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CLASSIFICATION OF MUKAI PAIRS
WITH CORANK 3

by Akihiro KANEMITSU (*)

Abstract. — We classify the pairs (X, E ) where X is a smooth Fano manifold
of dimension n > 5 and E is an ample vector bundle of rank n − 2 with c1(E ) =
c1(X).
Résumé. — On classifie les paires (X, E ) où X est une variété de Fano lisse

de dimension n > 5 et E est un fibré vectoriel ample de rang n − 2 sur X tel que
c1(E ) = c1(X).

1. Introduction

A Mukai pair of dimension n and rank r is, by definition, a pair (X,E )
of a smooth Fano n-fold X and an ample vector bundle E of rank r on X
with c1(X) = c1(E ). Study of such pairs was proposed by Mukai [41] in
relation to Fano manifolds with large index or based on Mori’s solution to
the Hartshorne conjecture.
The rank r of Mukai pairs is related to the index of Fano manifolds.

The Fano index, or simply the index, of a Fano manifold X is the greatest
integer which divides c1(X) in Pic(X). If the index of a Fano n-fold X

is r, then (X,
⊕
O(diHX)) gives a Mukai pair of dimension n and rank

6 r, where HX := −KX/r, di > 0 and r =
∑
di. Thus the study of

Fano n-folds of index r is essentially the same as the study of Mukai pairs
(X,E ) of dimension n and rank 6 r such that E splits into a direct sum
of line bundles (Mukai pairs of split type). Conversely, by associating P(E )
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with (X,E ), we obtain a one-to-one correspondence between Mukai pairs
(X,E ) of dimension n and rank r, and Fano (n + r − 1)-folds of index r
with Pr−1-bundle structures (see e.g. [44, Proposition 3.3] for a proof).
It is known that the index rX of a Fano n-fold X satisfies rX 6 n + 1,

and the nonnegative integer n − rX + 1 is called the coindex of X. As is
well known, the structure of X is simpler if the coindex is small, hence we
can conduct detailed analysis of X provided its coindex is small enough.
For example, a classical theorem of Kobayashi–Ochiai shows that a Fano
manifold with coindex 0 or 1 is isomorphic to the projective space Pn or
to the hyperquadric Qn, respectively [30]. Fujita gave a complete list of
Fano manifolds with coindex 2 (del Pezzo manifolds) [17, 18], while Mukai
classified Fano manifolds with coindex 3 (Mukai manifolds) [42] (cf. [1, 37]).
In keeping with the above observation, the corank of a Mukai pair (X,E )

of dimension n and rank r is analogously defined to be the integer c =
n − r + 1, and one can expect that the classification of Mukai pairs of
corank c is possible if c is small enough. Since there exists a rational curve
C on X such that n + 1 > −KX .C = c1(E ).C > r [40], the corank of a
given Mukai pair (X,E ) is nonnegative. For (X,E ) with the smallest or
the second smallest corank c = 0 or 1, Mukai made explicit conjectures on
their structure, which were confirmed independently by Fujita, Peternell
and Ye–Zhang:

Theorem 1.1 ([20, 57, 58, 72]).
(1) A Mukai pair (X,E ) of dimension n and rank n+1 is isomorphic to(

Pn,O(1)⊕n+1) .
(2) A Mukai pair (X,E ) of dimension n and rank n is isomorphic to

either

(Pn, TPn) ,
(
Pn,O(2)⊕O(1)⊕n−1) or

(
Qn,O(1)⊕n

)
.

Thus (Pn, TPn) is the unique Mukai pair of non-split type with corank
c 6 1. The case corank c = 2 was treated by Peternell–Szurek–Wiśniewski:

Theorem 1.2 ([68] for the case n= 3; [59] for higher dimension (cf. [46])).
Let (X,E ) be a Mukai pair of dimension n and rank n− 1. Then:

(1) X is isomorphic to either Pn, Qn, a del Pezzo manifold or P1 × P2

(n = 3).
(2) (X,E ) of non-split type (i.e., E is not a direct sum of line bundles)

is isomorphic to one of the following four pairs:
(a)

(
P3,N (2)

)
, where N is the null-correlation bundle [54].

(b)
(
Q4,S ∗Q(1)⊕O(1)

)
, where S ∗Q is the dual of spinor bundle [55].
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(c)
(
Q3,S ∗Q(1)

)
.

(d)
(
P1 × P2, p∗1O(1)⊗ p∗2TP2

)
.

It is noteworthy that the null-correlation bundle and the spinor bundles,
which are closely related to representation theory, appear in the above list.
This fact implies that we may find out further interesting vector bundles
and their interplay with geometry of homogeneous spaces in the course of
classification of Mukai pairs of larger corank.

Such an anticipation in mind, we extend in this paper the preceding
classification results to the next case corank c = 3:

Theorem 1.3. — Let (X,E ) be a Mukai pair of dimension n > 5 and
rank n− 2. Then:

(1) X is isomorphic to either Pn, Qn, a del Pezzo manifold, a Mukai
manifold or P2 × P3 (n = 5).

(2) (X,E ) of non-split type is isomorphic to one of the following eight
pairs:
(a)

(
Q6,S ∗Q(1)

)
.

(b)
(
Q6,GQ(1)⊕O(1)

)
.

(c)
(
Q5,GQ(1)

)
.

(d) (Gr(2, 5),S ∗Gr(1)⊕O(1)⊕O(1)).
(e) (Gr(2, 5),QGr(1)⊕O(1)).
(f)

(
V5,S ∗V5

(1)⊕O(1)
)
.

(g) (V5,QV5(1)).
(h)

(
P2 × P3, p∗1O(1)⊗ p∗2TP3

)
.

Here the following symbols are used:
• SQ is the spinor bundle as in Theorem 1.2.
• GQ is the Ottaviani bundle on Q5 or Q6 [26, 55] (see also Section 3).
• Gr(2, 5) is the Grassmannian of 2-dimensional subspaces in a 5-
dimensional vector space.

• SGr (resp. QGr) is the universal subbundle (resp. quotient bundle)
on Gr(2, 5).

• V5 is a general hyperplane section of the Grassmannian Gr(2, 5)
embedded into P9 via the Plücker embedding.

• SV5 (resp. QV5) is the restriction of the universal subbundle (resp.
quotient bundle) to V5.

Remark 1.4. — In Theorem 1.3, the missing cases n = 3 and 4 were (al-
most) settled by preceding works. If n = 3 and r = 1, then E = O(−KX)
and the classification of such Mukai pairs is simply the classification of
Fano 3-folds, which was completed by milestone articles by Fano, Iskovskih,
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234 Akihiro KANEMITSU

Shokurov, Fujita, Mori and Mukai (see [23] and references therein). 4-
dimensional Mukai pairs (X,E ) of rank 2 corresponds to Fano 5-folds of
index 2 with P1-bundle structures. Novelli and Occhetta gave a list of all
possible candidates of such 5-folds in [44]. One of the candidates therein,
unfortunately, is not yet known to actually exist.

Study of generalized polarized pairs gives another motivation to inves-
tigate Mukai pairs. A pair (X,E ) is called a generalized polarized pair of
dimension n and rank r if X is a smooth projective n-fold and E is an am-
ple vector bundle of rank r. The adjoint divisor KX+c1(E ) is attached to a
given generalized polarized pair (X,E ), and a fundamental problem in this
field is to determine when the adjoint divisor KX + c1(E ) satisfy positiv-
ity (e.g. ampleness or nefness) or to distinguish generalized polarized pairs
whose adjoint divisors lack positivity from general ones. Such a problem is
carried out in a number of papers, including [4, 7, 20, 49, 65, 67, 72, 73, 74].
In [7], Andreatta and Mella studied the case r = n − 2 and they clarified
when the adjoint divisor is not nef. Also, assuming that KX + c1(E ) is nef
but not ample, they (roughly) described the structure of the contraction
defined by the adjoint divisor. Understandably the contraction can be triv-
ial, which implies that (X,E ) is a Mukai pair [7, Theorem 5.1(2)(i)]. Our
result gives a detailed classification in such a case.
Also, given a generalized polarized pair (X,E ) of dimension n and rank r,

the geometry of the zero locus S of a section s ∈ H0(E ) is studied in several
context, provided that S has the expected dimension n − r. For example,
in [35, Corollary 1.3], it is proved that if S as above is a minimal surface
of Kodaira dimension = 0, then S is a K3 surface and (X,E ) is a Mukai
pair of corank 3. Thus:

Corollary 1.5. — Let (X,E ) be a generalized polarized pair of di-
mension n > 5 and rank n− 2. Suppose that there is a K3 surface S ⊂ X

which is a zero locus of a section s ∈ H0(E ). Then (X,E ) is one of the
pairs as in Theorem 1.3.

Outline of the paper

We sketch an outline of this paper. Let (X,E ) be a pair as in Theorem 1.3.
Then the length lX is defined as the minimum anticanonical degree of free
rational curves on X (see Definition 2.1). The length lX is at most n + 1
by Mori’s theorem. In addition, the existence of the bundle E implies that
lX is at least n− 2;

lX ∈ {n− 2, . . . , n+ 1 }.
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The proof is roughly divided into four cases depending on the value lX .
In Section 2, we treat some easy cases with preliminaries on family of

rational curves. Firstly the case ρX > 2 is settled (Proposition 2.4), which
allow us to assume ρX = 1 in the sequel. Then P(E ) is a Fano mani-
fold with Picard number two and index n − 2. Secondly we treat the case
lX = n − 2 (Proposition 2.10). Thirdly we deal the case `(Rϕ) > n − 2
(Proposition 2.14), where Rϕ is the extremal ray which is not contracted
by the projection π : P(E ) → X and `(Rϕ) is the length of the extremal
ray. Note that `(Rϕ) > n− 2 since the index rP(E ) = n− 2.

From the above, we can assume three conditions ρX = 1, lX > n−1 and
`(Rϕ) = n − 2 in the remaining sections. We also include in Section 2 a
construction of sections of the projection π : P(E )→ X.

In Section 3, the definition of the Ottaviani bundles are recalled and two
characterizations of Ottaviani bundle on Q5 are given, based on [26, 55].

In Section 4, we will see which rational curves are contracted by ϕ. More
precisely, we will prove that minimal lifts of minimal rational curves to the
projective bundle P(E ) are contracted by ϕ, or equivalently the Q-bundle
E (KX/lX) is semiample (Theorem 4.2, cf. [59, Section 3]).
In Section 5, we will treat the case lX > n. In this case, by numerical

characterizations of projective space and hyperquadric [12, 39] (cf. [14,
29]), X is isomorphic to Pn or Qn. The result in Section 4 implies that
E (−1) is nef. First we will show that E (−1) is globally generated. Then we
immediately see that E splits by [9, 62, 65] unless X ' Q6 or Q5. Finally
we will deal the case X ' Q6 or Q5. Here the characterization of Ottaviani
bundles plays an important role.
In Sections 6 and 7, the case lX = n − 1 is discussed, and the proof of

Theorem 1.3 will be completed. The crucial case is where ϕ is of fiber type,
which will be treated in Section 7. The key step is to prove dimX 6 6
(Proposition 7.2), and the main ingredients of the proof are

(1) Chain connectedness of X by the images of ϕ-fibers and
(2) Miyaoka’s criterion on semistability of vector bundles on curves [38].

Notation 1.6. — We work over the field of complex numbers and use the
following notations:

(1) P(E ) is the Grothendieck projectivization of the bundle E .
(2) π : P(E )→ X is the natural projection.
(3) ξE = ξ is the relative tautological divisor of P(E ).
(4) If ρX = 1, then HX is the ample generator of the Picard group

of X.
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236 Akihiro KANEMITSU

(5) If ρX = 1, then Rϕ is the extremal ray of NE(P(E )) which is differ-
ent from the ray associated to π, and ϕ is the contraction of Rϕ.

(6) Exc(ϕ) is the exceptional locus of ϕ.
(7) Given a projective manifold V with an ample (not necessarily very

ample) line bundle OV (1), we will denote by OV (ab1
1 , . . . , a

bm
m ) =

O(ab1
1 , . . . , a

bm
m ) the vector bundle OV (a1)⊕b1 ⊕ · · · ⊕ OV (am)⊕bm .

(8) For a closed subvariety W ⊂ V , we will denote by NE(W,V ) the
subcone generated by the classes of the effective curves on W .

(9) For a morphism f : V →W between varieties and a coherent sheaf
M on W , we will denote by M |V the pullback f∗M .

Acknowledgements. The author wishes to express his deepest grati-
tude to Professor Gianluca Occhetta for his invaluable comments and dis-
cussions, particularly about how to use minimal rational curves and mini-
mal lifts, and to my supervisor Professor Hiromichi Takagi for his encour-
agement, comments and suggestions. Also the author is deeply indebted
to Professor Yoichi Miyaoka for helping the author to improve the exposi-
tion of the introduction and suggesting the terminology “Mukai pairs”. The
author is also grateful to Professors Keiji Oguiso, Thomas Peternell and
Luis E. Solá Conde and Doctor Takeru Fukuoka for their helpful comments
or discussions. Finally, the author thanks the referee for useful comments
and suggestions.
The main part of this work was done during the author’s stay at the

University of Trento with financial support from the FMSP program at the
Graduate School of Mathematical Sciences, the University of Tokyo. The
author is also grateful to the institution for the hospitality.

2. Preliminaries

The purpose of this section is to present some preliminaries and prove
Theorem 1.3 in the following cases (Propositions 2.4, 2.10 and 2.14):

(1) ρX > 1,
(2) ρX = 1 and lX = n− 2 (see Definition 2.1),
(3) ρX = 1 and `(Rϕ) 6= n− 2 (see Definition 2.11).

2.1. Anticanonical degrees of rational curves

In this paper, the image C of the projective line P1 for the normalization
map f : P1 → C ⊂ X, or the map f itself is called a rational curve.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.1. — Let X be a Fano manifold.
(1) A rational curve f : P1 → X is called free if f∗TX is nef.
(2) (a) The index rX of X is defined as:

rX := max{k ∈ Z | −KX = kH for some ample divisor H}.

(b) The pseudoindex iX is the minimum anticanonical degree of
rational curves:

iX := min{−KX .C | C is a rational curve on X}.

(c) The (global) length lX is the minimum anticanonical degree of
free rational curves:

lX := min{−KX .C | C is a free rational curve on X}.

By these definitions and [31, Theorem 5.14], it holds:

n+ 1 > lX > iX > rX > 1.

Fano manifolds with large index rX > n− 2 are classified in [17, 18, 30,
42]. Also, in [12, 39] (cf. [14, 29]), numerical characterizations of projective
spaces and hyperquadrics are established:

Theorem 2.2. — Let X be a Fano n-fold with lX > n and ρX = 1.
Then X ' Pn or Qn.

Lemma 2.3. — Let (X,E ) be a pair as in Theorem 1.3 and f : P1 → X

a rational curve of anticanonical degree d 6 n+ 1. Then d > n− 2 and the
following hold:

(1) If d = n+ 1, then f∗E ' O(4, 1n−3), O(3, 2, 1n−4) or O(23, 1n−5).
(2) If d = n, then f∗E ' O(3, 1n−3) or O(22, 1n−4).
(3) If d = n− 1, then f∗E ' O(2, 1n−3).
(4) If d = n− 2, then f∗E ' O(1n−2).

In particular, we have iX > n− 2.

Proof. — By the Grothendieck theorem every vector bundle on P1 splits,
i.e., it is a direct sum of line bundles, whence f∗E ' O(a1, . . . , an−2) for
ai ∈ Z. Since E is ample with c1(E ) = c1(X), each ai is positive and∑
ai = d. Now the assertion is clear. �

2.2. Case ρX > 1

Here we settle Theorem 1.3 for ρX > 1:

TOME 69 (2019), FASCICULE 1



238 Akihiro KANEMITSU

Proposition 2.4. — Let (X,E ) be a pair as in Theorem 1.3. Assume
ρX > 1. Then:

(1) X ' P3 × P3, P2 × P3, P2 ×Q3, PP3(O(1, 02)) or P(TP3),
(2) E splits unless (X,E ) ' (P2 × P3, p∗1O(1)⊗ p∗2TP3).

Proof. — From [69, Theorem A] and the assumption ρX > 1, it follows

iX 6
1
2n+ 1.

Since iX > n − 2 by Lemma 2.3, we have n 6 6. Moreover, if n = 6, then
the assertion follows from [7, Lemma 5.3].
If n = 5, then by [15] X is isomorphic to one of the following:

(1) PP3(O(03)) ' P2 × P3,
(2) PQ3(O(03)) ' P2 ×Q3,
(3) PP3(O(1, 02)),
(4) P(TP3).

Note that in each case X admits a P2-bundle structure q : X → Y with
the relative tautological line bundle Oq(1).
By adjunction, c1(E |P2) = c1(P2) for each q-fiber P2. Thus, by Theo-

rem 1.1, E |P2 ' O(13) for each q-fiber P2. Hence EY := q∗(E ⊗Oq(−1)) is
a vector bundle of rank three with q∗EY ' E ⊗Oq(−1). Since E is a Fano
bundle, the bundle EY is also a Fano bundle by [63, Theorem 1.6] or [32,
Corollary 2.9].
If X ' P(TP3), then there is another P2-bundle structure q′ : X → Y ′ '

P3 which parametrizes planes on Y ' P3, and E ⊗ Oq(−1) is q′-relatively
trivial by the same reason as above. This implies that EY is trivial on any
hyperplane P2 on Y . Hence EY is trivial by Horrocks’ criterion [21], [54,
Theorem 2.3.2].
In the remaining cases there is a section Ỹ of q with Oq(1)|

Ỹ
' O

Ỹ
.

Thus we have

EY ' q∗EY |Ỹ ' (q∗EY ⊗Oq(1))|
Ỹ
' E |

Ỹ
.

Therefore EY is an ample vector bundle with

• c1(EY ) = c1(Y ) if X ' PP3(O(03)) or PQ3(O(03)).
• c1(EY ) = c1(Y )− 1 if X ' PP3(O(1, 02)).

Note that in the latter case the pair (Y,EY ⊕ OY (1)) is a Mukai pair.
Theorem 1.1 implies EY splits unless X ' PP3(O(03)) and EY ' TP3 , and
the assertion follows. �
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2.3. Families of rational curves

For accounts of families of rational curves, our basic references are [13,
31].

Definition 2.5. — Let X be a Fano manifold and RatCurvesn(X) the
normalization of the scheme parametrizing rational curves on X.

(1) A family of rational curves is an irreducible component of
RatCurvesn(X).

IfM is a family of rational curves onX, then there is the following diagram:

U

p

��

e // X

M,

where p : U → M is the universal family and e : U → X is the evaluation
morphism.
Let M be a family of rational curves on X as above.
(2) The family M is called unsplit if it is proper.
(3) The familyM is called dominating (resp. covering) if the morphism

e is dominating (resp. surjective).
(4) X is said to be chain connected by rational curves in the family

M if any two points in X can be connected by a chain of rational
curves in this family M .

Proposition 2.6 ([31, Chapter II, Theorems 1.2 and 2.15], [40]). —
Let X be a Fano manifold of dimension n, M a family of rational curves
on X and C a rational curve belonging to the family M . Then dimM >
(−KX).C + n− 3.

Proposition 2.7. — Let (X,E ) be a pair as in Theorem 1.3 and
ρX = 1. Then there exists an unsplit covering family of rational curves
with (−KX)-degree lX on X. Moreover X is chain connected by rational
curves in this family.

Proof. — By the definition of lX , there exists a dominating family of
rational curves of anticanonical degree lX on X. If lX > n, then X ' Pn or
Qn by Proposition 2.2. Then the family parametrizes lines on X and the
assertion follows. Therefore we may assume that lX < n.
Assume that this family is not unsplit. Then there exists a rational curve

of (−KX)-degree 6 lX/2 < n/2. By Lemma 2.3, we have n− 2 6 iX < n
2 ,

which implies n < 4. This contradicts our assumption n > 5.

TOME 69 (2019), FASCICULE 1



240 Akihiro KANEMITSU

Note that ρX = 1. The chain connectedness by rational curves in this
family follows from [13, Proof of Proposition 5.8] or [33, Proof of Lemma 3].

�

Definition 2.8. — Let (X,E ) be a pair as in Theorem 1.3 with ρX = 1.
(1) By taking all the families Mj of rational curves of anticanonical

degree lX , we have the following diagram:

U :=
∐
Uj

p:=
∐

pj

��

e:=
∐

ej
// X

M :=
∐
Mj ,

where pj : Uj →Mj is the universal family overMj and ej : Uj → X

is the evaluation morphism for each j.
(2) We call a rational curve in one of this family a minimal rational

curve on X.
(3) The vector bundle E is said to be uniform (resp. uniform at a point

x ∈ X) if the isomorphism classes of bundles E |P1 do not depend on
minimal rational curves f : P1 → X (resp. minimal rational curves
f : P1 → X such that x ∈ f(P1)).

Remark 2.9.
(1) By Proposition 2.7 there exists at least one unsplit covering family

of rational curves of (−KX)-degree lX on X. Hence the evaluation
morphism e is surjective.

(2) If lX > n, then X ' Pn or Qn by Proposition 2.2. Thus M is the
family of lines and hence irreducible.

(3) If lX 6 n − 1 then we do not know a priori whether the family M
is irreducible or not. Also each family Mj may not be covering.

(4) If lX 6 n− 1 then each family Mj is unsplit by the proof of Propo-
sition 2.7. Also E is uniform by Lemma 2.3.

2.4. Case ρX = 1 and lX = n− 2

Now Theorem 1.3 follows in the case of ρX = 1 and lX = n− 2:

Proposition 2.10. — Let (X,E ) be a pair as in Theorem 1.3. If ρX = 1
and lX = n− 2, then X is a Mukai manifold and E ' O(1n−2).

ANNALES DE L’INSTITUT FOURIER
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Proof. — By Proposition 2.7, there is an unsplit covering family of ra-
tional curves of (−KX)-degree n− 2 and X is chain connected by rational
curves in this family. Also E is uniform by Lemma 2.3. Thus the assertion
follows from [8, Proposition 1.2]. �

2.5. Length of the other contraction of P(E )

Let (X,E ) be a pair as in Theorem 1.3 with ρX = 1. Then P(E ) is a
Fano manifold with ρX = 2 and hence there exists another elementary
contraction ϕ : P(E )→ Y by the Kawamata–Shokurov base point free the-
orem [28, 34]. We will denote by Rϕ the ray contracted by ϕ and by HX

the ample generator of the Picard group of X.
Note that −KP(E ) = (n− 2)ξE and hence the index rP(E ) is n− 2.

Definition 2.11. — The length `(Rϕ) is defined as the minimum an-
ticanonical degree of rational curves contracted by ϕ:

`(Rϕ) := min{−KP(E ).C | C is a rational curve on P(E ) with [C] ∈ Rϕ}.

Since the index rP(E ) is n− 2, we have `(Rϕ) > n− 2.
We will denote by Exc(ϕ) the exceptional locus of ϕ. Then the inequality

of Ionescu and Wiśniewski [22, Theorem 0.4], [70, Theorem 1.1] implies:

Lemma 2.12. — Let F be a fiber of ϕ and E an irreducible component
of Exc(ϕ) such that F ⊂ E. Then dimF 6 n and

dimE + dimF > 2n− 4 + `(Rϕ) > 3n− 6.

Proof. — Since the morphism F → X is finite, it holds dimF 6 n. The
last assertion follows from [22, Theorem 0.4], [70, Theorem 1.1] and the
fact `(Rϕ) > n− 2. �

Proposition 2.13. — Let (X,E ) be a pair as in Theorem 1.3 and
ρX = 1. Assume that `(Rϕ) = n − 2. Then there exists an ample line
bundle L on P(E ) such that KP(E ) + (n− 2)L defines the contraction ϕ.

Proof. — If `(Rϕ) = n − 2, then there is a rational curve Cϕ on P(E )
with [Cϕ] ∈ Rϕ and ξ.Cϕ = 1. Then L := (π∗HX .Cϕ+1)ξ−π∗HX satisfies
the desired properties. �

On the other hand, the following proposition deal the case `(Rϕ) 6= n−2:
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Proposition 2.14. — Let (X,E ) be a pair as in Theorem 1.3 and
ρX = 1. Then the following are equivalent:

(1) `(Rϕ) 6= n− 2.
(2) E |P1 ' O(23) for every minimal rational curve f : P1 → X.
(3) (X,E ) ' (P5,O(23)).

Proof. — The implications (3) ⇒ (1) and (3) ⇒ (2) are obvious. The
implication (2) ⇒ (3) follows from the same argument as in the proof of
Proposition 2.10.
(1)⇒ (3). — Assume that `(Rϕ) 6= n− 2. Then `(Rϕ) > 2(n− 2) since

rP(E ) = n− 2. Lemma 2.12 implies

dimE > 2n− 4− dimF + `(Rϕ) > n− 4 + `(Rϕ) > 3n− 8.

Since dimE 6 dimP(E ) = 2n− 3, this is possible only if

n = 5, dimE = dimP(E ), dimF = 5 and `(Rϕ) = 6.

In this case, the morphism ϕ is of fiber type and, since dimF = 5 for any
ϕ-fiber, it holds dimY = 2. Then E ' O(a3) for some positive integer a
by [44, Lemma 4.1].
In this case P(E ) ' P2 ×X and the contraction ϕ is the first projection.

Thus iX = `(Rϕ) = 6. Hence X ' P5 by Theorem 2.2. Since E ' O(a3)
and c1(E ) = c1(X), we have E ' O(23). �

2.6. Sections of the projective bundle P(E )

In this subsection, minimal lifts of minimal rational curves, which can
be regarded as a notion of local sections of ϕ, are defined and a family of
such curves is constructed. Also we will see how global sections of π are
constructed by using minimal lifts.
The following ensures the existence of a minimal lift, which will be defined

soon later.

Proposition 2.15. — Let (X,E ) be a pair as in Theorem 1.3 with
ρX = 1 and `(Rϕ) = n − 2. There exists a rational curve C̃ on P(E ) with
ξE .C̃ = 1 and π(C̃) is a minimal rational curve.
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Proof. — Let f : P1 → C ⊂ X be a minimal rational curve. By taking
the base change of π by f , we obtain the following commutative diagram:

(2.1)
P(E |P1)

πP1

��

//

ϕP1

$$
P(E )

π

��

ϕ
// Y

P1 f // X.

There exists at least one minimal rational curve such that E |P1 has a di-
rect summand O(1). Otherwise, n = 5 and E |P1 ' O(23) for every minimal
rational curve by Lemma 2.3 and the assumption n > 5. Then `(Rϕ) = 6
by Proposition 2.14, which contradicts our assumption `(Rϕ) = n− 2.
Then the section of πP1 corresponding to the direct summand O(1) gives

a rational curve C̃ with the desired properties. �

Let (X,E ) be a pair as in Theorem 1.3 with ρX = 1 and `(Rϕ) = n− 2,
and f̃ : P1 → C̃ ⊂ P(E ) a rational curve on P(E ). Set f := π ◦ f̃ and
C := π(C̃) ⊂ X. Assume that f : P1 → C ⊂ X is a minimal rational curve,
or equivalently π∗(−KX).C̃ = lX .

Definition 2.16. — Let the notation be as above.
(1) The rational curve f̃ : P1 → C̃ ⊂ P(E ) or C̃ itself is called a minimal

lift of a minimal rational curve f : P1 → C if ξE .C̃ = 1.
(2) We denote by M̃ =

∐
M̃i the union of all the families M̃i of minimal

lifts C̃ of minimal rational curves:

M̃ :=
∐
M̃i Ũ :=

∐
Ũi

ẽ:=
∐

ẽi
//

p̃:=
∐

p̃i
oo P(E )

π

��

ϕ
// Y

M =
∐
Mj U =

∐
Uj

e //poo X,

where p̃i : Ũi → M̃i is the universal family and ẽi is the evaluation
morphism.

Remark 2.17.
(1) By the definition, a rational curve f̃ : P1 → C̃ ⊂ P(E ) on P(E ) is

a minimal lift of a minimal rational curve if π∗(−KX).C̃ = lX and
ξE .C̃ = 1. Therefore, since ρP(E ) = 2, the class [C̃] ∈ N1(P(E )) does
not depend on the choice of C̃ or C.
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(2) In some literature, C̃ as above is called a minimal section of the
rational curve C. However we do not know whether C̃ is isomorphic
to C or not. Thus we will use the above terminology, though it is
not common in the literature.

We will frequently use the following generalization of [59, Claim 4.1.1]
to construct a section of π:

Lemma 2.18. — Let (X,E ) be a pair as in Theorem 1.3 with ρX = 1
and `(Rϕ) = n− 2. Let C̃ be a minimal lift of a minimal rational curve as
in Definition 2.16.
Suppose that V ⊂ P(E ) is a closed subvariety of dimension n such that

NE(V,P(E )) ⊂ 〈R>0[C̃], Rϕ〉.

Then lX = rX , NE(V,P(E )) = R>0[C̃] and V is a section of π corresponding
to the following exact sequence:

0→ E1 → E → OX(1)→ 0.

Proof. — The following argument is based on [59, Proof of Claim 4.1.1].
Note that πV : V → X is finite by our assumption on the Kleiman–Mori
cone. Let V̄ be the normalization of V and πV̄ the composite V̄ → V → X.
Set S := πV̄ (Sing(V̄ )) and S̄ := π−1

V̄
(S).

Then the function x 7→ #(π−1
V̄

(x)) is lower semicontinuous on X \S and
πV̄ is étale over x ∈ X \ S if #(π−1

V̄
(x)) = deg πV̄ .

Let C be a general minimal rational curve and
⋃m
i=1 C̃i the union of all

1-dimensional irreducible components of π−1
V (C), where m is the number

of such components. Note that

NE(π−1(C),P(E )) = 〈Rπ,R>0[C̃]〉.

Then, by our assumption on the Kleiman–Mori cone, we have [C̃i]∈R>0[C̃].
Hence, if we take the normalization P1 → C, the curves C̃i are images of
some minimal sections of P(E |P1) → P1. Hence #(π−1

V̄
(x)) > m for x ∈ C

and the equality holds for general x ∈ C.
Assume that πV̄ is not étale. Then the branch locus of πV̄ is a divisor

B ⊂ X by purity of branch locus. Since C is general and ρX = 1, we have
C 6⊂ B and C ∩ B 6= ∅. Since S has codimension at least two, a general
minimal rational curve C does not meet S by [31, II. Proposition 3.7]. This
contradicts the semicontinuity. Hence πV̄ is étale and hence isomorphism
since X is simply connected. Therefore V = V̄ is a section of π, which
restricts to a minimal section on the normalization f : P1 → X of each
minimal rational curve. Thus NE(V,P(E )) = R>0[C̃].
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Corresponding to the section V , there is an exact sequence:

0→ E1 → E → L → 0,

where L is ample line bundle such that L |P1 = O(1) for every minimal
rational curve f : P1 → X. Thus L ' O(HX) and hence lX = rX , which
completes the proof. �

3. Ottaviani bundles and Fano manifolds with two
P2-bundles

Here we recall the definition of the Ottaviani bundles and provide char-
acterizations of the Ottaviani bundle on Q5, based on [26, 55, 56].
Let us consider the pair

(
Q5,GQ(1)

)
. As we will see later, the other

contraction ϕ of P(GQ) is a P2-bundle. This phenomenon arising with(
Q5,GQ(1)

)
is intractable in our argument. Our general strategy is to find

or to look at ϕ-fibers F whose dimensions are larger than expected. Since
the index rP(E ) is n− 2, we have dimF > n− 3 by Lemma 2.12 and in the
above case the dimension of fibers are smallest as possible.
In the Peternell–Szurek–Wiśniewski classification with r = n−1, there is

a similar possibility with two P2-bundle structures [59, Proposition 7.4(iii)],
and the possibility is excluded later in [46, 71]. On the other hand, in our
case, W as above actually has two P2-bundle structures and compensates
the case.
To overcome the difficulties arising when we deal with this situation,

we establish two characterizations of the Ottaviani bundle. Theorem 3.3 is
crucial in the proof of Theorem 1.3 for the case X ' Q5 or Q6 (Section 5).
Also Proposition 3.6 will be applied to the most difficult situation in the
proof of Theorem 4.2.

3.1. Ottaviani bundles

A five dimensional hyperquadric Q5 ⊂ P6 contains linear planes, and
the linear planes are the maximal linear subspaces on the five dimensional
hyperquadric. Then the planes are parametrized by the spinor variety S3,
which is known to be isomorphic to Q6:

U ′

p′

$$

e′

~~
Q5 S3 ' Q6,
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where p′ is the universal P2-bundle and e′ is the evaluation morphism. In
this paper, we use the following as the definition of the Ottaviani bundles:

Definition 3.1. — Let the notation be as above.

(1) We call the bundle GQ := p′∗(e′∗(OQ5(1))) the Ottaviani bundle
on Q6.

(2) The Ottaviani bundle GQ on Q5 is the restriction of the Ottaviani
bundle on Q6 to a hyperplane section Q5.

Remark 3.2.

(1) In [55, Section 3], it is proved that a rank three vector bundle F is
isomorphic to the Ottaviani bundle if and only if F is stable and
the Chern classes coincide with those of GQ. Note that, on Q5, we
have (c1(GQ), c2(GQ), c3(GQ)) = (2, 2, 2).

(2) By the definition, GQ is generated by global sections, the other
contraction of P(GQ) is defined by the tautological divisor and the
contraction is of fiber type.

We need the following characterization of the Ottaviani bundle on Q5

(see [26, 55, 56] for some other characterizations).

Theorem 3.3. — Let F be a vector bundle of rank three on X ' P5

or Q5. Then the following are equivalent:

(1) X ' Q5 and F is the Ottaviani bundle.
(2) (X,E := F (1)) is a pair as in Theorem 1.3 and the other contraction

ϕ : P(E )→ Y is of fiber type with `(Rϕ) = 3.

Proof.
(1)⇒ (2). — This follows from Remark 3.2(2) and Proposition 2.14.
(2) ⇒ (1). — Assume that F satisfies (2). Then we have dimY 6 5 by

Lemma 2.12. Then, by Lemma 3.4 below and the condition c1(F (1)) =
c1(X), we have X ' Q5 and (c1(F ), c2(F ), c3(F )) = (2, 2, 2).
By Remark 3.2(1), it is enough to prove that F is stable. The stability of

F is equivalent to the conditions H0(F (−1)) = 0 and H0(F ∗) = 0. Since
the other contraction of P(F ), which is defined by the semiample divisor
ξF , is of fiber type, we have H0(F (−1)) = H0(ξF − π∗HX) = 0. On the
other hand, if H0(F ∗) 6= 0, then the section defines a subbundle O ⊂ F ∗

by [10, Proposition 1.2(12)]. This contradicts the fact that c3(F ) 6= 0.
Therefore we also have H0(F ∗) = 0. �
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Lemma 3.4 ([26, Lemma 2.10(3)]). — Let F be a vector bundle of rank
three on X ' P5 or Q5. Assume that P(F ) is a Fano manifold and the
other contraction P(F ) → Y is of fiber type with dimY 6 5 and that
P(F ) 6' P2 ×X.
Then, up to twist with a line bundle, F is semiample and one of the

following holds:
(1) X ' P5 and (c1(F ), c2(F ), c3(F )) = (2, 2, 1) or (4, 8, 8),
(2) X ' Q5 and (c1(F ), c2(F ), c3(F )) = (2, 2, 2) or (4, 8, 16).

Remark 3.5. — This is already formulated in [26, Lemma 2.10(3)]. Note
that the invariant τ in [26, Lemma 2.10] is the rational number such that
−Kπ + τπ∗HX defines the other contraction of the projectivized vector
bundle (cf. [26, Proposition 1.6]). Thus the vector bundle is semiample if
and only if τ = c1(E ).

Proof of Lemma 3.4. — This follows from [26, Proof of Lemma 2.10].
The proof only uses the conditions that dimY 6 5 (cf. [26, Lemma 2.9])
and that P(F ) is a Fano manifold. �

3.2. Fano manifolds with two P2-bundles

Let GQ be the Ottaviani bundle on X ' Q5. Then, in [26, Theorem 2.2
and 2.6], it is proved that PX(GQ) is a Fano 7-fold with Picard number
two, which has a symmetric structure; the other elementary contraction ϕ
of PX(GQ) is a P2-bundle over Y ' Q5 and it is again the projectivization
of the Ottaviani bundle:

PX(GQ) ' PY (GQ)
π

vv

ϕ

((
X ' Q5 Y ' Q5.

There is a closed subvariety V ⊂ PX(GQ) such that V is a section of both
projection π and ϕ. Indeed, by [56, Example 3.3], there is the following exact
sequence on X:

0→ C (1)→ GQ → OX(1)→ 0,
where C is the Cayley bundle on X ' Q5. Thus there is a section V ⊂
PX(GQ) of π corresponding to the exact sequence. Note that the other
contraction ϕ is defined by the relative tautological divisor ξGQ . Thus V is
also a section of ϕ.
The following characterizes Fano manifolds with the above properties.
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Proposition 3.6. — Let W be a Fano manifold with Picard number
two. Assume that two elementary contractions pi (i = 1, 2) are P2-bundles
and there exists a closed subvariety V ⊂ W which is a section for both
projections pi. Then W is one of the following:

(1) P2 × P2,
(2) P(TP3),
(3) P(GQ) over Q5.

Proof. — Let p1 : W → X and p2 : W → Y be the two P2-bundles. Let
ψ : W̃ → W be the blow up of W along V , E the exceptional divisor
and Rψ the extremal ray of ψ. Then each (pi ◦ ψ)-fiber is the Hirzebruch
surface F1. Hence pi◦ψ contracts a K

W̃
-negative face of dimension 2, which

is spanned by Rψ and the other ray Ri. By contracting extremal rays Ri,
we have two contractions p̃1 : W̃ → X̃ and p̃2 : W̃ → Ỹ as in the following
diagram:

E

**

� _

j

��
W̃

ψ

**

p̃2

��

p̃1

��

V � _

i

��
X̃

f1

**
g1

  

Ỹ
f2

**
g2

��

W
p1

~~

p2

��
Z X Y

As each (pi◦ψ)-fiber is F1, the morphisms p̃i and fi are smooth P1-fibrations
and p̃i ◦ j are isomorphisms. By [27, Theorem 2.2 and Remark 2.3] there
exist two smooth elementary contractions gi such that g1 ◦ p̃1 = g2 ◦ p̃2
and each fiber of gi ◦ p̃i is isomorphic to a complete flag manifold of Picard
number two.
Note that E ' X̃ ' Ỹ . Let F be a gi ◦ p̃i-fiber. Then both p̃1|F and

p̃2|F are P1-bundles, and E ∩ F is a section for both P1-bundles. Hence
each gi ◦ p̃i-fiber is isomorphic to P1 × P1 and gi are smooth P1-fibrations.
This implies that X̃ and Ỹ are isomorphic to a complete flag manifold of
Picard number two by [48] and hence X and Y are isomorphic to a rational
homogeneous manifold of dimension at most five. Then the assertion follows
from the classification given in [26, Propositions 4.1 and 4.3]. �

ANNALES DE L’INSTITUT FOURIER



CLASSIFICATION OF MUKAI PAIRS WITH CORANK 3 249

4. Comparison theorem

In the rest of this paper, we assume the following by virtue of Proposi-
tions 2.4, 2.10, 2.14:

Setting 4.1. — (X,E ) is a pair as in Theorem 1.3 with ρX = 1, lX >
n− 1 and `(Rϕ) = n− 2.

We use the notations as in Definitions 2.8 and 2.16. In this section we will
prove that every minimal lift C̃ of a minimal rational curve C is contracted
by ϕ:

Theorem 4.2. — Let (X,E ) be a pair as in Setting 4.1. Then R>0[C̃] =
Rϕ and hence lXξ + π∗KX = lXξ − π∗c1(E ) is a supporting divisor of the
contraction ϕ.

In [59, (3.1)], the corresponding statement is called the comparison
lemma. An outline of the proof is similar to that in [59, Section 3]; In
Subsection 4.3, we show that Exc(ϕ) ∩ ẽ(Ũ) 6= ∅ (Proposition 4.10) and
then, assuming R>0[C̃] 6= Rϕ, obtain a contradiction by studying the rela-
tion between ẽ(Ũ) and Exc(ϕ) in Subsection 4.4.

In our case, since the index of P(E ) becomes smaller, there are more
possibilities of the contraction ϕ and hence we need to treat them in more
details, particularly when ϕ is a small contraction in Subsection 4.3 or ϕ
is of fiber type with small dimensional fibers in Subsection 4.4. We deal
with these cases by using an application of Mori’s bend and break ar-
gument (Lemma 4.5), several splitting criteria (which will be proved in
Subsection 4.2) and the characterization of the Ottaviani bundle (Propo-
sition 3.6). Also Professor Gianluca Occhetta kindly suggested the author
to apply results from the studies on the Mukai conjecture [6, 11, 47] in
Subsection 4.4.
Before the proof of Theorem 4.2, we prove a corollary, which is a conse-

quence of Theorem 4.2:

Corollary 4.3. — Let (X,E ) be a pair as in Setting 4.1, i : F → P(E )
a morphism from a projective variety F and DF the divisor ξ|F . Assume
that (ϕ ◦ i)(F ) is a point. Then the following hold:

(1) Ωπ|F and E |F (−DF ) are nef vector bundles with first Chern classes
(lX − n+ 2)DF . Moreover E |F (−DF ) is semiample.

(2) There is the following exact sequence:

0→ Ωπ|F → E |F (−DF )→ OF → 0.
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Proof. — By restricting the relative Euler sequence, we have the exact
sequence in (2). Thus c1(Ωπ|F ) = c1(E |F (−DF )). If E |F (−DF ) is semi-
ample, then it is nef and hence Ωπ|F is also nef by [10, Proposition 1.2(8)].
Therefore it is enough to show that E |F (−DF ) is a semiample vector bundle
with first Chern class (lX − n+ 2)DF .
By Theorem 4.2, lXξ−π∗c1(E ) defines the contraction ϕ. Since F is con-

tracted to a point by ϕ, the divisor (lXξ−π∗c1(E ))|F = lXDF − c1(E |F ) is
trivial. Thus lXDF = c1(E |F ). Therefore c1(E |F (−DF )) = (lX −n+ 2)DF .
Also, on P(E |F ), we have

lXξE |F (−DF ) = lXξE |F − π
∗(lXDF ) = lXξE |F − π

∗c1(E |F )
= (lXξ − π∗c1(E ))|P(E |F )

and the last divisor is semiample by Theorem 4.2. Hence E |F (−DF ) is
semiample. �

In the rest of this section, we will prove Theorem 4.2. The following is a
consequence of Lemma 2.12:

Lemma 4.4. — Let (X,E ) be a pair as in Setting 4.1, E an irreducible
component of Exc(ϕ) and F an irreducible component of a ϕ-fiber con-
tained in E. Assume that R>0[C̃] 6= Rϕ.
Then dimF 6 n− 1 and one of the following holds:
(1) ϕ is of fiber type and dimF > n− 3,
(2) ϕ is a divisorial contraction and dimF > n− 2,
(3) ϕ is a small contraction, dimE = 2n− 5 and dimF = n− 1.

Proof. — If there is a fiber F of dimension n, then ϕP1 in diagram (2.1)
contracts at least one curve, which is one of the minimal sections of πP1 .
This contradicts our assumption R>0[C̃] 6= Rϕ. Hence dimF 6 n− 1. The
remaining assertion follows from Lemma 2.12. �

4.1. Inequalities

Let E be an irreducible component of Exc(ϕ) and set Ex := E ∩ π−1(x)
for x ∈ π(E) and ẽ(Ũ)x := ẽ(Ũ) ∩ π−1(x) for x ∈ X.

Later we will prove E ∩ ẽ(Ũ) 6= ∅, or equivalently Ex ∩ ẽ(Ũ)x 6= ∅ for
some point x ∈ X. Since π−1(x) ' Pn−3, the assertion follows if dimEx +
dim ẽ(Ũ)x > n− 3.

For x ∈ π(E), we have

(4.1) dimEx > dimE − n.
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Note that e(U) = X by Proposition 2.7. Thus, for every point x ∈ X,
there is a minimal rational curve C 3 x. For x ∈ X, we define Mx to be
the set of all minimal rational curves through x:

Mx :=
{
f : P1 → X

∣∣∣∣ f(P1) is a minimal rational curve
such that f(P1) 3 x

}
,

and set

mx := max
{
m

∣∣∣∣O(1m) is a direct summand of E |P1

for some [f : P1 → X] ∈Mx

}
.

Then, for each point x ∈ X,

(4.2) dim ẽ(Ũ)x > mx − 1.

Also, by Lemma 2.3, we have:

(4.3) mx − 1 > 2n− 5− lX .

In particular,

dim ẽ(Ũ)x > 2n− 5− lX .(4.4)

The following enables us to obtain a better lower bound of dimEx in a
subtle case.

Lemma 4.5. — Assume that ϕ is a small contraction and n = 5. If
R>0[C̃] 6= Rϕ, then there exists a closed subvariety N ⊂ Exc(ϕ) of dimen-
sion > 4 with dim π(N) = dimN−1. In particular, inequality (4.1) is strict
for x ∈ π(N).

Proof. — By Lemma 4.4, the morphism E → ϕ(E) is equidimensional
of relative dimension four and dimϕ(E) = 1. Take two general points
y1, y2 ∈ ϕ(E) and set Fi := (ϕ|E)−1(yi).
The family of the lines contained in the π-fibers is given by the following

diagram:

P(Tπ′) ' P(Tπ)

g

��

f // P(E )

π

��

ϕ // Y

P(E ∗) π′ // X,

where g is the universal family and f is the evaluation morphism.
Since π(F1) and π(F2) are effective divisors and ρX = 1, we have π(F1)∩

π(F2) 6= ∅. Hence there exists at least a line ` contained in a π-fiber which
intersects with both F1 and F2. Thus g(f−1(F1)) ∩ g(f−1(F2)) 6= ∅, which
has dimension > 3 by the Serre inequality. Let W be a component of
g(f−1(F1)) ∩ g(f−1(F2)) with dimW > 3. Set N := f(g−1(W )).
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Since two distinct points in a π-fiber defines a unique line in the π-
fiber, the morphism π′|W is finite. Hence dimN = dimW + 1 > 4 and
dim π(N) = dimN − 1.
On the other hand the (ϕ◦f)-image of each g-fiber overW passes through

y1 and y2. Hence dimϕ(N) = 1 by Mori’s bend and break argument [31,
Chapter II, Theorem 5.4]. This implies N ⊂ Exc(ϕ). �

4.2. Splitting criteria

In this subsection, we provide three splitting criteria. As we mentioned, if
dim ẽ(Ũ)x is enough large, then it will intersect with Exc(ϕ). The following
criteria enable us to deal the cases where dim ẽ(Ũ)x is rather small.

Proposition 4.6. — Let (X,E ) be a pair as in Setting 4.1 withX ' Pn

or X ' Qn. Assume that dim ẽ(Ũ) = 3n− 5− lX and E is uniform of type

O(2−n+2+lX , 12n−4−lX ).

Then E splits.

Proof. — The proof proceeds similarly to that of [43, Proof of Theo-
rem 3.1]. Details are as follows:

Since E is uniform of type O(2−n+2+lX , 12n−4−lX ), we have the following
exact sequence of vector bundles on U :

(4.5) 0→ F → e∗ (E (−1))→ Q′ := (p∗p∗e∗ (E ∗(1)))∗ → 0,

which restricts on each p-fiber to

0→ O(1−n+2+lX )→ O(1−n+2+lX , 02n−4−lX )→ O(02n−4−lX )→ 0.

This gives a morphism g : U → Gr(−n+2+lX ,E ), where Gr(−n+2+lX ,E )
is the Grassmannian of subbundles in E .
Now Ũ is naturally isomorphic to P(Q′) and the evaluation morphism ẽ is

the morphism corresponding to the surjection e∗E → Q′ → 0. Since every
fiber of the morphism ẽ(Ũ)→ X is of dimension 2n−5− lX , the morphism
g(U) → X is generically finite. Note that the evaluation morphism e is a
contraction of an extremal ray since M is the family of lines on Pn or Qn
(n > 5). Thus the morphism g factors through the evaluation morphism e.
This implies that there exists the following exact sequence on X:

0→ S → E (−1)→ Q→ 0,

which restricts on U to (4.5). Hence S and Q are direct sums of line bundles
by [25, 61] or [8, Proposition 1.2]. Therefore

E ' O(2−n+2+lX , 12n−4−lX ). �
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Proposition 4.7. — Let (X,E ) be a pair as in Setting 4.1. Assume
that X ' Pn and there exists a point x ∈ X such that equality holds
in (4.3). Then E splits.

Proof. — Since equality holds in (4.3), E is uniform at the point x ∈ X.
Thus the assertion follows from [61, Main Theorem and Remark 2.1]. �

Proposition 4.8. — Let (X,E ) be a pair as in Setting 4.1. Then E

splits if one of the following holds:

(1) X ' P6 and every fiber of the morphism ẽ(Ũ)→ X has dimension
6 1.

(2) X ' P5, dim ẽ(Ũ) 6 5 and there is no line C such that E |C '
O(4, 1n−3).

Proof. — The proof proceeds in several steps.

Step 1. — If E is uniform at a point x ∈ X, then E splits by [61, Main
Theorem and Remark 2.1]. Thus we may assume that E is not uniform
at every point x ∈ X, and hence for each point x ∈ X there exists a line
C 3 x such that E |C 6' O(23, 1n−5) by Lemma 2.3. Thus inequality (4.3)
is strict and so is inequality (4.4).

Step 2. — We will prove that there is no line C such that E |C '
O(4, 1n−3). If (2) holds, then the assertion is already assumed. If (1) holds,
then every fiber of the morphism ẽ(Ũ) → X has dimension 6 1. Hence
by (4.2) the assertion follows.

Step 3. — Hence we have

E |C ' O(3, 2, 1n−4)

for special lines C, and

E |C ' O(23, 1n−5)

for general lines C by Lemma 2.3. Set

Mjump := {[C] ∈M | E |C ' O(3, 2, 1n−4)},

which is a closed subset of M (see e.g. [54, Lemma 3.2.2]), and Ujump :=
p−1(Mjump).

The morphism e|Ujump is surjective, since E is not uniform at any point.
Hence there exists an irreducible component M0

jump of Mjump such that
e|U0

jump
is surjective, where U0

jump := p−1(M0
jump). Therefore we have the
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following diagram with a surjection e0 := e|U0
jump

:

M0
jump� _

��

U0
jump� _

��

e0 //p0oo X

M U.

e

<<

poo

Step 4. — There exists the following exact sequence of vector bundles
on U0

jump:

(4.6) 0→ F → e∗0 (E (−1))→ G := (p∗0p0∗e
∗
0 (E ∗(1)))∗ → 0,

which restricts on each p0-fiber to

0→ O(2, 1)→ O(2, 1, 0n−4)→ O(0n−4)→ 0.

Then the exact sequence gives the following commutative diagram,

P(G )

��

ẽ0 // P(E )

π

��

ϕ
// Y

U0
jump

e0 // X.

The image ẽ0(P(G )) is the union of all minimal lifts over the minimal
rational curves belonging to M0

jump. Also a morphism U0
jump → Gr(2,E ) is

induced by sequence (4.6) (Note that if (2) holds then P(G ) ' U0
jump and

P(E ) ' Gr(2,E )).
Step 5. — If (1) holds, then every fiber of the morphism ẽ(Ũ)→ X has

dimension 6 1, so does for every fiber of the morphism ẽ0(P(G ))→ X. This
implies that the morphism ẽ0(P(G )) → X is equidimensional of relative
dimension 1. Thus the image of the morphism U0

jump → Gr(2,E ) is finite
over X.
If (2) holds, then since dim ẽ(Ũ) 6 5, the image of the corresponding

morphism U0
jump → Gr(2,E ) is generically finite over X.

Step 6. — Here we will prove that every fiber of e0 is connected. More-
over if n = 5 then e0 is equidimensional.

Now X ' Pn and thus e is a projective bundle of relative dimension
n− 1 = 4 or 5. Thus the assertion follows if dimU0

jump > n+ 3. Note that
if n = 5 then (e0)−1(x) is equidimensional. Otherwise e−1(x) = (e0)−1(x),
which implies that E is uniform at the point x ∈ X, which contradicts our
assumption in Step 1.
Thus it is enough to show:
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Claim 4.9. — dimU0
jump > n+ 3.

Proof of Claim. — Consider the dual projective bundle π′ : P(E ∗)→ X.
There is a one-to-one correspondence between the rational curves C ⊂ X

such that [C] ∈Mjump and the rational curves C̃ ⊂ P(E ∗) satisfies ξE ∗ .C̃ =
−3 and (π′∗HX).C̃ = 1. Indeed if C is a jumping line on X, then the lift
C̃ ⊂ P(E ∗) corresponding to the direct summand O(−3) ⊂ E ∗|C satisfies
ξE ∗ .C̃ = −3 and (π′∗HX).C̃ = 1. Conversely, if a rational curve C̃ in P(E ∗)
satisfies ξE ∗ .C̃ = −3 and (π′∗HX).C̃ = 1, then the image C = π′(C̃) is a
line on X and C̃ is a section corresponding to a surjection E ∗|C → O(−3).
Hence C is a jumping line for E . Also the correspondence is one-to-one.
Thus the family of rational curves on P(E ∗) with ξE ∗ .C̃ = −3 and

(π′∗HX).C̃ = 1 is isomorphic to the normalization of Mjump. By counting
the dimension of the family of rational curves on P(E ∗) by Proposition 2.6,
we have dimU0

jump > n+ 3. �

Step 7. — By applying the rigidity lemmas [31, Chapter II. Proposi-
tion 5.3] and [34, Lemma 1.6] to the case (1) and (2) respectively, we see
that the morphism U0

jump → Gr(2,E ) factors through e0. This implies that
there exists the following exact sequence on X:

0→ S → E (−1)→ Q→ 0,

such that the pull back of the sequence by e0 coincides (4.6). Since E is
ample, so is Q(1). By restricting each p0-fiber, we see that c1(Q(1)) = n−4.
Since rankQ = n − 4, the bundle Q is uniform. Note that there is no
line C such that E |C ' O(4, 1n−3). Thus E is a uniform vector bundle,
which contradicts our assumption that E is not uniform. This completes
the proof. �

4.3. Exceptional locus of ϕ and locus of minimal lifts

Proposition 4.10. — Let (X,E ) be a pair as in Setting 4.1. Then
Exc(ϕ) ∩ ẽ(Ũ) 6= ∅.

Proof. — Assume to the contrary Exc(ϕ) ∩ ẽ(Ũ) = ∅. Then obviously
R>0[C̃] 6= Rϕ and hence the assumption of Lemma 4.4 holds. Also ϕ is not
of fiber type. Hence dimE = 2n− 4 or 2n− 5. Moreover E does not split
since R>0[C̃] 6= Rϕ.

Since π−1(x) = Pn−3, we have Ex ∩ ẽ(Ũ)x 6= ∅ for x ∈ π(E) if

dimEx + dim ẽ(Ũ)x > n− 3.
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Therefore, by our assumption Exc(ϕ) ∩ ẽ(Ũ) = ∅, we have

(4.7) n− 4 > dimEx + dim ẽ(Ũ)x

for x ∈ π(E).
By the above inequality and inequalities (4.1)–(4.3) the following holds

for x ∈ π(E):

(4.8) n− 4 > dimEx + dim ẽ(Ũ)x > (dimE − n) + (mx − 1)
> (dimE − n) + (2n− 5− lX).

On the other hand, we have (dimE − n) + (2n − 5 − lX) > n − 6 by
Lemma 4.4. Thus

n− 4 > (dimE − n) + (2n− 5− lX) > n− 6.

We will divide the proof into four cases depending on the value
(dimE − n) + (2n − 5 − lX). Note that there are only finite possibili-
ties for triplets (n, lX ,dimE), since n > 5, lX ∈ {n − 1, . . . , n + 1 } and
dimE = 2n− 4 or 2n− 5.
Case (dimE − n) + (2n − 5 − lX) = n − 4. — This case occurs if and

only if (n, lX ,dimE) = (5, 4, 5), (5, 5, 6), (6, 6, 7), (6, 7, 8) or (7, 8, 9).
Since (dimE − n) + (2n− 5− lX) = n− 4, inequality (4.8) gives

dimEx + dim ẽ(Ũ)x = (dimE − n) + (mx − 1) = n− 4

Thus inequalities (4.1)–(4.4) become equalities. Hence E → X is surjec-
tive and every fiber is equidimensional of dimension dimE − dimX. Also
the equality in (4.2) implies that E is a uniform vector bundle of type
O(2−n+2+lX , 12n−4−lX ).
If (n, lX ,dimE) = (5, 4, 5), then Lemma 4.5 gives a contradiction to the

fact that the morphism E → X is equidimensional.
In the other cases, we have X ' Pn or Qn by Lemma 2.2. Also E is

uniform of type
O(2−n+2+lX , 12n−4−lX )

and the equality holds in (4.4). Thus Proposition 4.6 gives a contradiction
to the fact that E does not split.
Case (dimE − n) + (2n − 5 − lX) = n − 5. — This case occurs if and

only if (n, lX ,dimE) = (5, 5, 5), (5, 6, 6) or (6, 7, 7).

Claim 4.11. — Inequalities (4.1) and (4.4) can not be strict at the same
time.
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Proof of Claim. — Otherwise the following inequality gives a contradic-
tion:

n− 4 > dimEx + ẽ(Ũ)x
> (dimE − n+ 1) + (2n− 5− lX + 1) > n− 3. �

Subcase (n, lX ,dimE) = (5, 5, 5). — In this case X ' Q5 by Proposi-
tion 2.2. If there is a point x ∈ X such that E is uniform at the point x, then
E splits by [25, Theorem 4.1]. This contradicts the fact that E does not
split. Thus, for every point x ∈ X, E is not uniform at x and hence there
exists a line C such that x ∈ C and E |C ' O(3, 12) by Lemma 2.3. Thus
inequality (4.3) is strict for each point x ∈ X and hence inequality (4.4) is
also strict.
By Lemma 4.5, there exists a subvariety N ⊂ E such that π(N) has

dimension > 3 and π|N is of fiber type. Thus inequality (4.1) is also strict
for x ∈ π(N). This contradicts Claim 4.11.

Subcase (n, lX ,dimE) = (5, 6, 6) or (6, 7, 7). — In this case X ' Pn
by Proposition 2.2. We will prove that one of the assumptions in Proposi-
tion 4.8 holds. By Proposition 4.7, we may assume that inequality (4.3) is
strict for every x ∈ X and so is inequality (4.4).
By Claim 4.11, the equality holds in (4.1) for every x ∈ π(E). Therefore

the morphism E → X is surjective and equidimensional of relative dimen-
sion one. Since E ∩ ẽ(Ũ) = ∅, every fiber of the morphism ẽ(Ũ) → X has
dimension 6 n − 5. Thus there is no line C such that E |C ' O(4, 1n−3)
by (4.2).

Case (dimE − n) + (2n − 5 − lX) = n − 6. — This case occurs if and
only if (n, lX ,dimE) = (5, 6, 5). In this case X ' Pn by Theorem 2.2. We
will prove that the assumption (2) in Proposition (4.8) holds.
It holds dim ẽ(Ũ) 6 5. Otherwise dim ẽ(Ũ) > 5. Thus ẽ(Ũ) contains at

least a divisor D. Since Exc(ϕ) ∩ ẽ(Ũ) = ∅, we have D = ϕ∗ϕ∗D. Since
ρY = 1, ϕ∗D is an ample Cartier divisor on Y . However by Lemma 4.4 we
have dimϕ(Exc(ϕ)) > n − 4 > 1 and hence ϕ∗D ∩ ϕ(Exc(ϕ)) 6= ∅. This
contradicts the assumption Exc(ϕ) ∩ ẽ(Ũ) = ∅.
There is no line C with E |C ' O(4, 12). Otherwise, by the same argument

of the proof of Claim 4.9, we have

dim{[C] ∈M | line C with E |C ' O(4, 12)} > 4.

By Lemma 4.5, there is a closed subvariety N ⊂ E of dimension > 4 such
that dim π(N) = dimN−1. Hence there is a line C such that C∩π(N) 6= ∅

TOME 69 (2019), FASCICULE 1



258 Akihiro KANEMITSU

and E |C ' O(4, 12). Take a point x ∈ C ∩ π(N). Then dimEx > 1. Also
by (4.2) dim ẽ(Ũ)x > 1. This contradicts (4.7).
Therefore the assumption (2) in Proposition 4.8 holds and hence E splits.

This contradicts the fact E does not split. This completes the proof of
Proposition 4.10. �

4.4. Proof of Theorem 4.2

By Proposition 4.10, there is a component M̃0 of M̃ and a component F
of a non-trivial π-fiber such that ẽ(Ũ0) ∩ F 6= ∅.

Definition 4.12. — Let X be a projective manifold, Y ⊂ X a closed
subvariety and U → M an unsplit family of rational curves on X. Then
Locus(M)Y (resp. ChLocusk(M)Y ) is defined to be the set of the points
which can be connected to Y by a rational curve inM (resp. by a connected
chain of rational curves in M with length k).

Then by [6, Lemma 5.4], [47, Lemma 3.2 and Remark 3.3] (cf. [11, Corol-
lary 2.2 and Remark 2.4]) we have:

Lemma 4.13. — Assume that R>0[C̃] 6= Rϕ. Then the following hold:
(1) dim Locus(M̃0)F > dim(F ∩ Locus(M̃0)) + dim Locus(M̃0)p for a

general point p ∈ F ∩ Locus(M̃0),
(2) dim Locus(M̃0)F > dimF + n− 3,
(3) NE(Locus(M̃0)F ,P(E )) ⊂ 〈R>0[C̃], Rϕ〉.

Lemma 4.14. — Assume that R>0[C̃] 6= Rϕ. Then

n > dim Locus(M̃0)F > dimF + n− 3.

In particular dimF 6 3.

Proof. — Since R>0[C̃] 6= Rϕ, the conclusions of Lemma 4.13 hold.
Hence the morphism

Locus(M̃0)F → X

is finite by Lemma 4.13(3). Thus n > dim Locus(M̃0)F . By Lemma 4.13(2)
we have

n > dim Locus(M̃0)F > dimF + n− 3,

and the assertion follows �
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Lemma 4.15. — Assume that R>0[C̃] 6= Rϕ. Then one of the following
hold:

(1) n = 6, ϕ is of fiber type and

dim Locus(M̃0)F = dimF + 3 = 6.

(2) n = 5, ϕ is a divisorial contraction and

dim Locus(M̃0)F = dimF + 2 = 5.

(3) n = 5, ϕ is of fiber type and

5 > dim Locus(M̃0)F > dimF + 1 > 4.

Proof. — This follows from Lemmas 4.4 and 4.14. �

Lemma 4.16. — Assume that R>0[C̃] 6= Rϕ and dim Locus(M̃0)F = n.
Let V be an n-dimensional component of Locus(M̃0)F . Then:

(1) X ' Pn,
(2) dim(V ∩ F ) = 0,
(3) dimF 6 n− 3,
(4) V is a section of π corresponding to an exact sequence:

0→ E1 → E → OX(1)→ 0.

Proof. — By Lemma 4.13(3), NE(V,P(E )) ⊂ 〈R>0[C̃], Rϕ〉. Therefore
by Lemma 2.18 we have lX = rX and V is a section of π corresponding to
the following exact sequence:

0→ E1 → E → OX(1)→ 0.

Now NE(V,P(E )) = R>0[C̃]. Thus dim(V ∩ F ) = 0.
Since dim(V ∩F ) = 0, there is a point p ∈ F such that V ⊂ Locus(M̃0)p.

This implies that there is a point x ∈ X such that Locus(M)x = X. Hence
X ' Pn by [24, Corollary 4.2].
On the other hand the Serre inequality implies dim(V ∩ F ) > dimV +

dimF − dimP(E ) = dimF − n+ 3. Thus we have 0 > dimF − n+ 3. �

Lemma 4.17. — Neither Lemma 4.15(1) nor (2) occurs.

Proof. — If Lemma 4.15(2) occurs, then dimF = 3, which gives a con-
tradiction to Lemma 4.16(3).
Assume that Lemma 4.15(1) occurs. We firstly prove that Locus(M̃0)F

is equidimensional of dimension 6.
We have dim Ũ0 > 11 by Proposition 2.6. Hence each irreducible com-

ponent of a fiber (ϕ ◦ ẽ0)−1(y) has dimension at least five. Hence each
component of p̃0((ϕ ◦ ẽ0)−1(y)) has dimension at least five.
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On the other hand, by the proof of [6, Lemma 5.4], the morphism ẽ0 is
finite on p̃−1

0 (p̃0((ϕ ◦ ẽ0)−1(y))) \ (ϕ ◦ ẽ0)−1(y). Thus each component of
Locus(M̃0)F has dimension > 6.
Hence, by Lemma 4.16, we have dim Locus(M̃0)F∩F = 0. This is possible

only if dim Locus(M̃0) = 6. Hence Locus(M̃0)F = Locus(M̃0).
Since ϕ is of fiber type, the same argument does work for any component

M̃i. Thus ẽ(Ũ) is a finite union of sections of π and thus (4.3) becomes an
equality. Then E splits by Proposition 4.7, which gives a contradiction to
R>0[C̃] 6= Rϕ. �

Lemma 4.18. — Assume R>0[C̃] 6= Rϕ. Then n = 5, ϕ is a P2-bundle
and lX = 4.

Proof. — By Lemmas 4.15 and Lemma 4.17, n = 5, ϕ is of fiber type
and

5 > dim Locus(M̃0)F > dimF + 1 > 4.
Since R>0[C̃] 6= Rϕ, M̃ is not a covering family by [11, Lemma 2.4] (Note

that M̃ is an unsplit family). If lX > 5, then X ' P5 or Q5 by Theorem 2.2,
hence by Theorem 3.3 we have (X,E ) ' (Q5,GQ). This contradicts the
assumption R>0[C̃] 6= Rϕ. Thus we have lX = 4. Also by the assumption
ẽ(Ũ) 6= P(E ) and inequality (4.1), we may assume that dim ẽ(Ũ0) = 6.
The morphism ϕ : ẽ(Ũ0) → Y is surjective. Otherwise there is a fiber

F with dim ẽ(Ũ0) ∩ F > 2. On the other hand dim Locus(M̃0)p > 3 for a
general point p ∈ ẽ(Ũ0)∩F since dim ẽ(Ũ0) = 6 and dim Ũ0 > 8 by Propo-
sition 2.6. Hence dim Locus(M̃0)F > 5 by Lemma 4.13(1). By Lemma 4.16,
we have X ' P5. This contradicts lX = 4.

Hence the divisor D := ẽ(Ũ) is ample and meets every fiber of ϕ. If there
is a ϕ-fiber F with dimF > 3, then we have dim Locus(M̃0)F > 5, which
yields a contradiction again. Thus ϕ is a P2-bundle by Proposition 2.13
and [19, Lemma 2.12]. �

By Lemma 4.18, ϕ is a P2-bundle, n = 5 and lX = 4.
Set EY := ϕ∗OP(E )(1). Then (Y,EY ) is also a pair as in Theorem 1.3 and

the following symmetric diagram is obtained:

PX(E ) = PY (EY )
π

xx

ϕ

&&
X Y.

We may assume that (Y,EY ) is a pair as in Setting 4.1. In the rest of
this proof we denote by CX (resp. CY ) a minimal rational curve on X
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(resp. Y ) and by C̃X (resp. C̃Y ) a minimal lift over CX (resp. CY ). Set
RX := R>0[C̃X ] and RY := R>0[C̃Y ].

Lemma 4.19. — Assume that RX 6= Rϕ. Then RY 6= Rπ and lY = 4.

Proof. — By Lemma 4.18 for the pair (Y,EY ), it is enough to show that
RY 6= Rπ. Assume to the contrary that RY = Rπ, namely Theorem 4.2 is
true for (Y,EY ).
Note that ξEY

= ξ. Let HY be the ample generator of Pic(Y ). Then
lY ξ−rY ϕ∗HY = mXπ

∗HX for some integer mX > 0. Since {ξ, ϕ∗HY } and
{ξ, π∗HX} are Z-bases for Pic(PX(E )) = Pic(PY (EY )), the matrix(

1 0
lY /mX rY /mX

)
is unimodular. Thus we have mX = rY and lY /mX = lY /rY ∈ Z. Since
lY > rY , the equality lY = rY holds. Therefore ξ − ϕ∗HY = π∗HX , and
hence the divisor ξ − π∗HX is a supporting divisor for the contraction ϕ.
Now, by taking the π-images of the lines contained in ϕ-fibers, we have a
covering family of rational curves onX withHX -degree one. Thus lX = rX ,
and hence lXξ+π∗KX is a supporting divisor for ϕ, which contradicts our
assumption RX 6= Rϕ. �

Proof of Theorem 4.2. — To apply Proposition 3.6, we will construct
a closed subvariety V ⊂ PX(E ) which is a section for both projection π

and ϕ.
By [66, Theorem 1.2], there is a point x1 ∈ X such that

ChLocus2(M)x1 = X.

Hence for any point x2 ∈ X, there are two minimal rational curves CX ,1
and CX ,2 with x1, x2 ∈ CX ,1 ∪CX ,2 and CX ,1 ∩CX ,2 6= ∅. Since minimal
lifts over a fixed minimal rational curve sweep out a divisor in a π-fiber by
Lemma 2.3, there are minimal lifts C̃X ,1 and C̃X ,2 with C̃X ,1 ∩C̃X ,2 6= ∅.
Hence we have dim ChLocus2(M̃)π−1(x1) > 5. Note that by [11, Corol-
lary 2.2 and Remark 2.4] we have

NE(ChLocus2(M̃)π−1(x1),P(E )) ⊂ 〈Rπ, RX〉.

Thus there is a component V of ChLocus2(M̃)π−1(x1) such that the mor-
phism V → Y is finite and hence surjective.

Claim 4.20. — RX = RY .

Proof of Claim. — We will prove [C̃X ] = [C̃Y ]. Note that ξE .C̃X =
ξE .C̃Y . Thus it is enough to see that π∗(−KX).C̃X = π∗(−KX).C̃Y .
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Since dimP(EY |CY
) ∩ V > 1, we have

0 6= NE(V,P(E )) ∩NE(P(EY |CY
), P(E )) = 〈Rπ, RX〉 ∩ 〈Rϕ, RY 〉.

Thus π∗(−KX).C̃X > π∗(−KX).C̃Y .
Note that by applying the same argument as above for the pair (Y,EY ),

we have
π(Locus(M̃Y )) = X,

where M̃Y is the union of the families of minimal lifts C̃Y . Hence the images
of the minimal lifts C̃Y define a covering family of rational curves on X.
Hence we have π∗(−KX).C̃X 6 π∗(−KX).C̃Y by the minimality of the
anticanonical degree. Thus the assertion follows. �

Then, by Lemma 2.18, V is a section of the morphism ϕ corresponding
to the following sequence:

0→ EY,1 → EY → OY (1)→ 0,

and NE(V,P(E )) = RX = RY . Hence, again by Lemma 2.18, V is also a
section of the morphism π corresponding to a sequence:

0→ E1 → E → OX(1)→ 0.

Thus V is a section for both projection π and ϕ. Then Proposition 3.6 and
the fact n > 5 implies X ' Q5, which contradicts lX = 4. �

5. Case lX > n

In this section, we will prove Theorem 1.3 for pairs (X,E ) with ρX = 1
and lX > n. In this case, by Proposition 2.2, X ' Pn or Qn and hence it
is enough to prove the following:

Theorem 5.1. — Let (X,E ) be a pair as in Theorem 1.3 with X ' Pn
or Qn. Then E splits unless (X,E ) is isomorphic to a pair as in Theo-
rem 1.3(2a)–(2c).

In this section, we will identify the i-th Chern class of a vector bundle
with an integer if Ai(X) ' Z.

By the following proposition, the proof of Theorem 5.1 is reduced to give
a classification of nef vector bundles of rank n − 2 on Pn (resp. Qn) with
first Chern class three (resp. two):

Proposition 5.2. — Let (X,E ) be a pair as in Theorem 1.3 with X '
Pn or Qn. Then E (−1) is a nef vector bundle of rank n−2 with c1(E (−1)) =
c1(X)− n+ 2.
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Proof. — Since c1(E ) = c1(X), we have c1(E (−1)) = c1(X) − n + 2.
Thus it is enough to show that E (−1) is nef.
If `(Rϕ) 6= n− 2, then by Proposition 2.14 we have (X,E ) ' (P5,O(23))

and the assertion follows.
If `(Rϕ) = n− 2, then by Theorem 4.2 the divisor lXξE + π∗KX is nef.

Note that lXξE + π∗KX = lXξE − rXπ∗HX . Since X ' Pn or Qn, we have
lX = rX . Hence ξE − π∗HX is nef and the assertion follows. �

For partial results or discussions on the classification of nef vector bundles
on Pn or Qn with c1(E (−1)) = c1(X)−n+ 2 without the condition on the
rank, we refer the reader to [50, 51, 52, 53].

5.1. Spannedness and adjunction

In this subsection, we slightly generalize the problem and consider the
classification of nef vector bundles F on Pn or Qn (n > 3) which satisfy

(5.1) c1(F ) + rank F 6 c1(X).

Proposition 5.3. — If a nef vector bundle F onX ' Pn or Qn (n > 3)
satisfies (5.1), then F is generated by global sections.

Proof. — We will show the assertion by slightly modifying the argument
in [2, Proof of Proposition 2.6]. First we will prove that

Claim 5.4. — Hi(F (−i)) = 0 for 0 < i < c1(X).

Proof of Claim. — If c1(X) > i > rank F , then by the Le Potier van-
ishing theorem we have Hi(X,F (−i)) = 0. Thus Hi(X,F (−i)) = 0 for
c1(X) > i > c1(X)−c1(F ) by (5.1). On the other hand, if c1(X)−c1(F ) >
i > 0, then we have

Hi(X,F (−i))

= Hi(P(F ), ξF − iπ∗HX)

= Hi(P(F ),KP(F) + (r + 1)ξF + (c1(X)− c1(F )− i)π∗HX)
= 0,

where the last vanishing follows from the Kodaira vanishing theorem
on P(F ). �

Hence the assertion follows if X ' Pn since F is 0-regular in the sense
of Castelnuovo–Mumford.
Assume X = Qn. Then we already have Hi(F (−i)) = 0 for n > i > 0.

If Hn(F (−n)) = 0, then the assertion follows as above.
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Assume that Hn(F (−n)) 6= 0, or H0(F ∗) 6= 0 by the Serre duality.
Then we have a section of F ∗ and hence a subbundle O ⊂ F ∗ by [10,
Proposition 1.2(12)]. Then the bundle F ′ := (F ∗/O)∗ is nef by [10, Propo-
sition 1.2(8)], and c1(F ′) = c1(F ). Hence F ′ satisfies the condition of this
proposition. By a similar computation as above using the Kodaira vanishing
theorem on P(F ′), we have H1(X,F ′) = 0. Hence we have F = O ⊕F ′,
and the assertion follows by induction on the rank. �

If rank F > n in Proposition 5.3, then by using Theorem 1.1 we see that
(X,F ) is isomorphic to

(Pn,O⊕n+1), (Pn,O(1, 0n−1)), (Pn,O⊕n), (Pn, TPn(−1)) or (Qn,O⊕n).

On the other hand, if n > rank F , then the following proposition enables
us to reduce the study of F to a lower rank case rank F = c1(F )−c1(X)+
n+ 1:

Proposition 5.5. — Assume n > rank F > c1(F )− c1(X) + n+ 1 in
Proposition 5.3. Then there exist the following exact sequences of vector
bundles:

0→ O → F0 → F1 → 0,
...

0→ O → Fk−1 → Fk → 0,

where F0 := F and rank Fk = c1(F )− c1(X) + n+ 1.

Proof. — A similar proof is contained in [65, Lemmas 2.4 and 2.7].
If rank F = c1(F )−c1(X)+n+1, then there is nothing to prove. Hence

we assume rank F > c1(F )− c1(X) + n+ 1.
Since F is spanned by Proposition 5.3, the zero locus Z of a general sec-

tion of F defines a smooth subscheme of dimension n−rank F > 0 if Z 6= ∅.
Assume Z 6= ∅. Then by adjunction we have −KZ = (c1(X)− c1(F )) |Z
and, by our assumption, −KZ is ample. By [30] we have dimZ + 1 > rZ .
Therefore n − r + 1 > c1(X) − c1(F ). This contradicts our assumption.
Hence a general section of F defines a subbundle O ⊂ F , and the assertion
follows by induction on the rank. �

5.2. Case X ' Pn

Proof of Theorem 5.1 for X ' Pn. — By Proposition 5.2, F := E (−1)
is a nef vector bundle with c1(F ) = 3 and rank F = n − 2. Then F is
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globally generated by Proposition 5.3 and hence F is a direct sum of line
bundles by [9, 62] (cf. [65, Corollary 2.5]). �

5.3. Case X ' Qn

In this subsection we assume that X ' Qn (n > 5) and F is a nef vector
bundle of rank n − 2 with c1(F ) = 2. Then F is globally generated by
Proposition 5.3. If n > 7, then F is a direct sum of line bundles by [65,
Corollary 2.8]. Therefore we further assume n = 5 or 6. Then Fk in Propo-
sition 5.5 is a globally generated vector bundle of rank 3 with c1(Fk) = 2.

Proposition 5.6. — Fk splits or is isomorphic to the Ottaviani bundle.

Proof. — If c3(Fk) = 0, then a general section of Fk defines a subbundle
O ⊂ Fk. Then the quotient Fk+1 is a nef vector bundle of rank two with
c1 = 2. Thus it is a Fano bundle of rank two. Then, by [2], Fk+1 and hence
Fk splits.
Assume that c3(Fk) 6= 0. If n = 6 and the restriction of Fk to a general

linear section Q5 is the Ottaviani bundle, then by [55, Section 3] Fk is
also the Ottaviani bundle on Q6. Note that F = Fk if n = 5. Hence it is
enough to show the following:

Claim 5.7. — Assume that n = 5. If c3(F ) 6= 0, then F is the Otta-
viani bundle.

Proof of Claim. — Set E := F (1). Then the pair (Q5,E ) satisfies
the condition of Setting 4.1 by Proposition 2.14. The semiample divisor
ξE − π∗HX = ξF defines the contraction ϕ by Theorem 4.2. Let F be
a component of a ϕ-fiber and F̄ a resolution of F . By Corollary 4.3(2),
c3(F )|F̄ = 0 and hence c3(F ).π(F ) = 0. Since c3(F ) 6= 0, we have
dimF = dim π(F ) 6 2. By Lemma 2.12, we have dimE > dimP(E ) and
hence ϕ is of fiber type. The assertion follows from Theorem 3.3. �

This completes the proof of Proposition 5.6. �

Proof of Theorem 5.1 for X ' Qn. — As mentioned, E (−1) is a globally
generated vector bundle of rank n − 2 on Qn with c1(E (−1)) = 2, and
we may assume n = 5 or 6. If n = 5, then the assertion follows from
Proposition 5.6. If n = 6, then there exists the following exact sequence by
Proposition 5.5:

0→ O → E (−1)→ F1 → 0.
By Proposition 5.6, F1 is a direct sum of line bundles or the Ottaviani
bundle. In the former case the exact sequence splits and hence E is a direct
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sum of line bundles. In the latter case E (−1) is the dual of the Spinor bundle
or E (−1) ' O ⊕F1 by [55, Section 3]. Thus the assertion follows. �

6. Case lX = n− 1 and ϕ is birational

In this section, we will prove Theorem 1.3 under Setting 4.1 when lX =
n− 1 and ϕ is a birational contraction:

Theorem 6.1. — Let (X,E ) be a pair as in Setting 4.1. Assume that
lX = n−1 and ϕ is a birational contraction. Then E is a direct sum of line
bundles.

Set E := Exc(ϕ) and Z := ϕ(E).

E //� _

��

Z� _

��
P(E )

π

��

ϕ // Y

X.

Lemma 6.2. — Under the assumption of Theorem 6.1, the following
hold:

(1) ϕ is a divisorial contraction with E = ẽ(Ũ).
(2) n− 2 > dimZ > n− 4.

Proof. — By Theorem 4.2, minimal lifts over minimal rational curves
are contracted by ϕ. Thus ẽ(Ũ) ⊂ E. By Lemma 2.3 we have dim ẽ(Ũ) >
2n− 4 = dimP(E )− 1. Hence ϕ is a divisorial contraction. Therefore E is
an irreducible divisor (see e.g. [34, Proposition 2.5]), and hence E = ẽ(Ũ).
By Lemma 2.12, we have n > dimF > n − 2 for a non-trivial ϕ-fiber F .
Thus n− 2 > dimZ > n− 4. �

Lemma 6.3. — If dimZ = n−3 or n−2, then E ≡ ξ−aπ∗HX for some
a ∈ Z.

Proof. — Let F be a component of a general non-trivial ϕ-fiber and set
DF := ξ|F . We will denote by ∆(F,DF ) the ∆-genus of the polarized pair
(F,DF ), which is the number dimF +DdimF

F − h0(F,DF ). Then either
(1) dimZ = n− 3, F is normal and ∆(F,DF ) = 0 or
(2) dimZ = n− 2 and (F,DF ) ' (Pn−2,O(1))
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by [3, Theorem 2.1] and Proposition 2.13. Also, by Theorem 4.2,
(n− 1)DF = −KX |F .

Note that dimF = n − 1 > 4 in the former case, hence, by using the
classification of varieties with small delta genus [16, 18], we see that there
is a linear subspace P2 ⊂ F through any point p ∈ F . Hence there is a
morphism j : P → X through a general point x ∈ X with j∗O(−KX) =
OP(n− 1), where P := P2 ⊂ F if dimZ = n− 3 or P := F if dimZ = n− 2.
Let f : P(E |P) → P(E ) be the morphism obtained by taking the base

change of j by π, and let P(E |P) ϕP−→ YP → Y be the Stein factorization
of ϕ ◦ f . Set EP := Exc(ϕP). Then there exists the following commutative
diagram:

(6.1)

EP ⊂ f∗E� _

��

// E� _

��
P(E |P)

πP

��

f
// P(E )

π

��

ϕ
// Y

P
j // X.

Since j(P) passes through a general point of X, ϕP is not of fiber type.
Since dim f∗E > dimZ, it holds that f∗E ⊂ EP. Thus we have EP =
Supp f∗E.

Now E |P(−1) is a nef vector bundle of rank n − 2 with c1 = 1 by
Corollary 4.3 and ϕP is not of fiber type. Hence E |P(−1) is isomorphic
to O(1, 0n−3) by [60, 64]. Thus EP is a hyperplane in the πP-fiber over a
general point. Hence the same holds for E and the assertion follows. �

Proposition 6.4. — dimZ = n− 4.

Proof. — Assume to the contrary that dimZ > n− 3. We use the same
notation as in the proof of Lemma 6.3. Then f∗E = EP and E |P '
O(2, 1n−3) by the proof of Lemma 6.3. Hence we have OP(aj∗HX) =
OP(2). This impliesOP1(aHX |P1) = OP1(2HP1) for a minimal rational curve
P1 → X.
Let s : O → E (−a) be a section corresponding to E ∈ |ξ − aπ∗HX | and

W the zero locus of the section s. Assume W 6= ∅. Then by Proposition 2.7
there is a minimal rational curve f : P1 → X such that f(P1)∩W 6= ∅ and
f(P1) 6⊂W . On the other hand, if f : P1 → X is a minimal rational curve,
then the restriction of the section

f∗s : OP1 → f∗E (−a) ' O(0, (−1)n−3)
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is non-vanishing or the zero morphism. This gives a contradiction. Hence s
is a non-vanishing section.
Therefore the quotient E (−a)/O is a uniform vector bundle of

type O(−1n−3) and hence a direct sum of line bundles by [8, Proposi-
tion 1.2]. This implies that E is also a direct sum of line bundles and
E ' OX(2, 1n−2). Then dimZ = n− 4, which contradicts our assumption
that dimZ = n− 2 or n− 3. �

Proof of Theorem 6.1. — By Proposition 6.4, we have dimZ = n−4 and
any component of a non-trivial fiber has dimension n by Lemma 2.12. Hence
each n-dimensional component of a fiber is a section of π by Lemma 2.18.

Let C be a minimal rational curve, n : P1 → C ⊂ X the normalization
and x ∈ P1 a point. We fix a decomposition E |P1 ' OP1(2, 1n−3) as in
Lemma 2.3. Then by taking a base change of the diagram, we obtain the
following diagram:

EP1 ' P1 × Pn−4

��
P(E |P1)

πP1

��

m // P(E )

π

��

ϕ // Y

P1 n // X,

where EP1 is the subbundle corresponding to the direct summand
OP1(1n−3) ⊂ E |P1 .
Corresponding to each direct summand OP1(1), there are n− 3 minimal

sections P̃1
1, . . . P̃1

n−3 of πP1 .
Note that the morphism ϕ◦m : P(E |P1)→ Y contracts EP1 . Hence there

are sections X̃i of π such that m−1(X̃i) = P̃1
i . Note that each section X̃i

defines a surjection E → OX(1) and hence we have a morphism a : E →
OX(1n−3).

Claim 6.5. — The morphism a is surjective.

Proof of Claim. — The assertion is true on any point x ∈ C. Let C ′ be
a minimal rational curve on X. Assume that the assertion is true at a point
x′ ∈ C ′. Then the assertion is true for any point on C ′, since the bundle
is isomorphic to OP1(2, 1n−3) on the normalization. Hence the assertion
follows from Proposition 2.7. �

By the above claim, we have the following exact sequence:

0→ OX(2)→ E → OX(1n−3)→ 0.
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This sequence splits since H1(OX(1)) = 0, and the assertion follows. �

7. Case lX = n− 1 and ϕ is of fiber type

This section deals with the remaining case where lX = n− 1 and ϕ is of
fiber type:

Theorem 7.1. — Let (X,E ) be a pair as in Setting 4.1. Assume that
lX = n − 1 and ϕ is of fiber type. Then the pair (X,E ) is isomorphic to
one of the pairs (2d)–(2g) in Theorem 1.3.

Let F be a general ϕ-fiber and set DF := ξ|F . By taking the base change
of π by π|F , we have the following diagram:

(7.1)
F̃

ι // P(E |F )

πF

��

//

θF

$$
P(E )

π

��

ϕ
// Y

F
π|F // X,

where F̃ is the section of πF corresponding to the original fiber F . Let

P(E |F ) ϕF−−→ Y ′ → Y

be the Stein factorization of θF . Then ϕF is defined by the semiample
divisor ξE |F − π∗FDF by the proof of Corollary 4.3.

7.1. Bounding the dimension of X

The first step of the proof is to show n 6 6. In addition, (dimY ;F,
O(DF ),E |F ) is also determined:

Proposition 7.2. — Under the assumption of Theorem 7.1, we have
n 6 6 and the quadruple (dimY ;F,O(DF ),E |F ) is one of the following:

(1) (n;Pn−3,OPn−3(1),O(2, 1n−3)),
(2) (n− 1;Qn−2,OQn−2(1),S ∗Q(1)⊕O(1n−4)),

where F is a general ϕ-fiber.

Note that, by Lemma 2.12, we have n− 3 6 dimY 6 n in this case.

Lemma 7.3. — dimY > n− 1.
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Proof. — We have dimY 6= n − 3. Otherwise the projective bundle
P(E ) is trivial by [44, Lemma 4.1], which contradicts the fact that E |P1 '
O(2, 1n−3) for a minimal rational curve f : P1 → X.

Assume dimY = n− 2. Then a general ϕ-fiber F is a smooth projective
manifold of dimension n− 1 with −KF = (n− 2)ξ|F by adjunction. Hence
F is a del Pezzo manifold. Set DF := ξ|F and OF (1) := O(DF ). Note that
(n− 1)DF = (π|F )∗(−KX) by Theorem 4.2.
By Corollary 4.3, E |F (−1) is a semiample vector bundle with

c1(E |F (−1)) = DF . Since dimY = n− 2, we have (ξE |F − π∗FDF )n−1 = 0.
The Kodaira vanishing theorem implies

Hi(F,det(E |F (−1))⊗O(KF )) = 0

and
Hi(P(E |F (−1)), tξE |F (−1)) = 0

for i > 0 and t > 0. Also

H0(F,det(E |F (−1))⊗O(KF )) = H0(F,OF (−n+ 3)) = 0.

Hence, by [59, Corollary 1.3], we have the following exact sequence:

0→ OF (−1)→ O⊕n−1
F → E |F (−1)→ 0.

By dualizing this sequence, we see that the ample line bundle OF (1) is
generated by n− 1 sections. This contradicts dimF = n− 1. �

Proof of Proposition 7.2. — By Lemma 7.3 and Lemma 2.12 we have
dimY = n− 1 or n. Note that −KF = (n− 2)DF by adjunction.
Case dimY = n − 1. — In this case F ' Qn−2 and O(DF ) ' O(1)

by the Kobayashi–Ochiai theorem. Note that ϕF is of fiber type since
dimP(E |F ) > dimY .
By Corollary 4.3, Ωπ|F is a nef vector bundle of rank n − 3 with

c1(E |F (−1)) = 1. Thus, by [60], the bundle Ωπ|F is either
• a direct sum of line bundles,
• S ∗Q ⊕O with n = 6 or
• S ∗Q with n = 5.

Hence, by Corollary 4.3 and [55, Theorem 2.3], E |F (−1) is either
• a direct sum of line bundles,
• S ∗Q ⊕O⊕2 with n = 6 or
• S ∗Q ⊕O with n = 5.

Since ϕF is a morphism of fiber type, the first case does not occur.
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Case dimY = n. — In this case, F ' Pn−3 and O(DF ) ' OPn−3(1) by
Kobayashi–Ochiai theorem. Also, by Proposition 2.13, ϕ is an adjunction
theoretic scroll, i.e., there exists an ample line bundle L on P(E ) such
that KP(E ) + (dimP(E ) − dimY + 1)L defines the contraction ϕ. Thus
the morphism ϕ is a smooth Pn−3-bundle over a open subset Y 0 of Y . Set
P(E )0 := ϕ−1(Y 0). We will denote by Fy a fiber (ϕ0)−1(y) ' Pn−3 for
y ∈ Y 0.

Step 1. — By Corollary 4.3, Ωπ|F is a nef vector bundle with c1(Ωπ|F ) =
1. Hence Ωπ|F ' TPn−3(−1) or O(1, 0n−4) by Theorem 1.1. Therefore
E |F ' TPn−3 ⊕ O(1) or O(2, 1n−3) by Corollary 4.3. Thus one of the fol-
lowing holds:

• dim ImϕF = n− 2 and E |F ' TPn−3 ⊕O(1),
• dim ImϕF = 2n− 6 and E |F ' O(2, 1n−3).

Since dim ImϕFy do not depend on y ∈ Y 0, the isomorphic classes of E |Fy

also do not depend on y ∈ Y 0. If the latter case occurs then 2n − 6 6 n,
or equivalently n 6 6 and the assertion follows. Hence it is enough to show
that E |F ' O(2, 1n−3). In the following we assume to the contrary that
E |F ' TPn−3 ⊕O(1).
Step 2. — General two points in X can be connected by a chain of (π-

images of) ϕ0-fibers. In fact, since ρX = 1, general two points in X can
be connected by a chain of lines contained in ϕ0-fibers (see [13, Proof of
Proposition 5.8] or [33, Proof of Lemma 3]). Hence the assertion follows.
Step 3. — Let F1 and F2 be two ϕ0-fibers. In this step, we show that

dim(π(F1) ∩ π(F2)) > 1 if π(F1) ∩ π(F2) 6= ∅.
Assume π(F1) ∩ π(F2) 6= ∅ and take a point x ∈ π(F1) ∩ π(F2). Then

there exists a point p ∈ π−1(x)∩F1. Since ϕF is a morphism of fiber type,
there exists a curve C ⊂ π−1(π(F2)) such that p ∈ C and C is contracted
by ϕF . Since F1 is a fiber, we have C ⊂ F1. Hence π(C) ⊂ π(F1) ∩ π(F2).

Step 4. — Set Vy := Im θFy
. Note that dimVy = n − 2. Let C be the

normalization of a curve contained in Fy. Then we have the following dia-
gram:

Vy� _

��
P(E |C)

πC

��

//

θC

00

P(E |Fy )

πFy

��

//

θFy

55

P(E )

π

��

ϕ
// Y

C // Fy // X.
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Claim 7.4. — θC is surjective onto Vy.

Proof. — If θC is not surjective, then dim θC(P(E |C)) = n − 3. Hence
E |C is semistable by [38, Theorem 3.1]. On the other hand the subbundle
TPn−3 ⊂ E |Fy

gives a destabilizing subsheaf of E |C , which gives a contra-
diction. �

Step 5. — Fix general points x1, x2 ∈ X0. Then there exists a point
y ∈ Y 0 such that x1 ∈ π(Fy), and hence ϕ(π−1(x1)) ⊂ Vy.
By Step 2, x1 and x2 can be connected by a chain of ϕ0-fibers. Then by

Step 3 and 4 we have ϕ(π−1(x2)) ⊂ Vy. Hence ϕ(π−1(x)) ⊂ Vy for every
general point x ∈ X, which contradicts the surjectivity of ϕ.

This completes the proof. �

7.2. Decomposition of E

We now turn to prove that the bundle E admits a decomposition except
for one case. Recall that each bundle E of pairs (2d)–(2f) in Theorem 1.3
is decomposable.

Proposition 7.5. — The following hold:
(1) If Proposition 7.2(1) occurs, then rX = n−1 and E ' E1⊕O(1n−4)

with an ample vector bundle E1 of rank two.
(2) If Proposition 7.2(2) occurs and n = 6, then rX = 5 and E '

E1 ⊕O(1) with an ample vector bundle E1 of rank three.

Proof.
(1). — Assume that Proposition 7.2(1) occurs. Let F be a general ϕ-fiber

and consider the following diagram:

E ' P(O(1n−3))� _

��

// E′� _

��
P(E |F ) ' P(O(2, 1n−3))

θF

''

πF

��

// π−1(π(F ))

��

� � // P(E )

π

��

ϕ
// Y

F ' Pn−3 π|F // π(F ) �
� // X,

where E is the subbundle corresponding to the direct summand O(1n−3) ⊂
E |F and E′ is the image of E in π−1(π(F )). A minimal section of πF is
defined to be a section corresponding to a surjection E |F → O(1). Since

ANNALES DE L’INSTITUT FOURIER



CLASSIFICATION OF MUKAI PAIRS WITH CORANK 3 273

ϕF is defined by ξE |F − π∗DF , the exceptional divisor of the contraction
ϕF is E and hence each minimal section of πF is contracted to a point by
θF .

Step 1. — By Proposition 2.7 there exists a rational curve [C] ∈M such
that C ∩ π(F ) 6= ∅ and C 6⊂ π(F ). Let x ∈ C ∩ π(F ) be a point. Then the
deformations of minimal lifts C̃ of C sweep out at least a divisor in π−1(x)
by Lemma 2.3. Hence

dim
⋃
C̃

(C̃ ∩ E′ ∩ π−1(x)) > n− 5.(7.2)

Fix a minimal lift C̃ with C̃ ∩ E′ ∩ π−1(x) 6= ∅ and let w be a point in
C̃ ∩E′ ∩ π−1(x). If ϕ−1(ϕ(w)) has dimension n− 3, then ϕ is flat at ϕ(w)
by Proposition 2.13 and [19, Lemma 2.12]. The flatness at ϕ(w) implies
ϕ−1(ϕ(w)) ⊂ E′ (In fact it is a projective bundle near ϕ and the above
conclusion ϕ−1(ϕ(w)) ⊂ E′ is trivial, but, here we use only flatness to apply
a similar argument also for the case (2)). Thus C̃ ⊂ ϕ−1(ϕ(w)) ⊂ E′. This
contradicts the fact that C 6⊂ π(F ). Hence ϕ is not equidimensional at w.
By (7.2), the family of jumping fibers of ϕ has dimension at least n− 5.
Step 2. — Let F ′ be a component of a jumping fiber of ϕ with dimF ′ >

n− 2.
Assume that dimF ′ = n − 2. Then F ′ is isomorphic to Pn−2 and

OP(E )(1)|F ′ ' OPn−2(1) by [3, Theorem 2.1]. By Corollary 4.3, Ωπ|F ′ is
a nef vector bundle of rank n − 3 with c1 = 1 and hence isomorphic to
O(1) ⊕O⊕n−4 by [60]. Thus E |F ′(−1) ' O(1) ⊕O⊕n−3 by Corollary 4.3.
Then by a similar argument to Step 1 we have a jumping fiber of dimension
> n − 1. Also note that if n = 6 then every jumping fiber has dimension
> n− 1, otherwise the inequality dim Im θF ′ = 2n− 5 > n = dimY yields
a contradiction.
Step 3. — Let F ′ be a component of a jumping fiber of ϕ with dimF ′ >

n − 1 and F a general fiber. Then the image π(F ′) contains a non-zero
effective divisor on X. Since ρX = 1, we have π(F ) ∩ π(F ′) 6= ∅. Hence
π−1(π(F ))∩F ′ 6= ∅ of dimension > n− 4. Since θF contracts only minimal
sections, there exists a minimal section P̃n−3 ⊂ E of πF such that the image
P ′ in E′ contains an (n − 4)-dimensional component of π−1(π(F )) ∩ F ′.
Hence we have P ′ ⊂ F ′. Since π(P ′) = π(F ) and F is a general fiber, a
general point on X is contained in π(F ′). Hence dimF ′ = n.
Step 4. — Hence we have an (n−5)-dimensional family of jumping fibers

of dimension n. Let V be an n-dimensional component of a fiber. Then
rX = n − 1 and V is a section of π corresponding to the following exact
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sequence by Lemma 2.18:

0→ E ′1 → E → O(1)→ 0.

Set E1 := E ′1 if n = 5. If n = 6, then we can find in the same way another
section V ′ with V ∩V ′ = ∅, and hence we have the following exact sequence:

0→ E1 → E → O(12)→ 0.

Now E (−1) is a nef vector bundle by Theorem 4.2. Hence E1(−1) is a nef
vector bundle of rank two with c1(E1(−1)) = 1 by [10, Proposition 1.2(8)].
Then, by the Kodaira vanishing theorem on P(E1), we have H1(E1(−1)) =
0. Therefore E ' E1⊕O(1n−4). This completes the proof in the case where
ϕ is an adjunction theoretic scroll.
(2). — Assume that Proposition 7.2(2) occurs and n = 6. Then consider

the following diagram:

E ' Q4 × P1

��

// E′� _

��
P(E |F )

θF

&&

πF

��

// π−1(π(F ))

��

� � // P(E )

π

��

ϕ
// Y

F ' Q4 π|F // π(F ) �
� // X,

where E is the subbundle corresponding to the direct summand O(12) ⊂
E |F . Then the contraction ϕF is an adjunction theoretic scroll and each
jumping fiber of the contraction is a section of πF contained in E. By a
similar argument to the above case the assertion follows also in this case.
Note that ϕ is flat at a point y ∈ Y if ϕ is equidimensional at y by [5,
Theorem B]. �

7.3. Index of X

By Proposition 7.5, we have already seen that the index of X is n − 1
except for the case n = 5 and dimY = 4. The same thing also holds in the
remaining case:

Proposition 7.6. — Assume that n = 5 and dimY = 4. Then rX is
four.
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Proof. — Set a := 4/rX ∈ Z. Since ϕ is defined by the semiample divisor
4ξ − rXπ∗HX by Theorem 4.2, we have ϕ∗HY = aξ − π∗HX . Let F ' Q3

be a general fiber of ϕ.
Then, since F ≡num ϕ∗H4

Y = (aξ − π∗HX)4 and rXπ
∗HX |F = 4ξ|F =

4DF , we have
(aξ − π∗HX)4(rXπ∗HX)3 = 27.

This is equivalent to

43

a3

(
a4 (c21 − c2)H3

X − 4a3c1H
4
X + 6a2H5

X

)
= 27,

where ci = ci(E ).
On the other hand, since dimY = 4, we have (aξ − π∗HX)5 = 0. This

implies:

a5(c31 − 2c1c2 + c3)− 5a4(c21 − c2)HX + 10a3c1H
2
X − 10a2H3

X = 0,

a5(−c21c2 + c1c3 + c22)− 5a4(−c1c2 + c3)HX − 10a3c2H
2
X + 5aH4

X = 0,

a5(c21c3 − c2c3)− 5a4c1c3HX + 10a3c3H
2
X −H5

X = 0.

Since c1 = rXHX = 4
aHX , the above four equations are equivalent to the

following:

6H5
X − a2c2H

3
X = 2a,

14a2H5
X − 3a4c2H

3
X + a5c3H

2
X = 0,

5aH5
X − 6a3c2H

3
X − a4c3H

2
X + a5c22HX = 0,

H5
X − 6a3c3H

2
X + a5c2c3 = 0.

By solving these equations for H5
X , c2H3

X , c3H2
X and c2c3, we have:

H5
X = 18a+ a4c22HX

35 ,

c2H
3
X = 38 + 6a3c22HX

35a ,

c3H
2
X = −138 + 4a3c22HX

35a2 ,

c2c3 = −846 + 23a3c22HX

35a4 .

If a = 4, then c3H
2
X = −69+16c2

2HX

70 , which cannot be an integer. This
gives a contradiction. Also if a = 2, then the equation c3H2

X = −69+128c2
2HX

280
gives a contradiction again. Hence we have a = 1 and the assertion
follows. �
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7.4. Proof of Theorem 7.1

In any case, (n − 1)ξE + π∗KX = (n − 1)(ξE − π∗HX). Therefore ξE −
π∗HX = ϕ∗HY for an ample Cartier divisor HY on Y .
Let us consider the following diagram unless n = 5 and dimY = 4:

P(E1)

π1

��

ϕ1
// Y1

X,

where ϕ1 is obtained by taking the Stein factorization P(E ) ϕ1−→ Y1 → Y of
the composite P(E1) → P(E ) ϕ−→ Y . Thus ϕ1 is defined by the semiample
divisor (n− 1)ξE1 + π∗1KX .

Since rX = n − 1, we have (n − 1)ξE1 + π∗1KX = (n − 1)(ξE1 − π∗1HX).
Thus ξE1 − π∗1HX = ϕ∗1HY1 for an ample cartier divisor HY1 on Y1.

Lemma 7.7. — Let the notation be as above. Then ϕ1 is defined by the
semiample divisor KP(E1) + (n− 2)ξE1 , dimY1 = 4 and

(1) If Proposition 7.2(1) occurs, then general ϕ1-fibers are isomorphic
to Pn−3.

(2) If Proposition 7.2(2) occurs and n = 6, then general ϕ1-fibers are
isomorphic to Q4.

Proof. — The assertion on supporting divisor is only a computation. If
dimY1 is as stated, then the statement about fibers follows from adjunction
and Kobayashi–Ochiai theorem.

Thus it is enough to see that dimY1 = 4. By Proposition 7.5, E admits
a decomposition E ' E ′ ⊕O(1). Then P(E ′) is a divisor on P(E ), which is
linearly equivalent to ξE −π∗HX = ϕ∗HY . Thus dimϕ(P(E ′)) = dim Y −1.
If Proposition 7.2(1) occurs and n = 6, then, by repeating the procedure,
we have the assertion on dimY1. �

Also we obtain the following diagram as in (7.1) for a general ϕ1-fiber F :

(7.3) F̃
ι // P(E1|F )

π1,F

��

//

θ1,F

$$
P(E1)

π1

��

ϕ1
// Y1

F
π1|F // X.

Let P(E1|F ) ϕ1,F−−−→ Y ′1 → Y1 be the Stein factorization of θ1,F .
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Note that general ϕ1-fiber F maps isomorphically on to ϕ-fiber. Thus:
(1) E1|F ' O(2, 1) if Proposition 7.2(1) occurs.
(2) E1|F ' S ∗Q(1)⊕O(1) if Proposition 7.2(2) occurs and n = 6.

Hence Y ′1 is a projective space.
Proof of Theorem 7.1.
Case n = 6 and dimY = 6. — Then E is isomorphic to E1 ⊕ O(12),

dimY1 = 4 and X is a del Pezzo manifold by Proposition 7.5(1).
ϕ1 is equidimensional. Otherwise there exists a jumping fiber of ϕ1. Let

F ′ be a component of the jumping fiber with dimF ′ > 4. If dimF ′ = 4,
then F ′ is isomorphic to P4 and OP(E1)(1)|F ′ ' OP4(1) by [3, Theorem 2.1].
Then by a similar argument to the Step 2 of the proof of Proposition 7.5, we
have E1|F ′ ' O(2)⊕O(1), which yields a contradiction to dimY1 = 4. Hence
we have dimF ′ > 5. Let F be a general fiber. Then π1(F ) ∩ π1(F ′) 6= ∅
since ρX = 1. Then π−1

1 (π1(F )) ∩ F ′ 6= ∅, hence dim π−1
1 (π1(F )) ∩ F ′ > 2

by the Serre inequality. Thus we have F ∩F ′ 6= ∅ since ϕ1,F contracts only
F̃ . This gives a contradiction and hence ϕ1 is equidimensional.
By [19, Lemma 2.12], ϕ1 is a projective bundle and Y1 is smooth. Since

Y ′1 ' P4, we have Y1 ' P4 by [36, Theorem 4.1].
Now ϕ∗HY1 = ξE1−π∗1HX , where HY1 is the ample generator of Pic(Y1).

Hence we have a surjection between vector bundles:

O5
X → E1(−1).

This gives a finite surjective morphism j : X → Gr(2, 5) with j∗S ∗Gr =
E1(−1) and hence j∗O(1) = OX(1). Thus j is an isomorphism.

Case n = 5 and dimY = 5. — Then E is isomorphic to E1 ⊕ O(1),
dimY1 = 4 and X is a del Pezzo 5-fold of ρX = 1.
Let F ' P2 be a general ϕ1-fiber. Then π1(F ) does not meet Bs |HX |

since dim Bs |HX | 6 0 by [18]. Note that HX |F is linearly equivalent to the
class of a line. Hence π1|F is an isomorphism onto its image. Since F is a
general fiber, TP(E1)|F is nef and hence TX |F is also nef with the following
diagram:

0→ TF → TX |F → Nπ1(F )/X → 0.

This implies that the normal bundle Nπ1(F )/X is a nef vector bundle of
rank three with c1(Nπ1(F )/X) = 1. Hence the normal bundle Nπ1(F )/X is
isomorphic to O(1, 02) or TP2(−1) ⊕ O by [64]. Then, by the above exact
sequence, the Chern classes (c1(TX |F ), c2(TX |F )) are (4, 6) or (4, 7). By
using the classification of del Pezzo manifolds, we see that this is possible
only if X is a linear section of Gr(2, 5) (cf. [45]).
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Set F := E1(−1). Then on P(F ) we have ξ6
F = ξ5

F = 0. This is
equivalent to c1(F )4 − 3c1(F )2c2(F )3 + c2(F )2 = 0 and c1(F )3c2(F )−
2c1(F )c2(F )2 = 0. Set c2(F ) := aσ2,0 + bσ1,1, where σ2,0 and σ1,1 are
restrictions of Schubert cycles on Gr(2, 5). Then, since c1(F ) = HX , we
have

5− 9a− 6b+ 2a2 + 2ab+ b2 = 0,(7.4)

3a+ 2b− 4a2 − 4ab− 2b2 = 0.(7.5)

By solving these equations we have (a, b) = (0, 1). In this case, the following
holds:

(c1(F ), c2(F )) = (c1(S ∗X), c2(S ∗X)),
where S ∗X is the restriction of the universal subbundle S ∗Gr on Gr(2, 5).
By the Kodaira vanishing theorem on P(F ), we know that χ(F ) = h0(F )
and this is equal to h0(S ∗X) = 5 by the Riemann–Roch theorem. Now
h0(HY1

) = h0(F ) = 5 and H4
Y1

= ξ4
F .(π∗1HX)2 = 1. Hence the delta-genus

∆(Y1, HY1) is zero and degHY1 = 1. This implies Y1 ' P4 by [16, 18, 30].
Therefore, similarly to the above case, we have a finite surjective mor-

phism j : X → Gr(2, 5) with j∗S ∗Gr = F and hence j∗O(1) = OX(1). Thus
j is an isomorphism onto its image.

Case n = 6 and dimY = 5. — Then E is isomorphic to E1 ⊕O(1) and
dimY1 = 4.
In this case, ϕ1 is equidimensional and hence a quadric fibration by [5,

Theorem B]. This can be seen as follows: Assume that there exists a jump-
ing fiber of ϕ1. Let F ′ be a component of the jumping fiber with dimF ′ > 5
and F a general fiber. Then π1(F )∩π1(F ′) 6= ∅. Hence π−1

1 (π1(F ))∩F ′ 6= ∅
of dimension > 3 by the Serre inequality. Since the contraction defined by
θ1,F is a scroll with only one jumping fiber F̃ , we have F ∩ F ′ 6= ∅, which
gives a contradiction.
Thus ϕ1 is equidimensional and hence Y1 is smooth by [5, Theorem B].

Since Y ′1 ' P4, we have Y1 ' P4 by [36, Theorem 4.1].
Similarly to the above cases, this gives a finite surjective morphism

j : X → Gr(2, 5) with j∗QGr = E1(−1) and j∗O(1) = OX(1), and hence j
is an isomorphism.
Case n = 5 and dimY = 4. — In this case, ϕ is equidimensional by

a similar argument as above, and hence ϕ is a quadric fibration and Y is
smooth by [5, Theorem B].
Since the image of the contraction ϕF is P4, we have Y ' P4 by [36].
Now rX = 4 by Proposition 7.6 and hence ξ−π∗HX = ϕ∗HY . Therefore

we have a surjection O5
X → E (−1). This gives a finite surjective morphism
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j : X → Gr(2, 5) with j∗QGr = E (−1) and j∗O(1) = OX(1). Therefore j
is an isomorphism onto its image. This completes the proof. �
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