Nous étudions le comportement asymptotique en temps grand de l’équation de Degasperis–Procesi sur la demi-droite. L’application de techniques de descente de plus grande pente non linéaire à un problème de Riemann–Hilbert matriciel associé nous permet d’obtenir une formule explicite, en termes des données initiale et au bord, pour le terme dominant de l’asymptotique de la solution dans la région de similarité.
We analyze the long-time asymptotics for the Degasperis–Procesi equation on the half-line. By applying nonlinear steepest descent techniques to an associated -matrix valued Riemann–Hilbert problem, we find an explicit formula for the leading order asymptotics of the solution in the similarity region in terms of the initial and boundary values.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3241
Keywords: Degasperis–Procesi equation, long-time asymptotics, Riemann–Hilbert problem, boundary value problem
Mot clés : Équation de Degasperis–Procesi, asymptotique en temps grand, problème de Riemann–Hilbert, problème aux limites.
Boutet de Monvel, Anne 1 ; Lenells, Jonatan 2 ; Shepelsky, Dmitry 3
@article{AIF_2019__69_1_171_0, author = {Boutet de Monvel, Anne and Lenells, Jonatan and Shepelsky, Dmitry}, title = {Long-time asymptotics for the {Degasperis{\textendash}Procesi} equation on the half-line}, journal = {Annales de l'Institut Fourier}, pages = {171--230}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3241}, zbl = {07067402}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3241/} }
TY - JOUR AU - Boutet de Monvel, Anne AU - Lenells, Jonatan AU - Shepelsky, Dmitry TI - Long-time asymptotics for the Degasperis–Procesi equation on the half-line JO - Annales de l'Institut Fourier PY - 2019 SP - 171 EP - 230 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3241/ DO - 10.5802/aif.3241 LA - en ID - AIF_2019__69_1_171_0 ER -
%0 Journal Article %A Boutet de Monvel, Anne %A Lenells, Jonatan %A Shepelsky, Dmitry %T Long-time asymptotics for the Degasperis–Procesi equation on the half-line %J Annales de l'Institut Fourier %D 2019 %P 171-230 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3241/ %R 10.5802/aif.3241 %G en %F AIF_2019__69_1_171_0
Boutet de Monvel, Anne; Lenells, Jonatan; Shepelsky, Dmitry. Long-time asymptotics for the Degasperis–Procesi equation on the half-line. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 171-230. doi : 10.5802/aif.3241. https://aif.centre-mersenne.org/articles/10.5802/aif.3241/
[1] The mKdV equation on the half-line, J. Inst. Math. Jussieu, Volume 3 (2004) no. 2, pp. 139-164 | DOI | MR | Zbl
[2] Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1559-1588 | DOI | MR | Zbl
[3] Long time asymptotics of the Camassa-Holm equation on the half-line, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 3015-3056 http://aif.cedram.org/item?id=aif_2009__59_7_3015_0 | DOI | MR | Zbl
[4] A Riemann-Hilbert approach for the Degasperis-Procesi equation, Nonlinearity, Volume 26 (2013) no. 7, pp. 2081-2107 | DOI | MR | Zbl
[5] On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., Volume 233 (2006) no. 1, pp. 60-91 | DOI | MR | Zbl
[6] Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, Volume 23 (2010) no. 10, pp. 2559-2575 | DOI | MR | Zbl
[7] A new integrable equation with peakon solutions, Theor. Math. Phys., Volume 133 (2002), pp. 1463-1474 | DOI | MR
[8] Asymptotic integrability, Symmetry and perturbation theory (Rome, 1998), World Scientific, 1999, pp. 23-37 | MR | Zbl
[9] Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, 3, Courant Institute of Mathematical Sciences; American Mathematical Society, 1999, viii+273 pages | MR | Zbl
[10] Long-time asymptotics for integrable nonlinear wave equations, Important developments in soliton theory (Springer Series in Nonlinear Dynamics), Springer, 1993, pp. 181-204 | DOI | MR | Zbl
[11] The collisionless shock region for the long-time behavior of solutions of the KdV equation, Commun. Pure Appl. Math., Volume 47 (1994) no. 2, pp. 199-206 | DOI | MR | Zbl
[12] A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., Volume 137 (1993) no. 2, pp. 295-368 | DOI | MR | Zbl
[13] The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal., Volume 27 (1996) no. 3, pp. 738-764 | DOI | MR | Zbl
[14] Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations, Dokl. Akad. Nauk SSSR, Volume 261 (1981) no. 1, pp. 14-18 | MR
[15] On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity, Commun. Math. Phys., Volume 153 (1993) no. 3, pp. 479-519 http://projecteuclid.org/euclid.cmp/1104252786 | DOI | MR | Zbl
[16] Long-time asymptotics of the periodic Toda lattice under short-range perturbations, J. Math. Phys., Volume 53 (2012) no. 7, 073706 (Art. ID. 073706, 35 p.) | DOI | MR | Zbl
[17] The Degasperis-Procesi equation on the half-line, Nonlinear Anal., Volume 76 (2013), pp. 122-139 | DOI | MR | Zbl
[18] The nonlinear steepest descent method: asymptotics for initial-boundary value problems, SIAM J. Math. Anal., Volume 48 (2016) no. 3, pp. 2076-2118 | DOI | MR | Zbl
[19] The nonlinear steepest descent method for Riemann-Hilbert problems of low regularity, Indiana Univ. Math. J., Volume 66 (2017) no. 4, pp. 1287-1332 | DOI | MR | Zbl
[20] Matrix Riemann-Hilbert problems with jumps across Carleson contours, Monatsh. Math., Volume 186 (2018) no. 1, pp. 111-152 | DOI | MR | Zbl
[21] Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci., Volume 17 (2007) no. 3, pp. 169-198 | DOI | MR | Zbl
Cité par Sources :