Considérons le problème de Dirichlet par rapport à un opérateur elliptique
sur un ensemble ouvert régulier de Wiener borné , où et . Supposons que n’est pas une valeur propre de avec conditions aux limites Dirichlet. Alors nous montrons que pour tout il existe un unique tel que et .
Dans le cas où a une frontière Lipschitz et , nous montrons que coïncide avec la solution variationnelle dans .
Consider the Dirichlet problem with respect to an elliptic operator
on a bounded Wiener regular open set , where and . Suppose that the associated operator on with Dirichlet boundary conditions is invertible. Then we show that for all there exists a unique such that and .
In the case when has a Lipschitz boundary and , then we show that coincides with the variational solution in .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3257
Keywords: Dirichlet problem, Wiener regular, holomorphic semigroup
Mot clés : Problème de Dirichlet, Wiener régulier, semigroupe holomorphe
Arendt, Wolfgang 1 ; ter Elst, A. F. M. 2
@article{AIF_2019__69_2_763_0, author = {Arendt, Wolfgang and ter Elst, A. F. M.}, title = {The {Dirichlet} problem without the maximum principle}, journal = {Annales de l'Institut Fourier}, pages = {763--782}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {2}, year = {2019}, doi = {10.5802/aif.3257}, zbl = {07067418}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3257/} }
TY - JOUR AU - Arendt, Wolfgang AU - ter Elst, A. F. M. TI - The Dirichlet problem without the maximum principle JO - Annales de l'Institut Fourier PY - 2019 SP - 763 EP - 782 VL - 69 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3257/ DO - 10.5802/aif.3257 LA - en ID - AIF_2019__69_2_763_0 ER -
%0 Journal Article %A Arendt, Wolfgang %A ter Elst, A. F. M. %T The Dirichlet problem without the maximum principle %J Annales de l'Institut Fourier %D 2019 %P 763-782 %V 69 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3257/ %R 10.5802/aif.3257 %G en %F AIF_2019__69_2_763_0
Arendt, Wolfgang; ter Elst, A. F. M. The Dirichlet problem without the maximum principle. Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 763-782. doi : 10.5802/aif.3257. https://aif.centre-mersenne.org/articles/10.5802/aif.3257/
[1] Wiener regularity and heat semigroups on spaces of continuous functions, Topics in nonlinear analysis. The Herbert Amann anniversary volume (Progress in Nonlinear Differential Equations and their Applications), Volume 35 (1999), pp. 29-49 | DOI | MR | Zbl
[2] The Dirichlet problem by variational methods, Bull. Lond. Math. Soc., Volume 40 (2008) no. 1, pp. 51-56 | DOI | MR | Zbl
[3] Gaussian estimates for second order elliptic operators with boundary conditions, J. Oper. Theory, Volume 38 (1997) no. 1, pp. 87-130 | MR | Zbl
[4] The Dirichlet-to-Neumann operator on (2019) (https://arxiv.org/abs/1707.05556, to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci.)
[5] The Dirichlet-to-Neumann operator via hidden compactness, J. Funct. Anal., Volume 266 (2014) no. 3, pp. 1757-1786 | DOI | MR | Zbl
[6] Vector-valued holomorphic functions revisited, Math. Z., Volume 234 (2000) no. 4, pp. 777-805 | MR | Zbl
[7] Estimates of harmonic measure, Arch. Rational Mech. Anal., Volume 65 (1977), pp. 275-288 | DOI | MR | Zbl
[8] Heat kernel estimates for operators with boundary conditions, Math. Nachr., Volume 217 (2000), pp. 13-41 | DOI | MR | Zbl
[9] An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Edizioni Della Normale, 2005, ix+302 pages | Zbl
[10] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Springer, 1983 no. 224, xiii+513 pages | Zbl
[11] Regular points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., Volume 17 (1963), pp. 43-77 | MR | Zbl
[12] Analysis of heat equations on domains, London Mathematical Society Monographs Series, 31, Princeton University Press, 2005, xi+284 pages | MR | Zbl
[13] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Volume 15 (1965), pp. 189-258 | DOI | Zbl
Cité par Sources :