Long-time asymptotics for the Degasperis–Procesi equation on the half-line
[Comportement asymptotique en temps grand de l’équation de Degasperis–Procesi sur la demi-droite]
Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 171-230.

Nous étudions le comportement asymptotique en temps grand de l’équation de Degasperis–Procesi sur la demi-droite. L’application de techniques de descente de plus grande pente non linéaire à un problème de Riemann–Hilbert matriciel 3×3 associé nous permet d’obtenir une formule explicite, en termes des données initiale et au bord, pour le terme dominant de l’asymptotique de la solution dans la région de similarité.

We analyze the long-time asymptotics for the Degasperis–Procesi equation on the half-line. By applying nonlinear steepest descent techniques to an associated 3×3-matrix valued Riemann–Hilbert problem, we find an explicit formula for the leading order asymptotics of the solution in the similarity region in terms of the initial and boundary values.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3241
Classification : 35Q53, 37K15
Keywords: Degasperis–Procesi equation, long-time asymptotics, Riemann–Hilbert problem, boundary value problem
Mot clés : Équation de Degasperis–Procesi, asymptotique en temps grand, problème de Riemann–Hilbert, problème aux limites.

Boutet de Monvel, Anne 1 ; Lenells, Jonatan 2 ; Shepelsky, Dmitry 3

1 Institut de Mathématiques de Jussieu-PRG Université Paris Diderot 75205 Paris Cedex 13 (France)
2 Department of Mathematics KTH Royal Institute of Technology 10044 Stockholm (Sweden)
3 Mathematical Division Institute for Low Temperature Physics 61103 Kharkiv (Ukraine) and School of Mathematics and Computer Sciences V. N. Karazin Kharkiv National University 61022 Kharkiv (Ukraine)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_1_171_0,
     author = {Boutet de Monvel, Anne and Lenells, Jonatan and Shepelsky, Dmitry},
     title = {Long-time asymptotics for the {Degasperis{\textendash}Procesi} equation on the half-line},
     journal = {Annales de l'Institut Fourier},
     pages = {171--230},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.5802/aif.3241},
     zbl = {07067402},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3241/}
}
TY  - JOUR
AU  - Boutet de Monvel, Anne
AU  - Lenells, Jonatan
AU  - Shepelsky, Dmitry
TI  - Long-time asymptotics for the Degasperis–Procesi equation on the half-line
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 171
EP  - 230
VL  - 69
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3241/
DO  - 10.5802/aif.3241
LA  - en
ID  - AIF_2019__69_1_171_0
ER  - 
%0 Journal Article
%A Boutet de Monvel, Anne
%A Lenells, Jonatan
%A Shepelsky, Dmitry
%T Long-time asymptotics for the Degasperis–Procesi equation on the half-line
%J Annales de l'Institut Fourier
%D 2019
%P 171-230
%V 69
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3241/
%R 10.5802/aif.3241
%G en
%F AIF_2019__69_1_171_0
Boutet de Monvel, Anne; Lenells, Jonatan; Shepelsky, Dmitry. Long-time asymptotics for the Degasperis–Procesi equation on the half-line. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 171-230. doi : 10.5802/aif.3241. https://aif.centre-mersenne.org/articles/10.5802/aif.3241/

[1] Boutet de Monvel, Anne; Fokas, Athanassios S.; Shepelsky, Dmitry The mKdV equation on the half-line, J. Inst. Math. Jussieu, Volume 3 (2004) no. 2, pp. 139-164 | DOI | MR | Zbl

[2] Boutet de Monvel, Anne; Kostenko, Aleksey; Shepelsky, Dmitry; Teschl, Gerald Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1559-1588 | DOI | MR | Zbl

[3] Boutet de Monvel, Anne; Shepelsky, Dmitry Long time asymptotics of the Camassa-Holm equation on the half-line, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 3015-3056 http://aif.cedram.org/item?id=aif_2009__59_7_3015_0 | DOI | MR | Zbl

[4] Boutet de Monvel, Anne; Shepelsky, Dmitry A Riemann-Hilbert approach for the Degasperis-Procesi equation, Nonlinearity, Volume 26 (2013) no. 7, pp. 2081-2107 | DOI | MR | Zbl

[5] Coclite, Giuseppe M.; Karlsen, Kenneth H. On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., Volume 233 (2006) no. 1, pp. 60-91 | DOI | MR | Zbl

[6] Constantin, Adrian; Ivanov, Rossen I.; Lenells, Jonatan Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, Volume 23 (2010) no. 10, pp. 2559-2575 | DOI | MR | Zbl

[7] Degasperis, Antonio; Holm, Darryl D.; Hone, Andrew N. W. A new integrable equation with peakon solutions, Theor. Math. Phys., Volume 133 (2002), pp. 1463-1474 | DOI | MR

[8] Degasperis, Antonio; Procesi, Michela Asymptotic integrability, Symmetry and perturbation theory (Rome, 1998), World Scientific, 1999, pp. 23-37 | MR | Zbl

[9] Deift, Percy A. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, 3, Courant Institute of Mathematical Sciences; American Mathematical Society, 1999, viii+273 pages | MR | Zbl

[10] Deift, Percy A.; Its, Alexander R.; Zhou, Xin Long-time asymptotics for integrable nonlinear wave equations, Important developments in soliton theory (Springer Series in Nonlinear Dynamics), Springer, 1993, pp. 181-204 | DOI | MR | Zbl

[11] Deift, Percy A.; Venakides, Stephanos; Zhou, Xin The collisionless shock region for the long-time behavior of solutions of the KdV equation, Commun. Pure Appl. Math., Volume 47 (1994) no. 2, pp. 199-206 | DOI | MR | Zbl

[12] Deift, Percy A.; Zhou, Xin A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., Volume 137 (1993) no. 2, pp. 295-368 | DOI | MR | Zbl

[13] Fokas, Athanassios S.; Its, Alexander R. The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal., Volume 27 (1996) no. 3, pp. 738-764 | DOI | MR | Zbl

[14] Its, Alexander R. Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations, Dokl. Akad. Nauk SSSR, Volume 261 (1981) no. 1, pp. 14-18 | MR

[15] Kamvissis, Spyridon On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity, Commun. Math. Phys., Volume 153 (1993) no. 3, pp. 479-519 http://projecteuclid.org/euclid.cmp/1104252786 | DOI | MR | Zbl

[16] Kamvissis, Spyridon; Teschl, Gerald Long-time asymptotics of the periodic Toda lattice under short-range perturbations, J. Math. Phys., Volume 53 (2012) no. 7, 073706 (Art. ID. 073706, 35 p.) | DOI | MR | Zbl

[17] Lenells, Jonatan The Degasperis-Procesi equation on the half-line, Nonlinear Anal., Volume 76 (2013), pp. 122-139 | DOI | MR | Zbl

[18] Lenells, Jonatan The nonlinear steepest descent method: asymptotics for initial-boundary value problems, SIAM J. Math. Anal., Volume 48 (2016) no. 3, pp. 2076-2118 | DOI | MR | Zbl

[19] Lenells, Jonatan The nonlinear steepest descent method for Riemann-Hilbert problems of low regularity, Indiana Univ. Math. J., Volume 66 (2017) no. 4, pp. 1287-1332 | DOI | MR | Zbl

[20] Lenells, Jonatan Matrix Riemann-Hilbert problems with jumps across Carleson contours, Monatsh. Math., Volume 186 (2018) no. 1, pp. 111-152 | DOI | MR | Zbl

[21] Lundmark, Hans Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci., Volume 17 (2007) no. 3, pp. 169-198 | DOI | MR | Zbl

Cité par Sources :