We study the set of log-canonical thresholds (or critical integrability indices) of holomorphic (resp. real analytic) function germs in (resp. ). In particular, we prove that the ascending chain condition holds, and that the positive accumulation points of decreasing sequences are precisely the integrability indices of holomorphic (resp. real analytic) functions in dimension . This gives a new proof of a theorem of Phong–Sturm.
Nous étudions l’ensemble des seuils log-canoniques (ou indices d’intégrabilité critiques) des germes de fonctions holomorphes (resp. réel analytiques) dans (resp. ). En particulier, nous prouvons que la condition de la chaîne ascendante est vraie et que les points d’accumulation positifs des séquences décroissantes sont précisément les indices d’intégrabilité des fonctions holomorphes (resp. réel analytiques) en dimension . Cela donne une nouvelle preuve d’un théorème de Phong-Sturm.
Keywords: Resolution of singularities, log-canonical threshold, ascending chain condition
Mot clés : Résolution des singularités, seuil log-canonique, condition de chaîne ascendante
Collins, Tristan C. 1
@article{AIF_2018__68_7_2883_0, author = {Collins, Tristan C.}, title = {Log-canonical thresholds in real and complex dimension~2}, journal = {Annales de l'Institut Fourier}, pages = {2883--2900}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {7}, year = {2018}, doi = {10.5802/aif.3229}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3229/} }
TY - JOUR AU - Collins, Tristan C. TI - Log-canonical thresholds in real and complex dimension 2 JO - Annales de l'Institut Fourier PY - 2018 SP - 2883 EP - 2900 VL - 68 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3229/ DO - 10.5802/aif.3229 LA - en ID - AIF_2018__68_7_2883_0 ER -
%0 Journal Article %A Collins, Tristan C. %T Log-canonical thresholds in real and complex dimension 2 %J Annales de l'Institut Fourier %D 2018 %P 2883-2900 %V 68 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3229/ %R 10.5802/aif.3229 %G en %F AIF_2018__68_7_2883_0
Collins, Tristan C. Log-canonical thresholds in real and complex dimension 2. Annales de l'Institut Fourier, Volume 68 (2018) no. 7, pp. 2883-2900. doi : 10.5802/aif.3229. https://aif.centre-mersenne.org/articles/10.5802/aif.3229/
[1] Two-dimensional terminations, Duke Math. J., Volume 69 (1993) no. 3, pp. 527-545 | Zbl
[2] On the log-canonical threshold for germs of plane curves, Singularities I. Algebraic and analytic aspects (Contemporary Mathematics), Volume 474, American Mathematical Society, 2008, pp. 1-14 | Zbl
[3] Kähler-Einstein metrics, canonical random point processes and birational geometry (2016) (https://arxiv.org/abs/1307.3634)
[4] Semianalytic and subanalytic sets, Publ. Math., Inst. Hautes Étud. Sci., Volume 67 (1988), pp. 5-42 | Zbl
[5] Arc-analytic functions, Invent. Math., Volume 101 (1990) no. 2, pp. 411-424 | Zbl
[6] A multi-dimensional resolution of singularities with applications to analysis, Am. J. Math., Volume 135 (2013) no. 5, pp. 1179-1252 | Zbl
[7] Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001) no. 4, pp. 525-556 | Zbl
[8] Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques, J. Am. Math. Soc., Volume 5 (1992) no. 4, pp. 705-720 | Zbl
[9] Valuations and multiplier ideals, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684 | Zbl
[10] Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties, Duke Math. J., Volume 152 (2010) no. 1, pp. 93-114 | Zbl
[11] Limits of log-canonical thresholds, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 3, pp. 493-517 | Zbl
[12] Oscillatory integral decay, sublevel set growth, and the Newton polyhedron, Math. Ann., Volume 346 (2010) no. 4, pp. 857-895 | Zbl
[13] ACC for log canonical thresholds, Ann. Math., Volume 180 (2014) no. 2, pp. 523-571 | Zbl
[14] The log canonical threshold of holomorphic functions, Int. J. Math., Volume 23 (2012) no. 11, 1250115, 8 pages (Art. ID 1250115, 8 p.) | Zbl
[15] On the first terms of certain asymptotic expansions, Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 357-368 | Zbl
[16] Flips and Abundance for Algebraic Threefolds (Kollár, János, ed.), Astérisque, 211, Société Mathématique de France, 1992, 258 pages | Zbl
[17] Singularities of pairs, Algebraic geometry (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-285 | Zbl
[18] Lectures on resolution of singularities, Annals of Mathematics Studies, 166, Princeton University Press, 2007, vi+208 pages | Zbl
[19] Which powers of holomorphic functions are integrable? (2008) (https://arxiv.org/abs/0805.0756)
[20] On the log canonical thresholds of reducible plane curves, Am. J. Math., Volume 121 (1999) no. 4, pp. 701-721 | Zbl
[21] Ideal-theoretic strategies for asymptotic approximation of marginal likelihood integrals, J. Algebra, Volume 8 (2017) no. 1, pp. 22-55 | Zbl
[22] Antichains of monomial ideals are finite, Proc. Am. Math. Soc., Volume 129 (2001), pp. 1609-1615 | Zbl
[23] Subanalytic functions, Trans. Am. Math. Soc., Volume 344 (1994) no. 2, pp. 583-595 | Zbl
[24] On the preparation theorem for subanalytic functions, New developments in singularity theory (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 21, Kluwer Academic Publishers, 2001, pp. 193-215 | Zbl
[25] The Newton polyhedron and oscillatory integral operators, Acta Math., Volume 179 (1997) no. 1, pp. 105-152 | Zbl
[26] On the growth and stability of real-analytic functions, Am. J. Math., Volume 121 (1999) no. 3, pp. 519-554 | Zbl
[27] Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. Math., Volume 152 (2000) no. 1, pp. 277-329 | Zbl
[28] On a conjecture of Demailly and Kollár, Asian J. Math., Volume 4 (2000) no. 1, pp. 221-226 | Zbl
[29] Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 56 (1992), pp. 105-203
[30] 3-fold log flips, Russ. Acad. Sci., Izv., Math., Volume 40 (1993) no. 1, pp. 95-202 | Zbl
[31] The existence of Kähler-Einstein metrics on manifolds with positive anticanonical bundle and suitable finite symmetry group, Ann. Math., Volume 127 (1987) no. 3, pp. 585-627 | Zbl
[32] On Kähler-Einstein metrics on certain manifolds with , Invent. Math., Volume 89 (1987), pp. 225-246 | Zbl
[33] On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., Volume 101 (1992) no. 1, pp. 101-172 | Zbl
[34] Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical aspects of string theory (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1986, pp. 574-628 | Zbl
[35] Complete Kähler manifolds with zero Ricci curvature II, Invent. Math., Volume 106 (1991) no. 1, pp. 27-60 | Zbl
[36] Newton polyhedra and estimates of oscillatory integrals, Funkts. Anal. Prilozh., Volume 10 (1976) no. 3, pp. 13-38
Cited by Sources: