Doubly-resonant saddle-nodes in ( 3 ,0) and the fixed singularity at infinity in Painlevé equations: analytic classification
[Noeud-cols doublement résonants dans ( 3 ,0) et la singularité fixe à l’infini dans les équations de Painlevé : classification analytique]
Annales de l'Institut Fourier, Tome 68 (2018) no. 4, pp. 1715-1830.

Dans ce travail, nous considérons des germes de champs de vecteurs singuliers dans ( 3 ,0) ayant une singularité isolée doublement résonante de type noeud-col à l’origine. Ces champs de vecteurs proviennent de systèmes différentiels irréguliers en dimension deux, avec deux valeurs propres opposées non-nulles, et apparaissent par exemple dans l’étude des singularités irrégulières à l’infini des équations de Painlevé (P j ) j=I,,V pour des valeurs génériques des paramètres. Sous des conditions adéquates, nous démontrons un théorème de normalisation analytique sur des domaines sectoriels, analogue à un résultat de Hukuhara, Kimura et Matuda pour les noeud-cols dans 2 . Nous prouvons également que ces normalisations sectorielles sont en fait les sommes 1-Gevrey de la normalisation formelle, dont l’existence a été prouvée dans un précédent papier. Nous terminons en fournissant une classification analytique sous l’action de difféomorphismes fibrés, basée sur l’étude des difféomorphismes de Stokes obtenus en comparant les normalisations sectorielles consécutives à la Martinet–Ramis / Stolovitch pour des champs de vecteurs 1-résonants.

In this work, we consider germs of analytic singular vector fields in 3 with an isolated and doubly-resonant singularity of saddle-node type at the origin. Such vector fields come from irregular two-dimensional differential systems with two opposite non-zero eigenvalues, and appear for instance when studying the irregular singularity at infinity in Painlevé equations (P j ) j=I,,V for generic values of the parameters. Under suitable assumptions, we prove a theorem of analytic normalization over sectorial domains, analogous to the classical one due to Hukuhara–Kimura–Matuda for saddle-nodes in 2 . We also prove that these sectorial normalizing maps are in fact the Gevrey-1 sums of the formal normalizing map, the existence of which has been proved in a previous paper. Finally we provide an analytic classification under the action of fibered diffeomorphisms, based on the study of the so-called Stokes diffeomorphisms obtained by comparing consecutive sectorial normalizing maps à la Martinet–Ramis / Stolovitch for 1-resonant vector fields.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3197
Classification : 34M30, 34M35, 34M40, 34M55
Keywords: Painlevé equations, singular vector field, irregular singularity, resonant singularity, analytic classification, Stokes diffeomorphisms.
Mot clés : Equations de Painlevé, champ de vecteurs singulier, singularité irrégulière, singularité résonante, classification analytique, difféomorphismes de Stokes.

Bittmann, Amaury 1

1 Université de Strasbourg IRMA 7, rue René Descartes 67084 Strasbourg Cedex (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2018__68_4_1715_0,
     author = {Bittmann, Amaury},
     title = {Doubly-resonant saddle-nodes in $(\protect \mathbb{C}^3,0)$ and the fixed singularity at infinity in {Painlev\'e} equations: analytic classification},
     journal = {Annales de l'Institut Fourier},
     pages = {1715--1830},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {4},
     year = {2018},
     doi = {10.5802/aif.3197},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3197/}
}
TY  - JOUR
AU  - Bittmann, Amaury
TI  - Doubly-resonant saddle-nodes in $(\protect \mathbb{C}^3,0)$ and the fixed singularity at infinity in Painlevé equations: analytic classification
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 1715
EP  - 1830
VL  - 68
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3197/
DO  - 10.5802/aif.3197
LA  - en
ID  - AIF_2018__68_4_1715_0
ER  - 
%0 Journal Article
%A Bittmann, Amaury
%T Doubly-resonant saddle-nodes in $(\protect \mathbb{C}^3,0)$ and the fixed singularity at infinity in Painlevé equations: analytic classification
%J Annales de l'Institut Fourier
%D 2018
%P 1715-1830
%V 68
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3197/
%R 10.5802/aif.3197
%G en
%F AIF_2018__68_4_1715_0
Bittmann, Amaury. Doubly-resonant saddle-nodes in $(\protect \mathbb{C}^3,0)$ and the fixed singularity at infinity in Painlevé equations: analytic classification. Annales de l'Institut Fourier, Tome 68 (2018) no. 4, pp. 1715-1830. doi : 10.5802/aif.3197. https://aif.centre-mersenne.org/articles/10.5802/aif.3197/

[1] Arnol’d, Vladimir Equations différentielles ordinaires. Champs de vecteurs. Groupes à un paramètre. Difféomorphismes. Flots. Systemes linéaires. Stabilites des positions d’équilibre. Théorie des oscillations. Equations différentielles sur les variétés., Éditions Mir, 1974, 267 pages (traduit du russe par Djilali Embarek) | MR | Zbl

[2] Bittmann, Amaury Analytic classification of germs of three-dimensional doubly-resonant vector fields and applications to Painlevé equations, Université de Strasbourg, IRMA UMR 7501, France (2016) https://tel.archives-ouvertes.fr/tel-01367968 (Ph. D. Thesis)

[3] Bittmann, Amaury Doubly-Resonant Saddle-Nodes in 3 and the Fixed Singularity at Infinity in the Painlevé Equations: Formal Classification, Qual. Theory Dyn. Syst., Volume 16 (2017) no. 3, pp. 491-529 | DOI | Zbl

[4] Bonckaert, Patrick; De Maesschalck, Peter Gevrey normal forms of vector fields with one zero eigenvalue, J. Math. Anal. Appl., Volume 344 (2008) no. 1, pp. 301-321 | DOI | MR | Zbl

[5] Boutroux, Pierre Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre, Ann. Sci. Éc. Norm. Supér., Volume 30 (1913), pp. 255-375 | Zbl

[6] Clarkson, Peter A.; McLeod, John Bryce A connection formula for the second Painlevé transcendent, Ordinary and partial differential equations (Dundee, 1982) (Lecture Notes in Math.), Volume 964, Springer, 1982, pp. 135-142 | DOI | MR | Zbl

[7] Costin, Oviviu; Costin, Rodica D.; Huang, Min Tronquée solutions of the Painlevé equation PI, Constr. Approx., Volume 41 (2015) no. 3, pp. 467-494 | DOI | MR | Zbl

[8] Hörmander, Lars An introduction to complex analysis in several variables, 7, Elsevier, 1973 | Zbl

[9] Hukuhara, Masuo; Kimura, Tosihusa; Matuda, Tizuko Equations différentielles ordinaires du premier ordre dans le champ complexe, Publications of the Mathematical Society of Japan, 7, Mathematical Society of Japan, 1961, viii+155 pages | MR | Zbl

[10] Iwano, Masahiro On a general solution of a nonlinear 2-system of the form x 2 dw/dx=Λw+xh(x,w) with a constant diagonal matrix Λ of signature (1,1), Tôhoku Math. J., Volume 32 (1980) no. 4, pp. 453-486 | DOI | MR | Zbl

[11] Joshi, Nalini; Kitaev, Alexander V. On Boutroux’s tritronquée solutions of the first Painlevé equation, Stud. Appl. Math., Volume 107 (2001) no. 3, pp. 253-291 | DOI | MR | Zbl

[12] Joshi, Nalini; Kruskal, Martin D. The Painlevé connection problem: an asymptotic approach. I, Stud. Appl. Math., Volume 86 (1992) no. 4, pp. 315-376 | DOI | MR | Zbl

[13] Kapaev, Andrei A. Quasi-linear stokes phenomenon for the Painlevé first equation, J. Phys. A, Volume 37 (2004) no. 46, pp. 11149-11167 | DOI | MR | Zbl

[14] Kapaev, Andrei A.; Kitaev, Alexander V. Connection formulae for the first Painlevé transcendent in the complex domain, Lett. Math. Phys., Volume 27 (1993) no. 4, pp. 243-252 | DOI | MR | Zbl

[15] Malgrange, Bernard Sommation des séries divergentes, Expo. Math., Volume 13 (1995) no. 2-3, pp. 163-222 | Zbl

[16] Martinet, Jean Normalisation des champs de vecteurs holomorphes (d’après A.-D. Brjuno), Bourbaki Seminar, Vol. 1980/81 (Lecture Notes in Math.), Volume 901, Springer, 1981, pp. 55-70 | MR | Zbl

[17] Martinet, Jean; Ramis, Jean-Pierre Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math., Inst. Hautes Étud. Sci. (1982) no. 55, pp. 63-164 | MR | Zbl

[18] Martinet, Jean; Ramis, Jean-Pierre Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983) no. 4, pp. 571-621 | MR | Zbl

[19] Mattei, Jean-François; Moussu, Robert Holonomie et intégrales premières, Ann. Sci. Éc. Norm. Supér., Volume 13 (1980) no. 4, pp. 469-523 | MR | Zbl

[20] McQuillan, Michael; Panazzolo, Daniel Almost étale resolution of foliations, J. Differ. Geom., Volume 95 (2013) no. 2, pp. 279-319 | Zbl

[21] Okamoto, Kazuo Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, C. R. Math. Acad. Sci. Paris, Volume 285 (1977) no. 12, pp. 765-767 | MR | Zbl

[22] Okamoto, Kazuo Polynomial Hamiltonians associated with Painlevé equations. I, Proc. Japan Acad., Ser. A, Volume 56 (1980) no. 6, pp. 264-268 | MR | Zbl

[23] Painlevé, Paul Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Math., Volume 25 (1902) no. 1, pp. 1-85 | DOI | MR | Zbl

[24] Ramis, Jean-Pierre; Sibuya, Yasutaka Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type, Asymptotic Anal., Volume 2 (1989) no. 1, pp. 39-94 | Zbl

[25] Ramis, Jean-Pierre; Stolovitch, Laurent Divergent series and holomorphic dynamical systems (1993) (unpublished lecture notes)

[26] Rebelo, Julio C.; Reis, Helena Local Theory of Holomorphic Foliations and Vector Fields (2011) (https://arxiv.org/abs/1101.4309)

[27] Shimomura, Shun Analytic integration of some nonlinear ordinary differential equations and the fifth Painlevé equation in the neighbourhood of an irregular singular point, Funkc. Ekvacioj, Volume 26 (1983) no. 3, pp. 301-338 | MR | Zbl

[28] Stolovitch, Laurent Classification analytique de champs de vecteurs 1-résonnants de (C n ,0), Asymptotic Anal., Volume 12 (1996) no. 2, pp. 91-143 | MR | Zbl

[29] Stolovitch, Laurent Forme normale de champs de vecteurs commutants, C. R. Math. Acad. Sci. Paris, Volume 324 (1997) no. 6, pp. 665-668 | DOI | MR | Zbl

[30] Teyssier, Loïc Analytical classification of saddle-node vector fields, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 8, pp. 619-624 | DOI | MR | Zbl

[31] Teyssier, Loïc Équation homologique et cycles asymptotiques d’une singularité nœud-col, Bull. Sci. Math., Volume 128 (2004) no. 3, pp. 167-187 | Zbl

[32] Yoshida, Setsuji A general solution of a nonlinear 2-system without Poincaré’s condition at an irregular singular point, Funkc. Ekvacioj, Volume 27 (1984) no. 3, pp. 367-391 http://www.math.kobe-u.ac.jp/~fe/xml/mr0794761.xml | MR | Zbl

[33] Yoshida, Setsuji 2-parameter family of solutions for Painlevé equations (I)–(V) at an irregular singular point, Funkc. Ekvacioj, Volume 28 (1985) no. 2, pp. 233-248 http://www.math.kobe-u.ac.jp/~fe/xml/mr0816829.xml | MR | Zbl

Cité par Sources :