ � F )(X,Y ) ∼= Hom(X,FY ).

Proof. — Both sides are isomorphic to TorF(ab)
∗ (I∨, F ): the left hand

side by Definition 2.1, and the right hand side by [13, Prop. 2.10 on p. 115]
again. Alternatively, see [26, 13.1.7, 13.2.17]. �

2.3. A rational vanishing result

The following rational vanishing result will be the main computational in-
put in our proof of Theorem 1.1. It refers to the Lie functors Lieb : ab→ Ab,
that is the degree b homogeneous part of the free Lie algebra functor. We
will abbreviate

Lie[a,c] =
c⊕

b=a

Lieb,

so that Lie[1,c](Zr) is nothing but the free nilpotent Lie algebra of class c
on r generators.

Proposition 2.5. — For all c > 2 and q > 1, the Hochschild homology
groups

HH∗(ab; (I∨ � Lie[2,c])⊗q ⊗ V )

vanish whenever V is a functor on ab with values in rational vector spaces.

Proof. — We will assume that the functor V is constant, so that we are
dealing with the groups HH∗(ab; (I∨ � Lie[2,c])⊗q) rationally. The same
argument gives the result in the general case, inserting ⊗V in suitable
places.
We can check the first case q = 1 directly, because

HH∗(ab; I∨ � Lie[2,c]) ∼= HML∗(Z; Lie[2,c])

is isomorphic to the Mac Lane homology of the ring Z of integers with
coefficients in the functor Lie[2,c] by Proposition 2.4. The Lie functors Lieb

are rationally retracts of the tensor powers
⊗b: There are morphisms

Lieb −→
⊗b −→ Lieb

TOME 69 (2019), FASCICULE 2



790 Markus SZYMIK

such that their composition is multiplication with b [31, Prop. 3.3]. Since the
functor

⊗b has vanishing Mac Lane homology by Pirashvili’s Lemma (com-
pare [12, Lem. 2.2]), so have the functors Lieb, and therefore also their direct
sum

Lie[2,c] =
c⊕

b=2
Lieb .

This proves the claim in the case q = 1.
To finish the proof, we reduce the case q > 2 to the previous one: There

is an obvious isomorphism(
I∨ � Lie[2,c] )⊗q ∼=

(
I∨
)⊗q
�
(

Lie[2,c] )⊗q
,

and by another invocation of [13, Prop. 2.10 on p. 115] we have

HH∗(ab; (I∨)⊗q � (Lie[2,c])⊗q) ∼= TorF(ab)
∗ ((I∨)⊗q, (Lie[2,c])⊗q).

The right hand side can be computed, using the Künneth theorem for Tor,
from

TorF(ab)
∗ (I∨,Lie[2,c])⊗q,

and it therefore suffices to show that this is zero. But, working backwards,
we already know that this is isomorphic to

HH∗(ab; I∨ � Lie[2,c])⊗q ∼= HML∗(Z; Lie[2,c])⊗q,

and this vanishes as explained for q = 1. �

Remark 2.6. — In the case c = 2 and q = 1 of the preceding result, the
Mac Lane cohomology of the ring of integers with coefficients in the func-
tor Lie2 = Λ2 has been computed integrally by Franjou and Pirashvili [12,
Cor. 2.3]. It is all 2-torsion.

3. Stable K-theory

There is a simple trick (due to Waldhausen, compare [35, Sec. 6]) that
helps us compute the stable homology

(3.1) H∗(GL∞(Z);D∞) = colim
r

H∗(GLr(Z);D(Zr,Zr))

of the general linear groups with coefficients in a module D∞ that comes
from a bifunctor D : ab× abop → Ab: We can use the Serre spectral se-
quence for the fibration

X −→ BGL∞(Z) −→ BGL∞(Z)+,

ANNALES DE L’INSTITUT FOURIER
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where the space X is the homotopy fiber of the indicated Quillen plus con-
struction. The groups on the E2 page take the form
H∗(BGL∞(Z)+; H∗(X;D∞)), where the coefficients H∗(X;D∞) are the
homology of the fiber X with coefficients in the π1(X)-module D∞ =
colimr D(Zr,Zr). The fundamental group π1(X) acts on D∞ via the ho-
momorphism

π1(X)→ π1(BGL∞(Z)) ∼= GL∞(Z).

Remark 3.1. — The action of the fundamental group of BGL∞(Z)+ on
these coefficients H∗(X;D∞) is now trivial, see [23, Thm. 3.1] and [24,
proof of Thm. 2.16]. We will not need this fact, since we will show that in
our situation the coefficients itself will be trivial.

Since the Quillen plus construction is an acyclic map, it induces homol-
ogy isomorphisms with respect to all coefficients, twisted and untwisted.
Therefore, we can remove the plus to get a spectral sequence

(3.2) E2
s,t =⇒ Hs+t(GL∞(Z);D∞),

with

(3.3) E2
s,t = Hs(GL∞(Z); Kst

t (Z;D))

where, by definition,

(3.4) Kst
∗ (Z;D) = H∗(X;D∞)

is the stable K-theory of the ring of integers with coefficients in the bifunc-
tor D.

Remark 3.2. — Bökstedt pointed out that this spectral sequence often
degenerates. See also [5, proof of Thm. 2]. Again, this will be obvious in
our situation, because the entire E2 page will be trivial.

The definition (3.4) of stable K-theory is topological in nature. We will
need the following result that gives an algebraic description of it.

Theorem 3.3 (Scorichenko). — For any ring R, let modR be the cat-
egory of finitely generated projective left R-modules, and let D be a bi-
functor on it. If D has finite degree with respect to each of the variables,
then there is an isomorphism between Waldhausen’s stable K-theory and
the Hochschild homology of the category modR:

Kst
∗ (R;D) ∼= HH∗(modR;D).

TOME 69 (2019), FASCICULE 2
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See the exposition [13] by Franjou and Pirashvili. The cited result is
stated as Theorem 1.1 there, and the proof given is complete for rings R
with the property that submodules of finitely generated projective left R-
modules are still finitely generated and projective. This property is satisfied
for R = Z, when modZ = ab, which is the only case that we will be using
here. See also [9, 5.2] for an enlightening discussion, and [11, App.].

4. Free nilpotent groups and their automorphisms

In this section, we present some basic results about the free nilpotent
groups and their automorphisms. Most of this must be well-known, and we
can refer to the exposition in [33], for instance. We will, however, prove the
two Propositions 4.1 and 4.3 which will later be used.

Let G be a (discrete) group. For integers n > 1, the subgroups Γn(G)
are defined inductively by Γ1(G) = G and Γn+1(G) = [G,Γn(G)]. We also
set Γ∞(G) to be the intersection of all the Γn(G). This gives a series

G = Γ1(G) > Γ2(G) > · · · > Γ∞(G)

of normal subgroups, the descending/lower central series of G. The asso-
ciated graded group is abelian, and the commutator bracket induces the
structure of a graded Lie algebra Lie(G) on it.
Let Fr denote a free group on a set of r generators. In this case, an old

theorem of Magnus says that the subgroup Γ∞(Fr) is trivial, so that the
free groups Fr are residually nilpotent. By Witt’s theorem, the canonical
homomorphism from a free Lie algebra on a set of r generators to the
associated graded Lie algebra of Fr is an isomorphism. In particular

(4.1) Γn(Fr)/Γn+1(Fr) ∼= Lien(Zr)

is a free abelian group, the degree n homogeneous part of the free Lie alge-
bra on a set of r generators. For instance, we have Lie1 = Id and Lie2 = Λ2.

4.1. Free nilpotent groups

The universal examples of nilpotent groups of class c > 1 are the quo-
tients Nr

c = Fr/Γc+1(Fr). As the two extreme cases, we obtain Nr
1
∼= Zr

and Nr
∞
∼= Fr. It follows from (4.1) that there are extensions

(4.2) 0 −→ Liec(Zr) −→ Nr
c −→ Nr

c−1 −→ 1

of groups.

ANNALES DE L’INSTITUT FOURIER
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4.2. Rational homology

We will later need the following structural result on the rational homol-
ogy of the groups Nr

c .

Proposition 4.1. — For every class c > 1 and every degree d, there is
a polynomial functor P , depending on c and d, and of degree at most cd,
from ab to rational vector spaces, such that Hd(Nr

c ;Q) ∼= P (Zr) for all r.

Proof. — Since we are only interested in the rational homology of nilpo-
tent groups, we may just as well consider the rationalizations/Malcev com-
pletions Nr

c ⊗Q, see [25, Sec. 4]. We have natural isomorphisms

Hd(Nr
c ;Q) ∼= Hd(Nr

c ⊗Q;Q).

Then, the category of uniquely divisible nilpotent groups is equivalent to
the category of nilpotent Lie algebras over Q, and we get a natural isomor-
phism

Hd(Nr
c ;Q) ∼= Hd(Lie(Nr

c ⊗Q);Q),
as demonstrated by Nomizu [28, Thm. 1] and, more generally and explic-
itly, by Pickel [29, Thm. 10]. As a consequence of Witt’s theorem, the Lie
algebra Lie(Nr

c ⊗Q) of the group of interest is nothing else than the free
nilpotent Lie algebra Lie[1,c](Qr) on r generators, and this is clearly func-
torial in Qr (and in particular in Zr) of degree c. The d-th homology of a
Lie algebra g is the homology of the Chevalley–Eilenberg resolution

· · · ←− Λdg←− · · · .

As a subquotient of the functor Λd Lie(Nr
c ⊗Q), which is of degree cd, the

homology is then also functorial of degree at most cd. �

4.3. Automorphisms

More than in the free nilpotent groups Nr
c themselves, we are interested

in the groups Aut(Nr
c) of their automorphisms. In the case c = 1, these are

the general linear groups GLr(Z), and in the limiting case c = ∞, these
are the automorphism groups Aut(Fr) of free groups.

Proposition 4.2. — There are extensions

(4.3) 0 −→ Hom(Zr,Liec(Zr)) −→ Aut(Nr
c) −→ Aut(Nr

c−1) −→ 1

of groups.

TOME 69 (2019), FASCICULE 2



794 Markus SZYMIK

See again [33, Prop. 3.1], for instance. Note that any element of the
quotient group Aut(Nr

c−1) acts on the kernel group via restriction along the
canonical projection Aut(Nr

c−1) → Aut(Nr
1) = GLr(Z). For that reason, it

is sometimes more efficient to study the extensions

(4.4) 1 −→ IAr
c −→ Aut(Nr

c) −→ GLr(Z) −→ 1

of groups. The kernels IAr
c are known to be nilpotent of class c − 1. See

for instance Andreadakis [1, Cor. 1.3.]. By what has already been said, it
is clear that they differ by free abelian groups in the sense that there are
extensions

(4.5) 0 −→ Hom(Zr,Liec(Zr)) −→ IAr
c −→ IAr

c−1 −→ 1.

4.4. On the Andreadakis–Johnson module

We can now put this together to get the following result that will later
help us to estimate homology.

Proposition 4.3. — The GLr(Z)-module Hq(IAr
c) ⊗ Q is isomorphic

to a direct summand of the GLr(Z)-module Λq(Hom(Zr,Lie[2,c](Zr))⊗Q.

Proof. — Our starting point are the Lyndon–Hochschild–Serre spectral
sequences associated with the extensions (4.5). We have

E2
s,t =⇒ Hs+t(IAr

c)

with

(4.6) E2
s,t = Hs(IAr

c−1; Ht Hom(Zr,Liec(Zr))).

Since we are working rationally, and GLr is reductive, every short ex-
act sequence splits. It therefore suffices to show that the filtration quotients
E∞s,q−s of the homology Hq(IAr

c) form a direct summand of
Λq(Hom(Zr,Lie[2,c](Zr)). In turn, this will follow once we know the same
for the terms E2

s,q−s on the E2 page, because the groups E∞s,q−s are sub-
quotients (and rationally direct summands) thereof.
As for the groups (4.6) on the E2 page, it is evident by construction that

the actions of the kernels IAr
c−1 of the canonical projections

Aut(Nr
c)→ GLr(Z) on the coefficient groups Hom(Zr,Liec(Zr)) are trivial.

Therefore, we can write the E2 term as a graded tensor product

E2
∗,∗
∼= H∗(IAr

c−1)⊗ Λ∗Hom(Zr,Liec(Zr)),
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using that the homology of the free abelian groups is given by the exterior
powers. We see that Hq(IAr

c) is a direct summand of the degree q part of

H∗(IAr
c−1)⊗ Λ∗Hom(Zr,Liec(Zr)).

By induction on c, this is isomorphic to a direct summand of the degree q
part of

Λ∗Hom(Zr,Lie2(Zr))⊗ · · · ⊗ Λ∗Hom(Zr,Liec(Zr))
∼= Λ∗Hom(Zr,Lie2(Zr)⊕ · · · ⊕ Liec(Zr)),

which is Λq Hom(Zr,Lie[2,c](Zr)), as claimed. �

Tensoring with another rational representation V (Zr) that originates in
a functor V from the category of finitely generated free abelian groups to
the category of rational vector spaces, we obtain:

Corollary 4.4. — For every functor V from the category ab of the
finitely generated free abelian groups to the category of rational vector
spaces, the GLr(Z)-module Hq(IAr

c) ⊗ V (Zr) is a direct summand (up to
isomorphism) of the GLr(Z)-module Λq(Hom(Zr,Lie[2,c](Zr))⊗ V (Zr).

5. A proof of Theorem 1.1

We now have enough ingredients to prove Theorem 1.1.
Proof. — The homomorphism

(5.1) H∗(Aut(N∞c );V∞) −→ H∗(GL∞(Z);V∞)

in question is the edge homomorphism in the Lyndon–Hochschild–Serre
spectral sequence

E2
p,q =⇒ Hp+q(Aut(N∞c );V∞)

for the colimit of the extensions (4.4), with E2 page

(5.2) E2
p,q = Hp(GL∞(Z); Hq(IA∞c ;V∞)).

Since IA∞c maps trivially to the general linear groups, we can pull the
coefficients out:

E2
p,q
∼= Hp(GL∞(Z); Hq(IA∞c )⊗ V∞).

In fact, the 0-line is just the homology of the stable general linear group
with coefficients in V∞. We will show that the other groups (i.e. the lines
with q > 1) on the E2 page vanish rationally:

(5.3) H∗(GL∞(Z); Hq(IA∞c )⊗ V∞) = 0
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for all c > 2 and q > 1. This will imply the result.
We will prove (5.3) using some very crude estimates. (Here these always

originate from spectral sequences.) The first one is Corollary 4.4, which
implies that it suffices to be shown that

(5.4) H∗(GL∞(Z); Λq(I∨ � Lie[2,c])∞ ⊗ V∞) = 0

for all c > 2 and q > 1. As explained in Section 3, such twisted homol-
ogy can be computed from the stable K-theory Kst

∗ (Z; Λq(I∨ � Lie[2,c]) ⊗
V ) using the spectral sequence (3.2) and (3.3) for the bifunctor D =
Λq(I∨ � Lie[2,c])⊗ V :

E2
s,t =⇒ Hs+t(GL∞(Z); Λq(I∨ � Lie[2,c])∞ ⊗ V∞)

with
E2

s,t = Hs(GL∞(Z); Kst
t (Z; Λq(I∨ � Lie[2,c])⊗ V )).

The bifunctor Λq(I∨�Lie[2,c])⊗V at hand is of finite degree in each variable,
so that we can use Scorichenko’s Theorem 3.3 to the effect that stable K-
theory is bifunctor homology,

Kst
∗ (Z; Λq(I∨ � Lie[2,c])⊗ V ) ∼= HH∗(ab; Λq(I∨ � Lie[2,c])⊗ V ).

Thus, it suffices to see that the right hand side is zero rationally. Since the
functor Λq is a retract of ⊗q, this follows from Proposition 2.5. �

Remark 5.1. — By Betley’s work [4, Thm.4.2] on the homology of the
general linear groups with twisted coefficients, the right hand side of (5.1)
(and therefore also the left hand side) vanishes if the functor V is reduced,
that is if we have V (0) = 0.

6. Outer automorphism groups

The outer automorphism group Out(G) of a group G is the quotient in
an extension

1 −→ Inn(G) −→ Aut(G) −→ Out(G) −→ 1,

with inner automorphism group Inn(G) ∼= G/Z(G) and the projection gives
a factorization Aut(G)→ Out(G)→ Aut(H∗G) of the canonical homomor-
phism to the automorphism group of the homology/abelianization: Inner
automorphisms act trivially on homology.
In the case when G = Nr

c is a free nilpotent group, the center is the
kernel of the canonical projection Nr

c → Nr
c−1, so that we have

Z(Nr
c) ∼= Liec(Zr)
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and
Inn(Nr

c) ∼= Nr
c−1.

Consequently, we get an extension

(6.1) 1 −→ Nr
c−1 −→ Aut(Nr

c) −→ Out(Nr
c) −→ 1.

In parallel with (4.4), we define subgroups IOr
c 6 Out(Nr

c) as the kernels
in the extensions

(6.2) 1 −→ IOr
c −→ Out(Nr

c) −→ GLr(Z) −→ 1.

This gives extensions

(6.3) 1 −→ Nr
c−1 −→ IAr

c −→ IOr
c −→ 1

of nilpotent groups of class c− 1.
This finishes our description of the outer automorphism groups Out(Nr

c)
up to extensions. We can proceed to compute their rational homology.
Let V be a polynomial functor (of finite degree) from the category ab

of finitely generated free abelian groups to the category of rational vector
spaces. This defines twisted coefficients for both of the groups Aut(N∞c )
and Out(N∞c ) via their homomorphisms to the general linear groups.

Theorem 6.1. — For every class c > 1 the canonical projection induces
an isomorphism

(6.4) Hd(Aut(Nr
c);V (Zr)) −→ Hd(Out(Nr

c);V (Zr))

in the stable range of Aut(Nr
c) for all finite degree functors V on ab with

values in rational vector spaces.

Remark 6.2. — The existence of a stable range for the homology of the
automorphism groups (with polynomial coefficients) has been established
in [33, Thm. 4.5], even integrally. The proof of Theorem 6.1 given below
uses that stability result. It says that there exists an integer R = R(c, d, V )
such that the homology Hd(Aut(Nr

c);V (Zr)) is independent (in a precise
sense) of r as soon as r > R. At the time of writing, the best possible value
is not known.

Remark 6.3. — The theorem implies the existence of a stable range for
the homology of the outer automorphism groups as well, at least ratio-
nally. We note that, in particular, the rational homology vanishes in the
stable range if the functor V is reduced, by Theorem 1.1 and Remark 5.1
following it.
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Proof of Theorem 6.1. — We prove this by induction on the homological
degree d.
We start the induction in degree d = 0. This case concerns the co-

invariants of the actions on V (Zr). Since the groups Aut(Nr
c) surject onto

the groups Out(Nr
c), the co-invariants are the same.

Let us now assume that the degree d is positive, and that the result
has already been proven for all smaller degrees than that. We consider the
Lyndon–Hochschild–Serre spectral sequence

E2
s,t(r) = Hs(Out(Nr

c); Ht(Nr
c−1;V (Zr))) =⇒ Hs+t(Aut(Nr

c);V (Zr))

for the extension (6.1) in the stable range, that is for r so large that the
homology groups under consideration represent the stable values. (There
are only finitely many of them relevant at each given time.) We would like
to show that the rows with t 6= 0 vanish, so that the edge homomorphism
(which is the homomorphism (6.4) in question) is an isomorphism.
Since the action on the coefficients V (Zr) factors through the quotient

Out(Nr
c), the coefficients for the homology Ht(Nr

c−1;V (Zr)) are actually
untwisted.

Ht(Nr
c−1;V (Zr)) ∼= Ht(Nr

c−1)⊗ V (Zr)

From Proposition 4.1 we deduce that this is a polynomial functor (of finite
degree). And if t 6= 0, then this functor is reduced: Since the group N0

c−1 is
trivial, so is the homology Ht(N0

c−1) for t 6= 0. It follows by induction (and
Remark 6.3) that the groups E2

s,t(r) vanish for t 6= 0, and we are left with
an isomorphism

Hd(Aut(Nr
c);V (Zr)) ∼= E2

d,0(r) = Hd(Out(Nr
c);V (Zr)),

as desired. �

Remark 6.4. — The basic set-up for this proof is the same as in [33,
Sec. 1]. There it was used to prove homological stability, whereas here it is
used to compute stable homology.

Combining the specializations of both Theorems 1.1 and 6.1 to the case
of constant coefficients we get:

Corollary 6.5. — The canonical projection induces an isomorphism

H∗(Out(N∞c );Q) −→ H∗(GL∞(Z);Q)

in rational homology for all classes c > 1.
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7. Mapping class groups

The free nilpotent groups Nr
c of class c on r generators arise as fundamen-

tal groups of aspherical nil-manifolds: Upon passage to classifying spaces,
the extensions (4.2) gives rise to iterated torus bundles over tori. These
manifolds will be denoted by Xr

c here. We can now spell out some implica-
tions of our preceding results for the mapping class groups of the Xr

c for the
various categories of automorphisms. Note that the dimension dim(Xr

c) of
the manifolds Xr

c increases with r, so that for “large” enough r, which is the
situation that we are interested in here, surgery and concordance/pseudo-
isotopy theory apply and will compute the mapping class groups in the
TOP, PL, and DIFF categories. For basic information about the auto-
morphism groups of manifolds in these categories, we refer to the survey
articles by Burghelea [7], Hatcher [15], Balcerak–Hajduk [2], and Weiss–
Williams [37].
We begin with the homotopy category. For any discrete group G, the

group Out(G) is isomorphic to the group of components of the topological
monoid G(X) of homotopy self-equivalences of the classifying spaceX of G.
For the groups G = Nr

c with classifying spaces Xr
c , we therefore have an

isomorphism

(7.1) π0G(Xr
c) ∼= Out(Nr

c)

of groups, and Corollary 6.5 directly gives the stable rational homology of
the symmetries of the manifolds Xr

c in the homotopy category.
We now explain how to transfer this to the TOP, PL, and DIFF cate-

gories:

Theorem 7.1. — For all integers c > 1, if the nil-manifold Xr
c is of

dimension at least 5, the canonical homomorphisms

π0 DIFF(Xr
c) −→ π0 PL(Xr

c) −→ π0 TOP(Xr
c) −→ π0G(Xr

c)

of discrete groups induce isomorphisms in rational homology of discrete
groups.

Remark 7.2. — The first case c = 1 of this result is already known
as a consequence of the (independent) work of Hsiang–Sharpe [19] and
Hatcher [15]. In order to generalize their arguments, we need to know the
vanishing of surgery obstructions for manifolds with free nilpotent funda-
mental groups. Since the latter are poly-Z groups by (4.1), we can refer
to Wall [36, 15B]. Waldhausen [34, Thms. 17.5, 19.4] has shown that the
Whitehead spaces vanish for a class of groups that contains all poly-Z
groups.
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Proof of Theorem 7.1. — We start with the homeomorphisms. It is clear
that the canonical homomorphism π0 TOP(Xr

c) → π0G(Xr
c) is surjective.

For dim(Xr
c) > 5 this follows from surgery theory, see for instance [36,

Thm. 15B.1]. In our situation, it can also be seen explicitly, and for all Xr
c ,

because the projection Aut(Nr
c) → Out(Nr

c) is evidently surjective, and
the group Aut(Nr

c) tautologically acts on Nr
c , on the completion Nr

c ⊗ R
of Nr

c⊗Q, and therefore also on the quotient Xr
c
∼= Nr

c⊗R/Nr
c . This action

is algebraic, hence smooth.
We need to estimate the kernel of the homomorphism from π0 TOP(Xr

c)
to π0G(Xr

c), which is isomorphic to the fundamental group
π1(G(Xr

c)/TOP(Xr
c)). It follows from surgery theory (see again [36, Sec. 15B,

17A] and the remark preceding this proof) that G(Xr
c)/T̃OP(Xr

c) is con-
tractible, where the notation T̃OP as usually refers to the block homeo-
morphism group. We thus have an isomorphism

π1(G(Xr
c)/TOP(Xr

c)) ∼= π1(T̃OP(Xr
c)/TOP(Xr

c)).

The right hand side can be determined from concordance/pseudo-isotopy
theory as follows: Work of Hatcher and Igusa ([15, Sec. 2, 3] and [20, Sec. 8])
shows that this group is dominated by π0 of the concordance space of Xr

c .
Therefore, the only possible contribution to π0 is a quotient of the 2-torsion
group F2[Nr

c ]/F2. We see that this vanishes rationally (in fact, away from 2),
so that

π0 TOP(Xr
c) −→ π0G(Xr

c)
is a rational homology isomorphism if dim(Xr

c) > 5. This settles the TOP
case.
Since the group π1(C̃AT(Xr

c)/CAT(Xr
c)) is independent of the category

CAT of symmetries considered [15], we see that it vanishes rationally for
the remaining two cases CAT = PL and CAT = DIFF as well. For this
reason, the kernels of the homomorphisms

(7.2) π0 DIFF(Xr
c) −→ π0 PL(Xr

c) −→ π0 TOP(Xr
c)

between the mapping class groups in the various categories of structures
are the same as the kernels between the corresponding blocked groups
π0C̃AT(Xr

c), and it remains to be checked that these kernels are rationally
trivial.
From surgery theory, see the references for [36, Sec. 17A], there exists

an equivalence between the quotient space T̃OP(Xr
c)/P̃L(Xr

c), which mea-
sures the difference between the two block automorphism groups, and the
function space of maps Xr

c → TOP /PL. The work of Kirby–Siebenmann
(see [27, Rem. 2.25] for instance) shows that the target space TOP /PL is
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an Eilenberg–Mac Lane space of type (Z/2, 3), which is rationally trivial.
Therefore, the function space is also rationally trivial.
We similarly have an equivalence between P̃L(Xr

c)/D̃IFF(Xr
c) and the

function space of maps Xr
c → PL /O. By work of Cerf and Kervaire–Milnor,

the target PL /O also has finite homotopy groups, essentially the groups
of exotic spheres, see [27, Rem. 4.21]. We can therefore argue as in the
paragraph before. �

Acknowledgements. I thank A. Djament for his constructive com-
ments on early drafts of this text. His and a referee’s suggestions led to
substantial improvements. I also thank B. I. Dundas, W. G. Dwyer, T. Pi-
rashvili, A. Putman, C. Vespa, and N. Wahl. This research has been sup-
ported by the Danish National Research Foundation through the Centre for
Symmetry and Deformation (DNRF92), and parts of this paper were writ-
ten while I was visiting the Hausdorff Research Institute for Mathematics,
Bonn.

BIBLIOGRAPHY

[1] S. Andreadakis, “On the automorphisms of free groups and free nilpotent groups”,
Proc. Lond. Math. Soc. 15 (1965), p. 239-268.

[2] W. Balcerak & B. Hajduk, “Homotopy type of automorphism groups of mani-
folds”, Colloq. Math. 45 (1981), no. 1, p. 1-33.

[3] M. Bestvina, “Homological stability of Aut(Fn) revisited”, in Hyperbolic geome-
try and geometric group theory, Advanced Studies in Pure Mathematics, vol. 73,
Mathematical Society of Japan, 2017, p. 1-11.

[4] S. Betley, “Homology of Gl(R) with coefficients in a functor of finite degree”, J.
Algebra 150 (1992), no. 1, p. 73-86.

[5] S. Betley & T. Pirashvili, “Stable K-theory as a derived functor”, J. Pure Appl.
Algebra 96 (1994), no. 3, p. 245-258.

[6] A. Borel, “Stable real cohomology of arithmetic groups”, Ann. Sci. Éc. Norm.
Supér. 7 (1974), p. 235-272.

[7] D. Burghelea, “Automorphisms of manifolds”, in Algebraic and geometric topol-
ogy (Stanford, 1976), Part 1, Proceedings of Symposia in Pure Mathematics, vol. 32,
American Mathematical Society, 1978, p. 347-371.

[8] R. M. Charney, “Homology stability for GLn of a Dedekind domain”, Invent.
Math. 56 (1980), no. 1, p. 1-17.

[9] A. Djament, “Sur l’homologie des groupes unitaires à coefficients polynomiaux”,
J. K-Theory 10 (2012), no. 1, p. 87-139.

[10] Z. Fiedorowicz, T. Pirashvili, R. Schwänzl, R. Vogt & F. Waldhausen, “Mac
Lane homology and topological Hochschild homology”, Math. Ann. 303 (1995),
no. 1, p. 149-164.

[11] V. Franjou, E. M. Friedlander, A. Scorichenko & A. A. Suslin, “General
linear and functor cohomology over finite fields”, Ann. Math. 150 (1999), no. 2,
p. 663-728.

TOME 69 (2019), FASCICULE 2



802 Markus SZYMIK

[12] V. Franjou & T. Pirashvili, “On the Mac Lane cohomology for the ring of inte-
gers”, Topology 37 (1998), no. 1, p. 109-114.

[13] ———, “Stable K-theory is bifunctor homology (after A. Scorichenko)”, in Ra-
tional representations, the Steenrod algebra and functor homology, Panoramas et
Synthèses, vol. 16, Société Mathématique de France, 2003, p. 107-126.

[14] S. Galatius, “Stable homology of automorphism groups of free groups”, Ann. Math.
173 (2011), no. 2, p. 705-768.

[15] A. E. Hatcher, “Concordance spaces, higher simple-homotopy theory, and appli-
cations”, in Algebraic and geometric topology (Stanford, 1976), Part 1, Proceedings
of Symposia in Pure Mathematics, American Mathematical Society, 1978, p. 3-21.

[16] ———, “Homological stability for automorphism groups of free groups”, Comment.
Math. Helv. 70 (1995), no. 1, p. 39-62.

[17] A. E. Hatcher & K. Vogtmann, “Cerf theory for graphs”, J. Lond. Math. Soc.
58 (1998), no. 3, p. 633-655.

[18] ———, “Rational homology of Aut(Fn)”, Math. Res. Lett. 5 (1998), no. 6, p. 759-
780.

[19] W.-C. Hsiang & R. W. Sharpe, “Parametrized surgery and isotopy”, Pac. J. Math.
67 (1976), no. 2, p. 401-459.

[20] K. Igusa, “What happens to Hatcher and Wagoner’s formulas for π0C(M) when
the first Postnikov invariant of M is nontrivial?”, in Algebraic K-theory, number
theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Mathematics, vol.
1046, Springer, 1984, p. 104-172.

[21] M. Jibladze & T. Pirashvili, “Cohomology of algebraic theories”, J. Algebra 137
(1991), no. 2, p. 253-296.

[22] W. van der Kallen, “Homology stability for linear groups”, Invent. Math. 60
(1980), no. 3, p. 269-295.

[23] C. Kassel, “La K-théorie stable”, Bull. Soc. Math. Fr. 110 (1982), no. 4, p. 381-416.
[24] ———, “Calcul algébrique de l’homologie de certains groupes de matrices”, J.

Algebra 80 (1983), no. 1, p. 235-260.
[25] M. Lazard, “Sur les groupes nilpotents et les anneaux de Lie”, Ann. Sci. Éc. Norm.

Supér. 71 (1954), p. 101-190.
[26] J.-L. Loday, Cyclic homology, second ed., Grundlehren der Mathematischen Wis-

senschaften, vol. 301, Springer, 1998, xx+513 pages.
[27] I. Madsen & R. J. Milgram, The classifying spaces for surgery and cobordism

of manifolds, Annals of Mathematics Studies, vol. 92, Princeton University Press;
University of Tokyo Press, 1979, xii+279 pages.

[28] K. Nomizu, “On the cohomology of compact homogeneous spaces of nilpotent Lie
groups”, Ann. Math. 59 (1954), p. 531-538.

[29] P. F. Pickel, “Rational cohomology of nilpotent groups and Lie algebras”, Com-
mun. Algebra 6 (1978), no. 4, p. 409-419.

[30] T. Pirashvili & F. Waldhausen, “Mac Lane homology and topological Hochschild
homology”, J. Pure Appl. Algebra 82 (1992), no. 1, p. 81-98.

[31] J. W. Schlesinger, “The semi-simplicial free Lie ring”, Trans. Am. Math. Soc.
122 (1966), p. 436-442.

[32] A. A. Suslin, “Stability in algebraic K-theory”, in Algebraic K-theory, Part I (Ober-
wolfach, 1980), Lecture Notes in Mathematics, vol. 966, Springer, 1982, p. 304-333.

[33] M. Szymik, “Twisted homological stability for extensions and automorphism groups
of free nilpotent groups”, J. K-Theory 14 (2014), no. 1, p. 185-201.

[34] F. Waldhausen, “Algebraic K-theory of generalized free products. III, IV”, Ann.
Math. 108 (1978), no. 2, p. 205-256.

ANNALES DE L’INSTITUT FOURIER



MAPPING CLASS GROUPS OF UNIVERSAL NIL-MANIFOLDS 803

[35] ———, “Algebraic K-theory of topological spaces. I”, in Algebraic and geometric
topology (Stanford, 1976), Part 1, Proceedings of Symposia in Pure Mathematics,
American Mathematical Society, 1978, p. 35-60.

[36] C. T. C. Wall, Surgery on compact manifolds, vol. 1, Academic Press Inc., 1970,
London Mathematical Society Monographs, x+280 pages.

[37] M. Weiss & B. Williams, “Automorphisms of manifolds”, in Surveys on surgery
theory, Vol. 2, Annals of Mathematics Studies, vol. 149, Princeton University Press,
2001, p. 165-220.

Manuscrit reçu le 19 juillet 2017,
révisé le 6 avril 2018,
accepté le 26 avril 2018.

Markus SZYMIK
Department of Mathematical Sciences
NTNU Norwegian University of Science and
Technology
7491 Trondheim (Norway)
markus.szymik@ntnu.no

TOME 69 (2019), FASCICULE 2

mailto:markus.szymik@ntnu.no

	1. Introduction
	2. Functor homology
	2.1. Mac Lane homology
	2.2. Hochschild (bifunctor) homology
	2.3. A rational vanishing result

	3. Stable K-theory
	4. Free nilpotent groups and their automorphisms
	4.1. Free nilpotent groups
	4.2. Rational homology
	4.3. Automorphisms
	4.4. On the Andreadakis–Johnson module

	5. A proof of Theorem 1.1
	6. Outer automorphism groups
	7. Mapping class groups
	Bibliography

