On classifie les paires où est une variété de Fano lisse de dimension et est un fibré vectoriel ample de rang sur tel que .
We classify the pairs where is a smooth Fano manifold of dimension and is an ample vector bundle of rank with .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3242
Keywords: Fano manifold, vector bundle
Mot clés : variété de Fano, fibré vectoriel
Kanemitsu, Akihiro 1
@article{AIF_2019__69_1_231_0, author = {Kanemitsu, Akihiro}, title = {Classification of {Mukai} pairs with corank $3$}, journal = {Annales de l'Institut Fourier}, pages = {231--282}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3242}, zbl = {07067403}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3242/} }
TY - JOUR AU - Kanemitsu, Akihiro TI - Classification of Mukai pairs with corank $3$ JO - Annales de l'Institut Fourier PY - 2019 SP - 231 EP - 282 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3242/ DO - 10.5802/aif.3242 LA - en ID - AIF_2019__69_1_231_0 ER -
%0 Journal Article %A Kanemitsu, Akihiro %T Classification of Mukai pairs with corank $3$ %J Annales de l'Institut Fourier %D 2019 %P 231-282 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3242/ %R 10.5802/aif.3242 %G en %F AIF_2019__69_1_231_0
Kanemitsu, Akihiro. Classification of Mukai pairs with corank $3$. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 231-282. doi : 10.5802/aif.3242. https://aif.centre-mersenne.org/articles/10.5802/aif.3242/
[1] Ladders on Fano varieties, J. Math. Sci., New York, Volume 94 (1999) no. 1, pp. 1126-1135 | DOI | MR | Zbl
[2] Fano bundles and splitting theorems on projective spaces and quadrics, Pac. J. Math., Volume 163 (1994) no. 1, pp. 17-42 http://projecteuclid.org/euclid.pjm/1102622627 | DOI | MR | Zbl
[3] Some remarks on the study of good contractions, Manuscr. Math., Volume 87 (1995) no. 3, pp. 359-367 | DOI | MR | Zbl
[4] Vector bundles and adjunction, Int. J. Math., Volume 3 (1992) no. 3, pp. 331-340 | DOI | MR | Zbl
[5] Two theorems on elementary contractions, Math. Ann., Volume 297 (1993) no. 2, pp. 191-198 | DOI | MR | Zbl
[6] Generalized Mukai conjecture for special Fano varieties, Cent. Eur. J. Math., Volume 2 (2004) no. 2, pp. 272-293 | DOI | MR | Zbl
[7] Contractions on a manifold polarized by an ample vector bundle, Trans. Am. Math. Soc., Volume 349 (1997) no. 11, pp. 4669-4683 | DOI | MR | Zbl
[8] On manifolds whose tangent bundle contains an ample subbundle, Invent. Math., Volume 146 (2001) no. 1, pp. 209-217 | DOI | MR | Zbl
[9] Globally generated vector bundles on with , Math. Nachr., Volume 286 (2013) no. 14-15, pp. 1407-1423 | MR | Zbl
[10] Projective manifolds whose tangent bundles are numerically effective, Math. Ann., Volume 289 (1991) no. 1, pp. 169-187 | DOI | MR | Zbl
[11] The cone of curves of Fano varieties of coindex four, Int. J. Math., Volume 17 (2006) no. 10, pp. 1195-1221 | DOI | MR | Zbl
[12] Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997) (Advanced Studies in Pure Mathematics), Volume 35, Mathematical Society of Japan, 2002, pp. 1-88 | MR | Zbl
[13] Higher-dimensional algebraic geometry, Universitext, Springer, 2001, xiv+233 pages | DOI | MR | Zbl
[14] Numerical characterisation of quadrics, Algebr. Geom., Volume 4 (2017) no. 1, pp. 120-135 | MR | Zbl
[15] Around the Mukai conjecture for Fano manifolds, Eur. J. Math., Volume 2 (2016) no. 1, pp. 120-139 | DOI | MR | Zbl
[16] On the structure of polarized varieties with -genera zero, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975), pp. 103-115 | MR | Zbl
[17] Classification of projective varieties of -genus one, Proc. Japan Acad., Ser. A, Volume 58 (1982) no. 3, pp. 113-116 http://projecteuclid.org/euclid.pja/1195516108 | DOI | MR | Zbl
[18] On polarized varieties of small -genera, Tôhoku Math. J., Volume 34 (1982) no. 3, pp. 319-341 | DOI | MR | Zbl
[19] On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 167-178 | DOI | MR | Zbl
[20] On adjoint bundles of ample vector bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 105-112 | DOI | MR | Zbl
[21] Vector bundles on the punctured spectrum of a local ring, Proc. Lond. Math. Soc., Volume 14 (1964), pp. 689-713 | DOI | MR | Zbl
[22] Generalized adjunction and applications, Math. Proc. Camb. Philos. Soc., Volume 99 (1986) no. 3, pp. 457-472 | DOI | MR | Zbl
[23] Fano varieties, Algebraic geometry, V (Encyclopaedia of Mathematical Sciences), Volume 47, Springer, 1999, pp. 1-247 | MR | Zbl
[24] Polarized varieties whose points are joined by rational curves of small degrees, Ill. J. Math., Volume 43 (1999) no. 2, pp. 350-390 http://projecteuclid.org/euclid.ijm/1255985220 | DOI | MR | Zbl
[25] Segre’s reflexivity and an inductive characterization of hyperquadrics, Mem. Am. Math. Soc., Volume 160 (2002) no. 763, x+116 pages | DOI | MR | Zbl
[26] Extremal rays and nefness of tangent bundles (2016) (https://arxiv.org/abs/1605.04680, to appear in Mich. Math. J.) | Zbl
[27] Fano -folds with nef tangent bundles, Math. Res. Lett., Volume 24 (2017) no. 5, pp. 1453-1475 | DOI | MR | Zbl
[28] Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl
[29] Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 147-155 | DOI | MR | Zbl
[30] Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., Volume 13 (1973), pp. 31-47 | DOI | MR | Zbl
[31] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 32, Springer, 1996, viii+320 pages | DOI | MR | Zbl
[32] Rational connectedness and boundedness of Fano manifolds, J. Differ. Geom., Volume 36 (1992) no. 3, pp. 765-779 http://projecteuclid.org/euclid.jdg/1214453188 | MR | Zbl
[33] Rational curves on Fano varieties, Classification of irregular varieties (Trento, 1990) (Lecture Notes in Mathematics), Volume 1515, Springer, 1992, pp. 100-105 | DOI | MR | Zbl
[34] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl
[35] Ample vector bundles with sections vanishing on surfaces of Kodaira dimension zero, Matematiche, Volume 51 (1996) no. suppl., pp. 115-125 | MR | Zbl
[36] Some applications of the theory of positive vector bundles, Complete intersections (Acireale, 1983) (Lecture Notes in Mathematics), Volume 1092, Springer, 1984, pp. 29-61 | DOI | MR | Zbl
[37] Existence of good divisors on Mukai varieties, J. Algebr. Geom., Volume 8 (1999) no. 2, pp. 197-206 | MR | Zbl
[38] The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 449-476 | DOI | MR | Zbl
[39] Numerical characterisations of hyperquadrics, Complex analysis in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday (Advanced Studies in Pure Mathematics), Volume 42, Mathematical Society of Japan, 2004, pp. 209-235 | DOI | MR | Zbl
[40] Projective manifolds with ample tangent bundles, Ann. Math., Volume 110 (1979) no. 3, pp. 593-606 | DOI | MR | Zbl
[41] Problems on characterization of the complex projective space, Birational Geometry of Algebraic Varieties, Open Problems, Katata, the 23rd Int’l Symp., Taniguchi Foundation, 1988, pp. 57-60 | Zbl
[42] Biregular classification of Fano -folds and Fano manifolds of coindex , Proc. Natl. Acad. Sci. USA, Volume 86 (1989) no. 9, pp. 3000-3002 | DOI | MR | Zbl
[43] Uniform vector bundles on Fano manifolds and applications, J. Reine Angew. Math., Volume 664 (2012), pp. 141-162 | MR | Zbl
[44] Ruled Fano fivefolds of index two, Indiana Univ. Math. J., Volume 56 (2007) no. 1, pp. 207-241 | DOI | MR | Zbl
[45] Projective manifolds containing a large linear subspace with nef normal bundle, Mich. Math. J., Volume 60 (2011) no. 2, pp. 441-462 | DOI | MR | Zbl
[46] A note on the classification of Fano manifolds of middle index, Manuscr. Math., Volume 117 (2005) no. 1, pp. 43-49 | DOI | MR | Zbl
[47] A characterization of products of projective spaces, Can. Math. Bull., Volume 49 (2006) no. 2, pp. 270-280 | DOI | MR | Zbl
[48] Fano manifolds whose elementary contractions are smooth -fibrations: a geometric characterization of flag varieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 2, pp. 573-607 | MR | Zbl
[49] Classification of generalized polarized manifolds by their nef values, Adv. Geom., Volume 6 (2006) no. 4, pp. 543-599 | DOI | MR | Zbl
[50] Nef vector bundles on a projective space or a hyperquadric with the first Chern class small (2016) (https://arxiv.org/abs/1409.4191v3)
[51] Nef vector bundles on a projective space with first Chern class 3 and second Chern class 8, Matematiche, Volume 72 (2017) no. 2, pp. 69-81 | MR | Zbl
[52] Nef vector bundles on a projective space with first Chern class 3 (2018) (https://arxiv.org/abs/1604.05847v7) | Zbl
[53] A spectral sequence and nef vector bundles of the first Chern class two on hyperquadrics, Ann. Univ. Ferrara, Sez. VII, Sci. Mat., Volume 60 (2014) no. 2, pp. 397-406 | DOI | MR | Zbl
[54] Vector bundles on complex projective spaces, Progress in Mathematics, 3, Birkhäuser, 1980, vii+389 pages | MR | Zbl
[55] Spinor bundles on quadrics, Trans. Am. Math. Soc., Volume 307 (1988) no. 1, pp. 301-316 | DOI | MR | Zbl
[56] On Cayley bundles on the five-dimensional quadric, Boll. Unione Mat. Ital., VII. Ser., A, Volume 4 (1990) no. 1, pp. 87-100 | MR | Zbl
[57] A characterization of by vector bundles, Math. Z., Volume 205 (1990) no. 3, pp. 487-490 | DOI | MR | Zbl
[58] Ample vector bundles on Fano manifolds, Int. J. Math., Volume 2 (1991) no. 3, pp. 311-322 | DOI | MR | Zbl
[59] Fano manifolds and vector bundles, Math. Ann., Volume 294 (1992) no. 1, pp. 151-165 | DOI | MR | Zbl
[60] Numerically effective vector bundles with small Chern classes, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 145-156 | DOI | MR | Zbl
[61] Uniform vector bundles on a projective space, J. Math. Soc. Japan, Volume 28 (1976) no. 1, pp. 123-132 | DOI | MR | Zbl
[62] On globally generated vector bundles on projective spaces II, J. Pure Appl. Algebra, Volume 218 (2014) no. 1, pp. 174-180 | DOI | MR | Zbl
[63] Fano bundles over and , Pac. J. Math., Volume 141 (1990) no. 1, pp. 197-208 http://projecteuclid.org/euclid.pjm/1102646779 | DOI | MR | Zbl
[64] On Fano manifolds, which are -bundles over , Nagoya Math. J., Volume 120 (1990), pp. 89-101 http://projecteuclid.org/euclid.nmj/1118782199 | DOI | MR | Zbl
[65] Nefness of adjoint bundles for ample vector bundles of corank 3, Math. Nachr., Volume 286 (2013) no. 14-15, pp. 1548-1570 | MR | Zbl
[66] Lengths of chains of minimal rational curves on Fano manifolds, J. Algebra, Volume 325 (2011), pp. 163-176 | DOI | MR | Zbl
[67] Length of extremal rays and generalized adjunction, Math. Z., Volume 200 (1989) no. 3, pp. 409-427 | DOI | MR | Zbl
[68] Ruled Fano -folds of index , Proc. Am. Math. Soc., Volume 105 (1989) no. 1, pp. 55-61 | DOI | MR | Zbl
[69] On a conjecture of Mukai, Manuscr. Math., Volume 68 (1990) no. 2, pp. 135-141 | DOI | MR | Zbl
[70] On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math., Volume 417 (1991), pp. 141-157 | DOI | MR | Zbl
[71] A report on Fano manifolds of middle index and , Projective geometry with applications (Lecture Notes in Pure and Applied Mathematics), Volume 166, Dekker, New York, 1994, pp. 19-26 | MR | Zbl
[72] On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J., Volume 60 (1990) no. 3, pp. 671-687 | DOI | MR | Zbl
[73] A theorem on the adjoint system for vector bundles, Manuscr. Math., Volume 70 (1991) no. 2, pp. 189-201 | DOI | MR | Zbl
[74] On the spannedness of adjunction of vector bundles, Math. Z., Volume 223 (1996) no. 4, pp. 725-729 | DOI | MR | Zbl
Cité par Sources :