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DOUBLY-RESONANT SADDLE-NODES IN (C3, 0) AND
THE FIXED SINGULARITY AT INFINITY IN

PAINLEVÉ EQUATIONS: ANALYTIC CLASSIFICATION

by Amaury BITTMANN

Abstract. — In this work, we consider germs of analytic singular vector fields
in C3 with an isolated and doubly-resonant singularity of saddle-node type at the
origin. Such vector fields come from irregular two-dimensional differential systems
with two opposite non-zero eigenvalues, and appear for instance when studying
the irregular singularity at infinity in Painlevé equations (Pj)j=I,...,V for generic
values of the parameters. Under suitable assumptions, we prove a theorem of an-
alytic normalization over sectorial domains, analogous to the classical one due to
Hukuhara–Kimura–Matuda for saddle-nodes in C2. We also prove that these secto-
rial normalizing maps are in fact the Gevrey-1 sums of the formal normalizing map,
the existence of which has been proved in a previous paper. Finally we provide an
analytic classification under the action of fibered diffeomorphisms, based on the
study of the so-called Stokes diffeomorphisms obtained by comparing consecutive
sectorial normalizing maps à la Martinet–Ramis / Stolovitch for 1-resonant vector
fields.
Résumé. — Dans ce travail, nous considérons des germes de champs de vecteurs

singuliers dans (C3, 0) ayant une singularité isolée doublement résonante de type
noeud-col à l’origine. Ces champs de vecteurs proviennent de systèmes différentiels
irréguliers en dimension deux, avec deux valeurs propres opposées non-nulles, et
apparaissent par exemple dans l’étude des singularités irrégulières à l’infini des
équations de Painlevé (Pj)j=I,...,V pour des valeurs génériques des paramètres.
Sous des conditions adéquates, nous démontrons un théorème de normalisation
analytique sur des domaines sectoriels, analogue à un résultat de Hukuhara, Ki-
mura et Matuda pour les noeud-cols dans C2. Nous prouvons également que ces
normalisations sectorielles sont en fait les sommes 1-Gevrey de la normalisation
formelle, dont l’existence a été prouvée dans un précédent papier. Nous terminons
en fournissant une classification analytique sous l’action de difféomorphismes fi-
brés, basée sur l’étude des difféomorphismes de Stokes obtenus en comparant les
normalisations sectorielles consécutives à la Martinet–Ramis / Stolovitch pour des
champs de vecteurs 1-résonants.

Keywords: Painlevé equations, singular vector field, irregular singularity, resonant sin-
gularity, analytic classification, Stokes diffeomorphisms.
2010 Mathematics Subject Classification: 34M30, 34M35, 34M40, 34M55.



1716 Amaury BITTMANN

1. Introduction

As in [3], we consider (germs of) singular vector fields Y in C3 which can
be written in appropriate coordinates (x,y) := (x, y1, y2) as

(1.1) Y = x2 ∂

∂x
+ (−λy1 + F1(x,y)) ∂

∂y1
+ (λy2 + F2(x,y)) ∂

∂y2
,

where λ ∈ C∗ and F1, F2 are germs of holomorphic functions in (C3, 0) of
homogeneous valuation (order) at least two. They represent irregular two-
dimensional differential systems having two opposite non-zero eigenvalues:

x2 dy1(x)
dx = −λy1(x) + F1(x,y(x))

x2 dy2(x)
dx = λy2(x) + F2(x,y(x)).

These we call doubly-resonant vector fields of saddle-node type (or simply
doubly-resonant saddle-nodes). We will impose more (non-generic) condi-
tions in the sequel. The motivation for studying such vector fields is at least
of two types.

(1) There are two independent resonance relations between the eigen-
values (here 0, −λ and λ): we generalize then the study in [17, 18].
More generally, this work is aimed at understanding singularities
of vector fields in C3. According to a theorem of resolution of sin-
gularities in dimension less than three in [20], there exists a list of
“final models” for singularities (log-canonical) obtained after a finite
procedure of weighted blow-ups for three dimensional singular ana-
lytic vector fields. In this list, we find in particular doubly-resonant
saddles-nodes, as those we are interested in. In dimension 2, these
final models have been intensively studied (for instance by Mar-
tinet, Ramis, Ecalle, Ilyashenko, Teyssier, . . . ) from the view point
of both formal and analytic classification (some important ques-
tions remain unsolved, though). In dimension 3, the problems of
formal and analytic classification are still open questions, although
Stolovitch has performed such a classification for 1-resonant vector
fields in any dimension [28]. The presence of two kinds of resonance
relations brings new difficulties.

(2) Our second main motivation is the study of the irregular singular-
ity at infinity in Painlevé equations(Pj)j=I,...,V , for generic values
of the parameters (cf. [33]). These equations were discovered by
Paul Painlevé [23] because the only movable singularities of the
solutions are poles (the so-called Painlevé property). Their study

ANNALES DE L’INSTITUT FOURIER



DOUBLY-RESONANT SADDLE-NODES IN (C3, 0) 1717

has become a rich domain of research since the important work
of Okamoto [21]. The fixed singularities of the Painlevé equations,
and more particularly those at infinity, where notably investigated
by Boutroux with his famous tritronquées solutions [5]. Recently,
several authors provided more complete information about such sin-
gularities, studying “quasi-linear Stokes phenomena” and also giv-
ing connection formulas; we refer to the following (non-exhaustive)
sources [6, 7, 11, 12, 13, 14]. Stokes coefficients are invariant under
local changes of analytic coordinates, but do not form a complete
invariant of the vector field. To the best of our knowledge there
currently does not exist a general analytic classification for doubly-
resonant saddle-nodes. Such a classification would provide a new
framework allowing to analyse Stokes phenomena in that class of
singularities.

In this paper we provide an analytic classification under the action of
fibered diffeomorphisms for a specific (to be defined later on) class of
doubly-resonant saddle-nodes which contains the Painlevé case. For this
purpose, the main tool is a theorem of analytic normalization over secto-
rial domain (à la Hukuhara–Kimura–Matuda [9] for saddle-nodes in (C2, 0))
for a specific class (to be defined later on) of doubly-resonant saddle-nodes
which contains the Painlevé case. The analytic classification for this class
of vector fields, inspired by the important works [17, 18, 28] for 1-resonant
vector fields, is based on the study of so-called Stokes diffeomorphisms,
which are the transition maps between different sectorial domains for the
normalization.
In [32, 33] Yoshida shows that doubly-resonant saddle-nodes arising from

the compactification of Painlevé equations (Pj)j=I,...,V (for generic values
for the parameters) are conjugate to vector fields of the form:

Z = x2 ∂

∂x
+ (−(1+γy1y2)+a1x)y1

∂

∂y1
+ (1+γy1y2 +a2x)y2

∂

∂y2
,(1.2)

with γ ∈ C∗ and (a1, a2) ∈ C2 such that a1 + a2 = 1. One should notice
straight away that this “conjugacy” does not agree with what is tradi-
tionally (in particular in this paper) meant by conjugacy, for Yoshida’s
transform Ψ(x,y) = (x, ψ1(x,y), ψ2(x,y)) takes the form

ψi(x,y) = yi

1 +
∑

(k0,k1,k2)∈N3

k1+k2>1

qi,k(x)
xk0

yk1+k0
1 yk1+k0

2

 ,(1.3)

TOME 68 (2018), FASCICULE 4



1718 Amaury BITTMANN

where each qi,k is formal power series although x appears with negative
exponents. This expansion may not even be a formal Laurent series. It is,
though, the asymptotic expansion along {x = 0} of a function analytic in
a domain

(1.4) {(x, z) ∈ S ×D(0, r) | |z1z2| < ν|x|}

for some small ν > 0, where S is a sector of opening greater than π with
vertex at the origin and D(0, r) is a polydisc of small poly-radius r =
(r1, r2) ∈ (R>0)2. Moreover the (qi,k(x))i,k are actually Gevrey-1 power
series. The drawback here is that the transforms are convergent on regions
so small that taken together they cannot cover an entire neighborhood
of the origin in C3 (which seems to be problematic to obtain an analytic
classification à la Martinet–Ramis).
Several authors studied the problem of convergence of formal transfor-

mations putting vector fields as in (1.1) into “normal forms”. Shimomura,
improving on a result of Iwano [10], shows in [27] that analytic doubly-
resonant saddle-nodes satisfying more restrictive conditions are conjugate
(formally and over sectors) to vector fields of the form

(1.5) x2 ∂

∂x
+ (−λ+ a1x)y1

∂

∂y1
+ (λ+ a2x)y2

∂

∂y2

via a diffeomorphism whose coefficients have asymptotic expansions as
x → 0 in sectors of opening greater than π. Stolovitch then generalized
this result to any dimension in [28]. More precisely, Stolovitch’s work offers
an analytic classification of vector fields in Cn+1 with an irregular sin-
gular point, without further hypothesis on eventual additional resonance
relations between eigenvalues of the linear part. However, as Iwano and
Shimomura did, he needed to impose other assumptions, among which the
condition that the restriction of the vector field to the invariant hypersur-
face {x = 0} is a linear vector field. In [4], the authors obtain a Gevrey-1
summable “normal form”, though not as simple as Stolovitch’s one and
not unique a priori, but for more general kind of vector field with one zero
eigenvalue. However, the same assumption on hypersurface {x = 0} is re-
quired (the restriction is a linear vector field). Yet from [33] (and later [3])
stems the fact that this condition is not met in the case of Painlevé equa-
tions (Pj)j=I,...,V . In comparison, we merely ask here that the restricted
vector field be orbitally linearizable (see Definition 1.7), i.e. the foliation
induced by Y on {x = 0} (and not the vector field Y|{x=0} itself) be lin-
earizable. The fact that this condition is fulfilled by the singularities of
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DOUBLY-RESONANT SADDLE-NODES IN (C3, 0) 1719

Painlevé equations formerly described is well-known. As discussed in Re-
mark 1.17, the more general context also introduces new phenomena and
technical difficulties as compared to prior classification results.

1.1. Scope of the paper

The action of local analytic / formal diffeomorphisms Ψ fixing the origin
on local holomorphic vector fields Y of type (1.1) by change of coordinates
is given by

(1.6) Ψ∗Y := dΨ(Y ) ◦Ψ−1 .

In [3] we performed the formal classification of such vector fields by ex-
hibiting an explicit universal family of vector fields for the action of formal
changes of coordinates at 0 (called a family of normal forms). Such a result
seems currently out of reach in the analytic category: it is unlikely that an
explicit universal family for the action of local analytic changes of coordi-
nates be described anytime soon. If we want to describe the space of equiva-
lent classes (of germs of a doubly-resonant saddle-node under local analytic
changes of coordinates) with same formal normal form, we therefore need
to find a complete set of invariants which is of a different nature. We call
moduli space this quotient space and would like to give it a (non-trivial)
presentation based on functional invariants à la Martinet–Ramis [17, 18].
We only deal here with x-fibered local analytic conjugacies acting on vector
fields of the form (1.1) with some additional assumptions detailed further
down (see Definitions 1.1, 1.3 and 1.7). Importantly, these hypothesis are
met in the case of Painlevé equations mentioned above. The classification
under the action of general (not necessarily fibered) diffeomorphisms can
be found in [2]).
First we prove a theorem of analytic sectorial normalizing map (over a

pair of opposite “wide” sectors of opening greater than π whose union covers
a full punctured neighborhood of {x = 0}). Then we attach to each vector
field a complete set of invariants given as transition maps (over “narrow”
sectors of opening less than π) between the sectorial normalizing maps. Al-
though this viewpoint has become classical since the work of Martinet and
Ramis, and has latter been generalized by Stolovitch as already mentioned,
our approach has some geometric flavor. For instance, we avoid the use of
fixed-point methods altogether to establish the existence of the normal-
izing maps, and generalize instead the approach of Teyssier [31, 30] rely-
ing on path-integration of well-chosen 1-forms (following Arnold’s method
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of characteristics [1]). As a by-product of this normalization we deduce
that the normalizing sectorial diffeomorphisms are Gevrey-1 asymptotic
to the normalizing formal power series of [3], retrospectively proving their
1-summability (with respect to the x−coordinate). When the vector field
additionally supports a symplectic transverse structure (which is again the
case of Painlevé equations) we prove that the (essentially unique) secto-
rial normalizing map is performed by a transversally symplectic diffeomor-
phism. We deduce from this a theorem of analytic classification under the
action of transversally symplectic diffeomorphisms.

1.2. Definitions and main results

To state our main results we need to introduce some notations and
nomenclature.

• For n ∈ N>0, we denote by (Cn, 0) an (arbitrary small) open neigh-
borhood of the origin in Cn.

• We denote by C{x,y}, with y = (y1, y2), the C-algebra of germs
of holomorphic functions at the origin of C3, and by C{x,y}×
the group of invertible elements for the multiplication (also called
units), i.e. elements U such that U(0) 6= 0.

• χ(C3, 0) is the Lie algebra of germs of singular holomorphic vector
fields at the origin C3. Any vector field in χ(C3, 0) can be written
as

Y = b(x, y1, y2) ∂
∂x

+ b1(x, y1, y2) ∂

∂y1
+ b2(x, y1, y2) ∂

∂y2

with b, b1, b2 ∈ C{x, y1, y2} vanishing at the origin.
• Diff(C3, 0) is the group of germs of a holomorphic diffeomorphism
fixing the origin of C3. It acts on χ(C3, 0) by conjugacy: for all

(Φ, Y ) ∈ Diff(C3, 0)× χ(C3, 0)

we define the push-forward of Y by Φ by

(1.7) Φ∗(Y ) := (dΦ · Y ) ◦ Φ−1 ,

where dΦ is the Jacobian matrix of Φ.
• Difffib(C3, 0) is the subgroup of Diff(C3, 0) of fibered diffeomor-
phisms preserving the x-coordinate, i.e. of the form (x,y) 7→
(x, φ(x,y)).

• We denote by Difffib(C3, 0; Id) the subgroup of Difffib(C3, 0) formed
by diffeomorphisms tangent to the identity.

ANNALES DE L’INSTITUT FOURIER
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All these concepts have formal analogues, where we only suppose that the
objects are defined with formal power series, not necessarily convergent
near the origin.

Definition 1.1. — A diagonal doubly-resonant saddle-node is a vector
field Y ∈ χ(C3, 0) of the form

(1.8) Y = x2 ∂

∂x
+
(
− λy1 + F1(x,y)

) ∂

∂y1
+
(
λy2 + F2(x,y)

) ∂

∂y2
,

with λ ∈ C∗ and F1, F2 ∈ C{x,y} of order at least two. We denote by
SN diag the set of such vector fields.

Remark 1.2. — One can also define the foliation associate to a diagonal
doubly-resonant saddle-node in a geometric way. A vector field Y ∈ χ(C3, 0)
is orbitally equivalent to a diagonal doubly-resonant saddle-node (i.e. Y is
conjugate to some V X, where V ∈ C{x,y}× and X ∈ SN fib) if and only
if the following conditions hold:

(1) Spec(D0Y ) = {0,−λ, λ} with λ 6= 0;
(2) there exists a germ of irreducible analytic hypersurfaceH0 ={S= 0}

which is transverse to the eigenspace E0 (corresponding to the zero
eigenvalue) at the origin, and which is stable under the flow of Y ;

(3) LY (S) = U.S2, where LY is the Lie derivative of Y and U ∈
C{x,y}×.

By Taylor expansion up to order 1 with respect to y, given a vector field
Y ∈ SN diag written as in (1.1) we can consider the associate 2-dimensional
system:

(1.9) x2 dy
dx = α(x) + A(x)y(x) + F(x,y(x)) ,

with y = (y1, y2), such that the following conditions hold:

• α(x) =
(
α1(x)
α2(x)

)
, with α1, α2 ∈ C{x} and α1, α2 ∈ O(x2)

• A(x) ∈ Mat2,2(C{x}) with A(0) = diag(−λ, λ), λ ∈ C∗

• F(x,y) =
(
F1(x,y)
F2(x,y)

)
, with F1, F2 ∈ C{x,y} and F1, F2 ∈ O(‖y‖2).

Based on this expression, we state:

Definition 1.3. — The residue of Y ∈ SN diag is the complex number

res(Y ) :=
(

Tr(A(x))
x

)
|x=0

.

We say that Y is non-degenerate (resp. strictly non-degenerate) if res(Y ) /∈
Q60 (resp. <(res(Y )) > 0).

TOME 68 (2018), FASCICULE 4



1722 Amaury BITTMANN

Remark 1.4. — It is obvious that there is an action of Difffib(C3, 0; Id)
on SN diag. The residue is an invariant of each orbit of SN fib under the
action of Difffib(C3, 0; Id) by conjugacy (see [3]).

The main result of [3] can now be stated as follows:

Theorem 1.5 ([3]). — Let Y ∈ SN diag be non-degenerate. Then there
exists a unique formal fibered diffeomorphism Φ̂ tangent to the identity
such that:

(1.10) Φ̂∗(Y ) = x2 ∂

∂x
+ (−λ+ a1x+ c1(y1y2))y1

∂

∂y1

+ (λ+ a2x+ c2(y1y2))y2
∂

∂y2
,

where λ ∈ C∗, c1, c2 ∈ CJvK are formal power series in v = y1y2 without
constant term and a1, a2 ∈ C are such that a1 + a2 = res(Y ) ∈ C\Q60.

Definition 1.6. — The vector field obtained in (1.10) is called the
formal normal form of Y . The formal fibered diffeomorphism Φ̂ is called
the formal normalizing map of Y .

The above result is valid for formal objects, without considering problems
of convergence. The first main result in this work states that this formal
normalizing map is analytic in sectorial domains, under some additional
assumptions that we are now going to precise.

Definition 1.7.
• We say that a germ of a vector field X in (C2, 0) is orbitally linear if

X = U(y)
(
λ1y1

∂

∂y1
+ λ2y2

∂

∂y2

)
,

for some U(y) ∈ C{y}× and (λ1, λ2) ∈ C2.
• We say that a germ of vector field X in (C2, 0) is analytically (resp.

formally) orbitally linearizable if X is analytically (resp. formally)
conjugate to an orbitally linear vector field.

• We say that a diagonal doubly-resonant saddle-node Y ∈ SN diag
is div-integrable if Y|{x=0} ∈ χ(C2, 0) is (analytically) orbitally lin-
earizable.

Remark 1.8. — Alternatively we could say that the foliation associated
to Y|{x=0} is linearizable. Since Y|{x=0} is analytic at the origin of C2 and
has two opposite eigenvalues, it follows from a classical result of Brjuno
(see [16]), that Y|{x=0} is analytically orbitally linearizable if and only if it
is formally orbitally linearizable.

ANNALES DE L’INSTITUT FOURIER
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Definition 1.9. — We denote by SN diag,0 the set of strictly non-
degenerate diagonal doubly-resonant saddle-nodes which are div-integrable.

The vector field corresponding to the irregular singularity at infinity in
the Painlevé equations (Pj)j=I,...,V is orbitally equivalent to an element of
SN fib,0, for generic values of the parameters (see [33]). We can now state
the first main result of our paper (we refer to section 2. for more details on
1-summability).

Theorem 1.10. — Let Y ∈ SN diag,0 and let Φ̂ (given by Theorem 1.5)
be the unique formal fibered diffeomorphism tangent to the identity such
that

Φ̂∗(Y ) = x2 ∂

∂x
+ (−λ+ a1x+ c1(y1y2))y1

∂

∂y1

+ (λ+ a2x+ c2(y1y2))y2
∂

∂y2

=: Ynorm ,

where λ 6= 0 and c1(v), c2(v) ∈ vCJvK are formal power series without con-
stant term. Then:

(1) the normal form Ynorm is analytic (i.e. c1, c2 ∈ C{v}), and it also is
div-integrable, i.e. c1 + c2 = 0;

(2) the formal normalizing map Φ̂ is 1-summable (with respect to x) in
every direction θ 6= arg(±λ).

(3) there exist analytic sectorial fibered diffeomorphisms Φ+ and Φ−,
(asymptotically) tangent to the identity, defined in sectorial do-
mains of the form S+ × (C2, 0) and S− × (C2, 0) respectively, where

S+ :=
{
x ∈ C

∣∣∣ 0 < |x| < r and
∣∣∣arg

( x
iλ

)∣∣∣ < π

2 + ε
}

S− :=
{
x ∈ C

∣∣∣ 0 < |x| < r and
∣∣∣arg

(−x
iλ

)∣∣∣ < π

2 + ε
}

(for any ε ∈ ]0, π2 [ and some r > 0 small enough), which admit Φ̂ as
weak Gevrey-1 asymptotic expansion in these respective domains,
and which conjugate Y to Ynorm. Moreover Φ+ and Φ− are the
unique such germs of analytic functions in sectorial domains (see
Definition 2.2).

Remark 1.11. — Although item (3) above is a straightforward conse-
quence of the 1-summability of Φ̂ (item (2) above), we will in fact start
by proving item (3) in Corollary 4.2, and establish the 1-summability of
item (2) in a second step (see Proposition 5.6). What we will obtain at
first directly is only the weak 1-summability (see Subsection 2.3) of Φ̂

TOME 68 (2018), FASCICULE 4
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(see Proposition 4.18), and not immediately the 1-summability. To obtain
the “true” 1-summability, we will need to prove that the transition maps
between Φ+ and Φ− are exponentially close to the identity (see Proposi-
tion 5.2), and then to use a fundamental theorem of Martinet and Ramis
(see Theorem 2.22).

Definition 1.12. — We call Φ+ and Φ− the sectorial normalizing maps
of Y ∈ SN diag,0.

They are the 1-sums of Φ̂ along the respective directions arg(iλ) and
arg(−iλ). Notice that Φ+ and Φ− are germs of analytic sectorial fibered
diffeomorphisms, i.e. they are of the form

Φ+ : S+ × (C2, 0) −→ S+ × (C2, 0)
(x,y) 7−→ (x,Φ+,1(x,y),Φ+,2(x,y))

and

Φ− : S− × (C2, 0) −→ S− × (C2, 0)
(x,y) 7−→ (x,Φ−,1(x,y),Φ−,2(x,y))

(see Section 2. for a precise definition of germ of analytic sectorial fibered
diffeomorphism). The fact that they are also (asymptotically) tangent to
the identity means that we have:

Φ±(x,y) = Id(x,y) + O(‖(x,y)‖2) .

In fact, we can prove the uniqueness of the sectorial normalizing maps
under weaker assumptions.

Proposition 1.13. — Let ϕ+ and ϕ− be two germs of sectorial fibered
diffeomorphisms in S+ × (C2, 0) and S− × (C2, 0) respectively, where S+
and S− are as in Theorem 1.10, which are (asymptotically) tangent to the
identity and such that

(ϕ±)∗(Y ) = Ynorm .

Then, they necessarily coincide with the sectorial normalizing maps Φ+
and Φ− defined above.

Since two analytically conjugate vector fields are also formally conjugate,
we fix now a normal form

Ynorm = x2 ∂

∂x
+ (−λ+ a1x− c(v))y1

∂

∂y1
+ (λ+ a2x+ c(v))y2

∂

∂y2
,

with λ ∈ C∗, <(a1 + a2) > 0 and c ∈ vC{v} vanishing at the origin.

ANNALES DE L’INSTITUT FOURIER
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Definition 1.14. — We denote by [Ynorm] the set of germs of holomor-
phic doubly-resonant saddle-nodes in (C3, 0) which are formally conjugate
to Ynorm by formal fibered diffeomorphisms tangent to the identity, and
denote by [Ynorm]/Difffib(C3, 0; Id) the set of orbits of the elements in this
set under the action of Difffib(C3, 0; Id).

According to Theorem 1.10, to any Y ∈ [Ynorm] we can associate two
sectorial normalizing maps Φ+,Φ−, which can in fact extend analytically
in domains S+×(C2, 0) and S−×(C2, 0), where S± is an asymptotic sector
in the direction arg(±iλ) with opening 2π (see Definition 2.3):

(S+, S−) ∈ ASarg(iλ),2π ×ASarg(−iλ),2π .

Then, we consider two germs of sectorial fibered diffeomorphisms Φλ,Φ−λ
analytic in Sλ, S−λ, with

(1.11)
Sλ := S+ ∩ S− ∩

{
<
(x
λ

)
> 0
}
∈ ASarg(λ),π

S−λ := S+ ∩ S− ∩
{
<
(x
λ

)
< 0
}
∈ ASarg(−λ),π

defined by:{
Φλ := (Φ+ ◦ Φ−1

− )|Sλ×(C2,0) ∈ Difffib(Sarg(λ),ε; Id), ∀ ε ∈ [0, π[
Φ−λ := (Φ− ◦ Φ−1

+ )|S−λ×(C2,0) ∈ Difffib(Sarg(−λ),ε; Id), ∀ ε ∈ [0, π[ .

Notice that Φλ,Φ−λ are isotropies of Ynorm, i.e. they satisfy:

(1.12) (Φ±λ)∗(Ynorm) = Ynorm .

Definition 1.15. — With the above notations, we define Λλ(Ynorm)
(resp. Λ−λ(Ynorm)) as the group of germs of sectorial fibered isotropies of
Ynorm, tangent to the identity, and admitting the identity as Gevrey-1 as-
ymptotic expansion (see Definition 2.4) in sectorial domains of the form
Sλ × (C2, 0) (resp. S−λ× (C2, 0)), with S±λ ∈ ASarg(±λ),π. The two secto-
rial isotropies Φλ and Φ−λ defined above are called the Stokes diffeomor-
phisms associate to Y ∈ [Ynorm].

Our second main result gives the moduli space for the analytic classifi-
cation that we are looking for.

Theorem 1.16. — The map
[Ynorm]/Difffib(C3, 0; Id) −→ Λλ(Ynorm)× Λ−λ(Ynorm)

Y 7−→ (Φλ,Φ−λ)

is well-defined and bijective.
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In particular, the result states that Stokes diffeomorphisms only depend
on the class of Y ∈ [Ynorm] in the quotient [Ynorm]/Difffib(C3, 0; Id). We
will give a description of this set of invariants in terms of power series in
the space of leaves in Section 5.

Remark 1.17. — In this paper we start by proving a theorem of sectorial
normalizing map analogous to the classical one due to Hukuhara–Kimura–
Matuda for saddle-nodes in (C2, 0) [9], generalized later by Stolovitch in
any dimension in [28]. Unlike the method based on a fixed point theorem
used by these authors, we have used a more geometric approach (following
the works of Teyssier [30, 31]) based on the resolution of an homological
equation, by integrating a well chosen 1-form along asymptotic paths. This
latter approach turned out to be more efficient to deal with the fact that
Y|{x=0} is not necessarily linearizable. Indeed, if we look at [28] in details,
one of the first problem is that in the irregular systems that needs to be
solved by a fixed point method (for instance equation (2.7) in the cited
paper), the non-linear terms would not be divisible by the “time” variable
t in our situation. This would complicate the different estimations that are
done later in the cited work. This is the first main new phenomena we
have met. Then we will see that the sectorial normalizing maps Φ+,Φ−
in the corollary above admit in fact the unique formal normalizing map Φ̂
given by Theorem 1.5 as “true” Gevrey-1 asymptotic expansion in S+ ∈
Sarg(λ),η and S− ∈ Sarg(−λ),η respectively. This will be proved by studying
Φ+ ◦ (Φ−)−1 in S+ ∩ S− (and more generally any germ of sectorial fibered
isotropy of Ynorm in “narrow” sectorial neighborhoods S±λ ⊂ S+ ∩ S−
which admits the identity as weak Gevrey-1 asymptotic expansion). The
main difficulty is to prove that such a sectorial isotropy of Ynorm over the
“narrow” sectors described above is necessarily exponentially close to the
identity (see Lemma 5.20). This will be done via a detailed analysis of
these maps in the space of leaves (see Definition 5.10). In fact, this is the
second main new difficulty we have met, which is due to the presence of
the “resonant” term

cm(y1y2)m log(x)
x

in the exponential expression of the first integrals of the vector field
(see (5.3)). In [28], similar computations are done in Subsection 3.4.1. In
this part of the paper, infinitely many irregular differential equations ap-
pear when identifying terms of same homogeneous degree. The fact that
Y|{x=0} is linear implies that these differential equations are all linear and
independent of each others (i.e. they are not mixed together). In our situ-
ation, this is not the case and then more complicated.
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1.3. Painlevé equations: the transversally Hamiltonian case

In [33] Yoshida shows that a vector field in the class SN fib,0 naturally
appears after a suitable compactification (given by the so-called Boutroux
coordinates [5]) of the phase space of Painlevé equations (Pj)j=I,...,V , for
generic values of the parameters. In these cases the vector field presents an
additional transverse Hamiltonian structure. Let us illustrate these com-
putations in the case of the first Painlevé equation:

(PI)
d2z1

dt2 = 6z2
1 + t .

As is well known since Okamoto [22], (PI) can be seen as a non-autonomous
Hamiltonian system 

∂z1

∂t
= −∂H

∂z2
∂z2

∂t
= ∂H

∂z1
with Hamiltonian

(1.13) H(t, z1, z2) := 2z3
1 + tz1 −

z2
2
2 .

More precisely, if we consider the standard symplectic form ω := dz1 ∧ dz2
and the vector field

(1.14) Z := ∂

∂t
− ∂H

∂z2

∂

∂z1
+ ∂H

∂z1

∂

∂z2

induced by (PI), then the Lie derivative

LZ(ω) =
(
∂2H

∂t∂z1
dz1 + ∂2H

∂t∂z2
dz2

)
∧ dt = dz1 ∧ dt

belongs to the ideal 〈dt〉 generated by dt in the exterior algebra Ω∗(C3)
of differential forms in variables (t, z1, z2). Equivalently, for any t1, t2 ∈
C the flow of Z at time (t2 − t1) acts as a symplectomorphism between
fibers {t = t1} and {t = t2}. The weighted compactification given by the
Boutroux coordinates [5] defines a chart near {t =∞} as follows:

z2 = y2x
− 3

5

z1 = y1x
− 2

5

t = x−
4
5 .

In the coordinates (x, y1, y2), the vector field Z is transformed, up to a
translation y1 → y1 + ζ with ζ = i√

6 , to the vector field

(1.15) Z̃ = − 5
4x 1

5
Y
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where

(1.16) Y = x2 ∂

∂x
+
(
−4

5y2 + 2
5xy1 + 2ζ

5 x
)

∂

∂y1

+
(
−24

5 y
2
1 −

48ζ
5 y1 + 3

5xy2

)
∂

∂y2
.

We observe that Y is a strictly non-degenerate doubly-resonant saddle-
node as in Definitions 1.1 and 1.3 with residue res(Y ) = 1. Furthermore we
have: 

dt = −4
55 4

5x−
9
5 dx

dz1 ∧ dz2 = 1
x

(dy1 ∧ dy2) + 1
5x2 (2y1dy2 − 3y2dy1) ∧ dx

∈ 1
x

(dy1 ∧ dy2) + 〈dx〉 ,

where 〈dx〉 denotes the ideal generated by dx in the algebra of holomorphic
forms in C∗ × C2. We finally obtainLY

(
dy1 ∧ dy2

x

)
= 1

5x (3y2dy1 − (2ζ + 2y1)dy2) ∧ dx

LY (dx) = 2xdx .

Therefore, both LY (ω) and LY (dx) are differential forms who lie in the
ideal 〈dx〉, in the algebra of germs of meromorphic 1-forms in (C3, 0) with
poles only in {x = 0}. This motivates the following:

Definition 1.18. — Consider the rational 1-form

(1.17) ω := dy1 ∧ dy2

x
.

We say that vector field Y is transversally Hamiltonian (with respect to ω
and dx) if

(1.18) LY (dx) ∈ 〈dx〉 and LY (ω) ∈ 〈dx〉 .

For any open sector S ⊂ C∗, we say that a germ of sectorial fibered diffeo-
morphism Φ in S × (C2, 0) is transversally symplectic (with respect to ω
and dx) if

Φ∗(ω) ∈ ω + 〈dx〉
(Here Φ∗(ω) denotes the pull-back of ω by Φ). We denote by Diffω(C3, 0; Id)
the group of transversally symplectic diffeomorphisms which are tangent
to the identity.
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Remark 1.19.
(1) The flow of a transversally Hamiltonian vector field X defines a

map between fibers {x = x1} and {x = x2} which sends ω|x=x1

onto ω|x=x2 , since

(exp(X))∗(ω) ∈ ω + 〈dx〉 .

(2) A fibered sectorial diffeomorphism Φ is transversally symplectic if
and only if det(dΦ) = 1.

Definition 1.20. — A transversally Hamiltonian doubly-resonant
saddle-node is a transversally Hamiltonian vector field which is conjugate,
via a transversally symplectic diffeomorphism, to one of the form

(1.19) Y = x2 ∂

∂x
+ (−λy1 + F1(x,y)) ∂

∂y1
+ (λy2 + F2(x,y)) ∂

∂y2
,

with λ ∈ C∗ and F1, F2 analytic in (C3, 0) and of order at least 2.

Notice that a transversally Hamiltonian doubly-resonant saddle-node is
necessarily strictly non-degenerate (since its residue is always equal to 1),
and also div-integrable (see Section 3). It follows from Yoshida’s work [33]
that the doubly-resonant saddle-nodes at infinity in Painlevé equations
(Pj)j=I,...,V (for generic values of the parameters) all are transversally
Hamiltonian. We recall the second main result from [3].

Theorem 1.21 ([3]). — Let Y ∈ SN diag be a diagonal doubly-resonant
saddle-node which is supposed to be transversally Hamiltonian. Then, there
exists a unique formal fibered transversally symplectic diffeomorphism Φ̂,
tangent to identity, such that:

(1.20)

Φ̂∗(Y ) = x2 ∂

∂x
+ (−λ+ a1x− c(y1y2))y1

∂

∂y1

+ (λ+ a2x+ c(y1y2))y2
∂

∂y2

=: Ynorm ,

where λ ∈ C∗, c(v) ∈ vCJvK a formal power series in v = y1y2 without
constant term and a1, a2 ∈ C are such that a1 + a2 = 1.

As a consequence of Theorem 1.21, Theorem 1.10 we have the following:

Theorem 1.22. — Let Y be a transversally Hamiltonian doubly-
resonant saddle-node and let Φ̂ be the unique formal normalizing map
given by Theorem 1.21. Then the associate sectorial normalizing maps Φ+
and Φ− are also transversally symplectic.
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Proof. — Since Φ̂ is 1-summable in S±× (C2, 0), the formal power series
det(dΦ̂) is also 1-summable in S± × (C2, 0), and its asymptotic expan-
sion has to be the constant 1. By uniqueness of the 1-sum, we thus have
det(dΦ±) = 1. �

Let us fix a normal form Ynorm as in Theorem 1.22, and consider two
sectorial domains Sλ × (C2, 0) and S−λ × (C2, 0) as in (1.11). Then, the
Stokes diffeomorphisms (Φλ,Φ−λ) defined in the previous subsection as{

Φλ := (Φ+ ◦ Φ−1
− )|Sλ×(C2,0)

Φ−λ := (Φ− ◦ Φ−1
+ )|S−λ×(C2,0),

are also transversally symplectic.

Definition 1.23. — We denote by Λωλ(Ynorm) (resp. Λω−λ(Ynorm)) the
group of germs of sectorial fibered isotropies of Ynorm, admitting the iden-
tity as Gevrey-1 asymptotic expansion in sectorial domains of the form
Sλ × (C2, 0) (resp. S−λ × (C2, 0)), and which are transversally symplectic.

Let us denote by [Ynorm]ω the set of germs of vector fields which are
formally conjugate to Ynorm via (formal) transversally symplectic diffeo-
morphisms tangent to the identity. As a consequence of Theorems (1.16)
and (1.22), we can now state the following result.

Theorem 1.24. — The map
[Ynorm]ω/Diffω(C3, 0; Id) −→ Λωλ(Ynorm)× Λω−λ(Ynorm)

Y 7−→ (Φλ,Φ−λ)

is a well-defined bijection.

1.4. Outline of the paper

In Section 2, we introduce the different tools we need concerning asymp-
totic expansion, Gevrey-1 series and 1-summability. We will in particular
introduce a notion of “weak” 1-summability.

In Section 3, we prove Proposition 3.1, which states that we can always
formally conjugate a non-degenerate doubly-resonant saddle-node which
is also div-integrable to its normal form up to remaining terms of order
O(xN ), for all N ∈ N>0, and the conjugacy is actually 1-summable.
In Section 4, we prove that for all Y ∈ SN fib,0, there exists a unique

pair of sectorial normalizing maps (Φ+,Φ−) tangent to the identity which
conjugates Y to its normal form Ynorm over sectors with opening greater
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than π and arbitrarily close to 2π. The existence is given by Corollary 4.2,
while the uniqueness clause stated in Proposition 1.13 is proved thanks to
Proposition 4.16. Moreover, we will see that Φ+ and Φ− both admit the
unique formal normalizing map Φ̂ given by Theorem 1.5 as weak Gevrey-1
asymptotic expansion (see Proposition 4.18).
In Section 5, we show that the Stokes diffeomorphisms Φλ and Φ−λ,

which admit a priori the identity only as weak Gevrey-1 asymptotic ex-
pansion, admit in fact the identity as “true” Gevrey-1 asymptotic expan-
sion. This will be done by studying more generally the germs of sectorial
isotropies of the normal form in sectorial domains with “narrow” opening
(see Corollary 5.2). Using a theorem by Martinet and Ramis [17] refor-
mulated in Theorem 2.22, which is a “non-abelian” version of the Ramis–
Sibuya theorem, we will obtain the fact that Φ̂ is 1-summable in every direc-
tion θ 6= arg(±λ), of 1-sums Φ+ and Φ− respectively in the corresponding
domains (see Corollary 5.6). We then give a short proof of Theorem 1.10,
just by using the different lemmas and propositions needed and proved
earlier in this paper. After that, we will once again use Theorem 2.22 in
order to obtain both Theorems 1.16 and 1.24. We give in Proposition 5.24
a description of the moduli space of analytic classification in terms of some
spaces of power series in the space of leaves.

Acknowledgments. The author thanks his PhD advisors, namely
Daniel Panazzolo and Loïc Teyssier: their many advices were absolutely
necessary to do this work. He also thanks Laurent Stolovitch for his inter-
est and his advices.

2. Background

We refer the reader to [4, 15, 17, 25] for a detailed introduction to the the-
ory of asymptotic expansion, Gevrey series and summability (see also [28]
for a useful discussion of these concepts), where one can find the proofs of
the classical results we recall (but we do not prove here). We call x ∈ C
the independent variable and y := (y1, . . . , yn) ∈ Cn, n ∈ N, the dependent
variables. As usual we define yk := yk1

1 . . . yknn for k = (k1, . . . , kn) ∈ Nn,
and |k| = k1 + · · ·+ kn. The notions of asymptotic expansion, Gevrey-1
power series and 1-summability presented here are always considered with
respect to the independent variable x living in (open) sectors, the depen-
dent variable y belonging to poly-discs

D(0, r) := {y = (y1, . . . , yn) ∈ Cn | |y1| < r1, . . . |yn| < rn} ,
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of poly-radius r = (r1, . . . , rn) ∈ (R>0)n. Given an open subset

U ⊂ Cn+1 = {(x,y) ∈ C× Cn}

we denote by O(U) the algebra of holomorphic function in U . The algebra of
germs of analytic functions of m variables x := (x1, . . . , xm) at the origin is
denoted by C{x}. The results recalled in this section are valid when n = 0.
Some statements for which we do not give a proof can be proved exactly
as in the classical case n = 0, uniformly in the dependent multi-variable
y. For convenience and homogeneity reasons we will present some classical
results not in their original (and more general) form, but rather in more
specific cases which we will need. Finally, we will introduce a notion of
weak Gevrey-1 summability, which we will compare to the classical notion
of 1-summability.

2.1. Sectorial germs

Given r > 0, and α, β ∈ R with α < β, we denote by S(r, α, β) the
following open sector:

S(r, α, β) := {x ∈ C | 0 < |x| < r and α < arg(x) < β} .

Let θ ∈ R, η ∈ R>0 and n ∈ N.

Definition 2.1.
(1) An x−sectorial neighborhood (or simply sectorial neighborhood) of

the origin (in Cn+1) in the direction θ with opening η is an open
set S ⊂ Cn+1 such that

S ⊃ S
(
r, θ − η

2 − ε, θ + η

2 + ε
)
×D(0, r)

for some r > 0, r ∈ (R>0)n and ε > 0. We denote by (Sθ,η,6) the
directed set formed by all such neighborhoods, equipped with the
order relation

(2.1) S1 6 S2 ⇐⇒ S1 ⊃ S2 .

(2) The algebra of germs of holomorphic functions in a sectorial neigh-
borhood of the origin in the direction θ with opening η is the direct
limit

O(Sθ,η) := lim−→O(S)
with respect to the directed system defined by {O(S) : S ∈ Sθ,η}.

We now give the definition of a (germ of a) sectorial diffeomorphism.
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Definition 2.2.
(1) Given an element S ∈ Sθ,η, we denote by Difffib(S; Id) the set of

holomorphic fibered diffeomorphisms of the form

Φ : S −→ Φ(S)
(x,y) 7−→ (x, φ1(x,y), φ2(x,y)) ,

such that Φ(x,y)− Id(x,y) = O(‖x,y‖2), as (x,y)→ (0,0) in S.
(1)

(2) The set of germs of (fibered) sectorial diffeomorphisms in the di-
rection θ with opening η, tangent to the identity, is the direct limit

Difffib(Sθ,η; Id) := lim−→ Difffib(S; Id)

with respect to the directed system defined by {Difffib(S; Id) : S ∈
Sθ,η}. We equip Difffib(Sθ,η; Id) with a group structure as follows:
given two germs Φ,Ψ ∈ Difffib(Sθ,η; Id) we chose corresponding
representatives Φ0 ∈ Difffib(S; Id) and Ψ0 ∈ Difffib(T ; Id) with
S, T ∈ Sθ,η such that T ⊂ Φ0(S) and let Ψ ◦Φ be the germ defined
by Ψ0 ◦ Φ0.(2)

We will also need the notion of asymptotic sectors.

Definition 2.3. — An (open) asymptotic sector of the origin in the
direction θ and with opening η is an open set S ⊂ C such that

S ∈
⋂

06η′<η
Sθ,η′ .

We denote by ASθ,η the set of all such (open) asymptotic sectors.

2.2. Gevrey-1 power series and 1-summability

2.2.1. Gevrey-1 asymptotic expansions

In this subsection we fix a formal power series which we write under two
forms:

f̂(x,y) =
∑
k>0

fk(y)xk =
∑

(j0,j)∈Nn+1

fj0,jx
j0yj ∈ CJx,yK ,

using the canonical identification CJx,yK = CJxKJyK = CJyKJxK. We also
fix a norm ‖ · ‖ in Cn+1.

(1)This condition implies in particular that Φ(S) ∈ Sθ,η .
(2)One can prove that this definition is independent of the choice of the representatives.

TOME 68 (2018), FASCICULE 4



1734 Amaury BITTMANN

Definition 2.4.
• A function f analytic in a domain S(r, α, β)×D(0, r) admits f̂ as

asymptotic expansion in the sense of Gérard–Sibuya in this domain
if for all closed sub-sector S′ ⊂ S(r, α, β) and compact K ⊂ D(0, r),
for all N ∈ N, there exists a constant CS′,K,N > 0 such that:∣∣∣∣∣∣f(x,y)−

∑
j0+j1+...jn6N

fj0,jx
j0yj

∣∣∣∣∣∣ 6 CS′,K,N‖(x,y)‖N+1

for all (x,y) ∈ S′ ×K.
• A function f analytic in a domain S(r, α, β)×D(0, r) admits f̂ as

asymptotic expansion (with respect to x) if for all k ∈ N, fk(y) is
analytic in D(0, r), and if for all closed sub-sector S′ ⊂ S(r, α, β),
compact subset K ⊂ D(0, r) and N ∈ N, there exists AS′,K,N > 0
such that:∣∣∣∣∣∣f(x,y)−

N∑
k>0

fk(y)xk
∣∣∣∣∣∣ 6 AS′,K,N |xN+1|

for all (x,y) ∈ S′ ×K.
• An analytic function f in a sectorial domain S(r, α, β)×D(0, r)
admits f̂ as Gevrey-1 asymptotic expansion in this domain, if for
all k ∈ N, fk(y) is analytic in D(0, r), and if for all closed sub-sector
S′ ⊂ S(r, α, β), there exists A,C > 0 such that:∣∣∣∣∣f(x,y)−

N−1∑
k=0

fk(y)xk
∣∣∣∣∣ 6 ACN (N !)|xN |

for all N ∈ N and (x,y) ∈ S′ ×D(0, r).

Remark 2.5.
(1) If a function admits f̂ as Gevrey-1 asymptotic expansion in

S(r, α, β)×D(0, r), then it also admits f̂ as asymptotic expansion.
(2) If a function admits f̂ as asymptotic expansion in S(r, α, β) ×

D(0, r), then it also admits f̂ as asymptotic expansion in the sense
of Gérard–Sibuya.

(3) An asymptotic expansion (in any of the different senses described
above) is unique.

As a consequence of Stirling formula, we have the following characteri-
zation for functions admitting 0 as Gevrey-1 asymptotic expansion.
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Proposition 2.6. — The set of analytic functions admitting 0 as
Gevrey-1 asymptotic expansion at the origin in a sectorial domain
S(r, α, β)×D(0, r) is exactly the set of analytic functions f in S(r, α, β)×
D(0, r) such that for all closed sub-sector S′ ⊂ S(r, α, β) and all compact
K ⊂ D(0, r), there exist AS′,K , BS′,K > 0 such that:

|f(x,y)| 6 AS′,K exp
(
−BS

′,K

|x|

)
.

We say that such a function is exponentially flat at the origin in the corre-
sponding domain.

2.2.2. Borel transform and Gevrey-1 power series

Definition 2.7.
• We define the Borel transform B(f̂) of f̂ as:

B(f̂)(t,y) :=
∑
k>0

fk(y)
k! tk .

• We say that f̂ is Gevrey-1 if B(f̂) is convergent in a neighborhood of
the origin in C×Cn. Notice that in this case the fk(y), k > 0, are all
analytic in a same polydisc D(0, r), of poly-radius r = (rn . . . , rn) ∈
(R>0)n, so that B(f̂) is analytic in D(0, ρ)×D(0, r), for some ρ > 0.
Possibly by reducing ρ, r1, . . . , rn > 0, we can assume that B(f̂) is
bounded in D(0, ρ)×D(0, r).

Remark 2.8.
(1) If a sectorial function f admits f̂ for Gevrey-1 asymptotic expansion

as in Definition 2.4 then f̂ is a Gevrey-1 formal power series.
(2) The set of all Gevrey-1 formal power series is an algebra closed

under partial derivatives ∂
∂x ,

∂
∂y1

, . . . , ∂
∂yn

.

Remark 2.9. — For technical reasons we will sometimes need to use an-
other definition of the Borel transform, that is:

B̃(f̂)(t,y) :=
∑
k>0

fk+1(y) t
k

k! .

The first definition we gave has the advantage of being “directly” invert-
ible (via the Laplace transform) for all 1-summable formal power series
(see next subsection), but behaves not so good with respect to the prod-
uct. On the contrary, the second definition will be “directly” invertible only
for 1-summable formal power series with null constant term (otherwise a
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translation is needed). However, the advantage of the second Borel trans-
form is that it changes a product into a convolution product:

B̃(f̂ ĝ) = (B̃(f̂) ∗ B̃(ĝ)) ,

where the convolution product of two analytic functions h1h2 is defined by

(h1 ∗ h2)(t,y) :=
∫ t

0
h1(s,y)h2(s− t,y)ds .

The property of being Gevrey-1 or not does not depend on the choice of
the definition we take for the Borel transform.

2.2.3. Directional 1-summability and Borel–Laplace summation

Definition 2.10. — Given θ ∈ R and δ > 0, we define the infinite
sector in the direction θ with opening δ as the set

A∞θ,δ :=
{
t ∈ C∗

∣∣∣∣ arg(t)− θ| < δ

2

}
.

We say that f̂ is 1-summable in the direction θ ∈ R, if the following three
conditions holds:

• f̂ is a Gevrey-1 formal power series;
• B(f̂) can be analytically continued to a domain of the form A∞θ,δ ×

D(0, r);
• there exists λ > 0,M > 0 such that:

∀ (t,y) ∈ A∞θ,δ ×D(0, r), |B(f̂)(t,y)| 6M exp(λ|t|) .

In this case we set ∆θ,δ,ρ := A∞θ,δ ∪D(0, ρ) and

‖f̂‖λ,θ,δ,ρ,r := sup
(t,y)∈∆θ,δ,ρ×D(0,r)

|B(f̂)(t,y) exp(−λ|t|)| .

If the domain is clear from the context we will simply write ‖f̂‖λ.

Remark 2.11.
(1) For fixed (λ, θ, δ, ρ, r) as above, the set Bλ,θ,δ,ρ,r of formal power se-

ries f̂ 1-summable in the direction θ and such that ‖f̂‖λ,θ,δ,ρ,r < +∞
is a Banach vector space for the norm ‖ · ‖λ,θ,δ,ρ,r. We simply write
(Bλ, ‖ · ‖λ) when there is no ambiguity.

(2) We will also need a norm well-adapted to the second Borel trans-
form B̃ (cf. Remark 2.9), that is:

‖f̂‖bis
λ,θ,δ,ρ,r := sup

(t,y)∈∆θ,δ,ρ×D(0,r)
|B(f̂)(t,y)(1 + λ2|t|2) exp(−λ|t|)| .
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We write then Bbis
λ,θ,δ,ρ,r the set space of formal power series f̂ which

are 1-summable in the direction θ and such that ‖f̂‖bis
λ,θ,δ,ρ,r < +∞.

(3) If λ′ > λ, then Bλ,θ,δ,ρ,r ⊂ Bλ′,θ,δ,ρ,r and Bbis
λ,θ,δ,ρ,r ⊂ Bbis

λ′,θ,δ,ρ,r.

Proposition 2.12 ([4, Proposition 4.]). — If f̂ , ĝ ∈ Bbis
λ,θ,δ,ρ,r, then

f̂ ĝ ∈ Bbis
λ,θ,δ,ρ,r and:

‖f̂ ĝ‖bis
λ,θ,δ,ρ,r 6

4π
λ
‖f̂‖bis

λ,θ,δ,ρ,r‖ĝ‖bis
λ,θ,δ,ρ,r .

Remark 2.13. — If λ > 4π, then ‖ · ‖bis
λ,θ,δ,ρ,r is a sub-multiplicative norm,

i.e.
‖f̂ ĝ‖bis

λ,θ,δ,ρ,r 6 ‖f̂‖bis
λ,θ,δ,ρ,r‖ĝ‖bis

λ,θ,δ,ρ,r .

Definition 2.14. — Let g be analytic in a domain and A∞θ,δ ×D(0, r)
and let λ > 0,M > 0 such that

∀ (t,y) ∈ A∞θ,δ ×D(0, r), |g(t,y)| 6M exp(λ|t|) .

We define the Laplace transform of g in the direction θ as:

Lθ(g)(x,y) :=
∫
eiθR>0

g(t,y) exp
(
− t

x

)dt
x
,

which is absolutely convergent for all x ∈ C with <( e
iθ

x ) > λ and for all
y ∈ D(0, r), and analytic with respect to (x,y) in this domain.

Remark 2.15. — As for the Borel transform, there also exists another
definition of the Laplace transform, that is:

L̃θ(g)(x,y) :=
∫
eiθR>0

g(t,y) exp
(
− t

x

)
dt .

Proposition 2.16. — A formal power series f̂ ∈ CJx,yK is 1-summable
in the direction θ if and only if there exists a germ of a sectorial holomorphic
function fθ ∈ O(Sθ,π) which admits f̂ as Gevrey-1 asymptotic expansion
in some S ∈ Sθ,π. Moreover, fθ is unique (as a germ in O(Sθ,π)) and in
particular

fθ = Lθ(B(f̂)) .
The function (germ) fθ is called the 1-sum of f̂ in the direction θ.

Remark 2.17. — With the second definitions of Borel and Laplace trans-
forms given above, we have a similar result for formal power series of the
form f̂(x,y) =

∑
k fk(y)xk with:

fθ = L̃θ(B̃(f̂)) + f̂(0,y) .

We recall the following well-known result.
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Lemma 2.18. — The set Σθ ⊂ CJx,yK of 1-summable power series in
the direction θ is an algebra closed under partial derivatives. Moreover the
map

Σθ −→ O(Sθ,π)

f̂ 7−→ fθ

is an injective morphism of differential algebras.

Definition 2.19. — A formal power series f̂ ∈ CJx,yK is called 1-
summable if it is 1-summable in all but a finite number of directions,
called Stokes directions. In this case, if θ1, . . . , θk ∈ R/2πZ are the pos-
sible Stokes directions, we say that f̂ is 1-summable except for θ1, . . . , θk.
More generally, we say that anm−uple (f1, . . . , fm) ∈ CJx,yKm is Gevrey-1
(resp. 1-summable in direction θ) if this property holds for each component
fj , j = 1, . . . ,m. Similarly, a formal vector field (or diffeomorphism) is said
to be Gevrey-1 (resp. 1-summable in direction θ) if each one of its compo-
nents has this property.

The following classical result deals with composition of 1-summable
power series (an elegant way to prove it is to use an important theorem of
Ramis–Sibuya).

Proposition 2.20. — Let Φ̂(x,y) ∈ CJx,yK be 1-summable in direc-
tions θ and θ − π, and let Φ+(x,y) and Φ−(x,y) be its 1-sums directions
θ and θ − π respectively. Let also f̂1(x, z), . . . , f̂n(x, z) be 1-summable in
directions θ, θ − π, and f1,+, . . . , fn,+, and f1,−, . . . , fn,− be their 1-sums
in directions θ and θ − π respectively. Assume that

(2.2) f̂j(0,0) = 0, for all j = 1, . . . , n .

Then
Ψ̂(x, z) := Φ̂(x, f̂1(x, z), . . . , f̂n(x, z))

is 1-summable in directions θ, θ − π, and its 1-sum in the corresponding
direction is

Ψ±(x, z) := Φ±(x, f1,±(x, z), . . . , fn,±(x, z)) ,

which is a germ of a sectorial holomorphic function in this direction.

Consider Ŷ a formal singular vector field at the origin and a formal
fibered diffeomorphism ϕ̂ : (x,y) 7→ (x, φ̂(x,y)). Assume that both Ŷ and
ϕ̂ are 1-summable in directions θ and θ−π, for some θ ∈ R, and denote by
Y+, Y− (resp. ϕ+, ϕ−) their 1-sums in directions θ and θ − π respectively.
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As a consequence of Proposition 2.20 and Lemma 2.18, we can state the
following:

Corollary 2.21. — Under the assumptions above, ϕ̂∗(Ŷ ) is 1-summ-
able in both directions θ and θ − π, and its 1-sums in these directions are
ϕ+(Y+) and ϕ−(Y−) respectively.

2.2.4. An important result by Martinet and Ramis

We are going to make an essential use of an isomorphism theorem proved
in [17]. This result is of paramount importance in the present paper since
it will be a key tool in the proofs of both Theorems 1.10 and 1.16 (see
Section 5). Let us consider two open asymptotic sectors S and S ′ at the
origin in directions θ and θ − π respectively, both of opening π:

S ∈ ASθ,π
S′ ∈ ASθ−π,π

(see Definition 2.3). In this particular setting, the cited theorem can be
stated as follows.

Theorem 2.22 ([17, Théorème 5.2.1]). — Consider a pair of germs of
sectorial diffeomorphisms

(ϕ,ϕ′) ∈ Difffib(Sθ,0; Id)×Difffib(Sθ−π,0; Id)

such that ϕ and ϕ′ extend analytically and admit the identity as Gevrey-1
asymptotic expansion in S × (C2, 0) and S′ × (C2, 0) respectively. Then,
there exists a pair (φ+, φ−) of germs of sectorial fibered diffeomorphisms

(φ+, φ−) ∈ Difffib(Sθ+π
2 ,η

; Id)×Difffib(Sθ−π2 ,η; Id)

with η ∈ ]π, 2π[, which extend analytically in S+× (C2, 0) and S−× (C2, 0)
respectively, for some S+ ∈ ASθ+π

2 ,2π and S− ∈ ASθ−π2 ,2π, such that:{
φ+ ◦ (φ−)−1

|S×(C2,0) = ϕ

φ+ ◦ (φ−)−1
|S′×(C2,0) = ϕ′ .

There also exists a formal diffeomorphism φ̂ which is tangent to the identity,
such that φ+ and φ− both admit φ̂ as Gevrey-1 asymptotic expansion in
S+ × (C2, 0) and S− × (C2, 0) respectively.

In particular, in the theorem above φ̂ is 1−summable in every direction
except θ and θ−π, and its 1-sums in directions θ+ π

2 and θ− π
2 respectively

are φ+ and φ−. For future use, we are going to prove a “transversally
symplectic” version of the above theorem.
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Corollary 2.23. — With the assumptions and notations of Theo-
rem 2.22, if ϕ and ϕ′ both are transversally symplectic (see Definition 1.18),
then there exists a germ of an analytic fibered diffeomorphism ψ ∈
Difffib(C3, 0; Id) (tangent to the identity), such that

σ+ := φ+ ◦ ψ and σ− := φ− ◦ ψ

both are transversally symplectic. Moreover we also have:{
σ+ ◦ (σ−)−1

|S×(C2,0) = ϕ

σ+ ◦ (σ−)−1
|S′×(C2,0) = ϕ′ .

Proof. — We recall that for any germ ϕ of a sectorial fibered diffeomor-
phism which is tangent to the identity, ϕ is transversally symplectic if and
only if det(Dϕ) = 1. First of all, let us show that

det(Dφ+) = det(Dφ−) in (S+ ∩ S−)× (C2, 0) .

Since φ+ and φ− both are sectorial fibered diffeomorphism which are tan-
gent to the identity and transversally symplectic, then

det(φ+ ◦ (φ−)−1
|(S+∩S−)×(C2,0)) = 1 .

The chain rule implies immediately that

det(Dφ+) = det(Dφ−) in (S+ ∩ S−)× (C2, 0) .

Thus, this equality allows us to define (thanks to the Riemann’s Theorem
of removable singularities) a germ of analytic function f ∈ O(C3, 0). Notice
that f(0, 0, 0) = 1 because φ+ and φ− are tangent to the identity. Now, let
us look for an element ψ ∈ Difffib(C3, 0; Id) of the form

(2.3) ψ : (x, y1, y2) 7→ (x, ψ1(x,y), y2)

such that
σ+ := φ+ ◦ ψ and σ− := φ− ◦ ψ

both be transversally symplectic. An easy computation gives:

det(σ±) = (det(Dφ±) ◦ ψ) det(Dψ) = 1

i.e.
(f ◦ ψ) det(dψ) = 1 .

According to (2.3), we must have:

(2.4) (f ◦ ψ)∂ψ1

∂y1
= 1 .

Let us define
F (x, y1, y2) :=

∫ y1

0
f(x, z, y2)dz ,
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so that (2.4) can be integrated as

F ◦ ψ = y1 + h(x, y2) ,

for some h ∈ C{x, y2}. Notice that
∂F

∂y1
(0, 0, 0) = 1

since f(0, 0, 0) = 1. Let us chose h = 0. Then, we have to solve

F ◦ ψ = y1 ,

with unknown ψ ∈ Difffib(C3, 0; Id) as in (2.4). If we define

Φ : (x,y) 7→ (x, F (x,y), y2) ,

the latter problem is equivalent to find ψ as above such that:

Φ ◦ ψ = Id .

Since DΦ0 = Id, the inverse function theorem gives us the existence of the
germ ψ = Φ−1 ∈ Difffib(C3, 0; Id). �

2.3. Weak Gevrey-1 power series and weak 1-summability

We present here a weaker notion of 1-summability that we will also need.
Any function f(x,y) analytic in a domain U×D(0, r), where U ⊂ C is open,
and bounded in any domain U ×D(0, r′) with r′1 < r1, . . . , r

′
n < rn, can be

written

(2.5) f(x,y) =
∑
j∈Nn

Fj(x)yj ,

where for all j ∈ Nn, Fj is analytic and bounded on U , and defined via the
Cauchy formula:

Fj(x) = 1
(2iπ)n

∫
|z1|=r′1

. . .

∫
|zn|=r′n

f(x, z)
(z1)j1+1 . . . (zn)jn+1 dzn . . . dz1 .

Notice that the convergence of the function series above is uniform in every
compact with respect to x and y. In the same way, any formal power series
f̂(x,y) ∈ CJx,yK can be written as

f̂(x,y) =
∑
j∈Nn

F̂j(x)yj .

Definition 2.24.
• The formal power series f̂ is said to be weakly Gevrey-1 if for all

j ∈ Nn, F̂j(x) ∈ CJxK is a Gevrey-1 formal power series.
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• A function
f(x,y) =

∑
j∈Nn

Fj(x)yj

analytic and bounded in a domain S(r, α, β) × D(0, r), admits f̂
as weak Gevrey-1 asymptotic expansion in x ∈ S(r, α, β), if for all
j ∈ Nn, Fj admits F̂j as Gevrey-1 asymptotic expansion in S(r, α, β).

• The formal power series f̂ is said to be weakly 1-summable in the
direction θ ∈ R, if the following conditions hold:
– for all j ∈ Nn, F̂j(x) ∈ CJxK is 1-summable in the direction θ,

whose 1-sum in the direction θ is denoted by Fj,θ;
– the series fθ(x,y) :=

∑
j∈Nn Fj,θ(x)yj defines a germ of a secto-

rial holomorphic function in a sectorial neighborhood attached
to the origin in the direction θ with opening greater than π.

In this case, fθ(x,y) is called the weak 1-sum of f̂ in the direction θ.

As a consequence to the classical theory of summability and Gevrey
asymptotic expansions, we immediately have the following:

Lemma 2.25.
(1) The weak Gevrey-1 asymptotic expansion of an analytic function

in a domain S(r, α, β)×D(0, r) is unique.
(2) The weak 1-sum of a weak 1-summable formal power series in the

direction θ, is unique as a germ in O(Sθ,π).
(3) The set Σ(weak)

θ ⊂ CJx,yK of weakly 1-summable power series in the
direction θ is an algebra closed under partial derivatives. Moreover
the map

Σ(weak)
θ −→ O(Sθ,π)

f̂ 7−→ fθ

is an injective morphism of differential algebras.

The following proposition is an analogue of Proposition 2.20 for weak
1-summable formal power series, with the a stronger condition instead
of (2.2).

Proposition 2.26. — Let

Φ̂(x,y) =
∑
j∈Nn

Φ̂j(x)yj ∈ CJx,yK

and
f̂ (k)(x, z) =

∑
j∈Nn

F̂
(k)
j (x)zj ∈ CJx, zK ,
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for k = 1, . . . , n, be n+1 formal power series which are weakly 1-summable
in directions θ and θ − π. Let us denote by Φ+, f

(1)
+ , . . . , f

(n)
+ (resp. Φ−,

f
(1)
− , . . . , f

(n)
− ) their respective weak 1-sums in the direction θ (resp. θ−π).

Assume that F̂ (k)
0 = 0 for all k = 1, . . . , n. Then,

Ψ̂(x, z) := Φ̂(x, f̂ (1)(x, z), . . . , f̂ (n)(x, z))

is weakly 1-summable directions θ and θ − π, and its 1-sum in the corre-
sponding direction is

Ψ±(x, z) = Φ±(x, f (1)
± (x, z), . . . , f (n)

± (x, z)) ,

which is a germ of a sectorial holomorphic function in this direction with
opening π.

Proof. — First of all,

Ψ̂(x, z) := Φ̂(x, f̂ (1)(x, z), . . . , f̂ (n)(x, z))

is well defined as formal power series since for all k = 1, . . . , n, F̂ (k)
0 = 0. It

is also clear that

Ψ±(x, z) := Φ±(x, f (1)
± (x, z), . . . , f (n)

± (x, z))

is an analytic in a domain S+ ∈ Sθ,π (resp. S− ∈ Sθ−π,π), because
f

(k)
± (x,0) = 0 for all k = 1, . . . , n. Finally, we check that Ψ± admits Ψ̂
as weak Gevrey-1 asymptotic expansion in S±. Indeed:

Ψ±(x, z) = Φ±(x, f (1)
± (x, z), . . . , f (n)

± (x, z))

=
∑
j∈Nn

(Φj)±(x)(f (1)
± (x, z))j1 . . . (f (1)

± (x, z))jn

=
∑
j∈Nn

(Φj)±(x)

∑
|l|>1

(F (1)
l )±(x)zl

j1

. . .

. . .

∑
|l|>1

(F (n)
l )±(x)zl

jn

=
∑
j∈Nn

(Ψj)±(x)yj

where for all j ∈ Nn, (Ψj)±(x) is obtained as a finite number of additions
and products of the (Φk)±,(F (1)

k )±,. . . ,(F (n)
k )±, |k| 6 |l|. The same compu-

tation is valid for the associated formal power series, and allows us to define
the Ψ̂j(x), for all j ∈ Nn. Then, each (Ψj)± has Ψ̂j as Gevrey-1 asymptotic
expansion in S±. �
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As a consequence of Proposition 2.26 and Lemma 2.25, we have an ana-
logue version of Corollary (2.21) in the weak 1-summable case. Consider Ŷ
a formal singular vector field at the origin and a formal fibered diffeomor-
phism ϕ̂ : (x,y) 7→ (x, φ̂(x,y)) such that φ̂(x,0) = 0. Assume that both Ŷ
and ϕ̂ are weakly 1-summable in directions θ and θ − π, for some θ ∈ R,
and denote by Y+, Y− (resp. ϕ+, ϕ−) their weak 1-sums in directions θ and
θ − π respectively.

Corollary 2.27. — Under the assumptions above, ϕ̂∗(Ŷ ) is weakly 1-
summable in both directions θ and θ−π, and its 1-sums in these directions
are ϕ+(Y+) and ϕ−(Y−) respectively.

2.4. Weak 1-summability versus 1-summability

As in the previous subsection, let a formal power series f̂(x,y) ∈ CJx,yK
which is written as

f̂(x,y) =
∑
j∈Nn

F̂j(x)yj ,

so that its Borel transform is

B(f̂)(t,y) =
∑
j∈Nn
B(F̂j)(t)yj .

The next lemma is immediate.

Lemma 2.28.
(1) The power series B(f̂)(t,y) is convergent in a neighborhood of the

origin in Cn+1 if and only if the B(F̂j), j ∈ Nn, are all analytic and
bounded in a same disc d(0, ρ), ρ > 0, and if there exists B,L > 0
such that for all j ∈ Nn, sup

t∈d(0,ρ)
|B(F̂j)(t)| 6 L.B|j|.

(2) If (1) is satisfied, then B(f̂) can be analytically continued to a
domain A∞θ,δ × D(0, r) if and only if for all j ∈ Nn, B(F̂j) can be
analytically continued toA∞θ,δ and if for all compactK ⊂ A∞θ,δ, there
exists B,L > 0 such that for all j ∈ Nn, sup

t∈K
|B(F̂j)(t)| 6 L.B|j|.

(3) If (1) and (2) are satisfied, then there exists λ,M > 0 such that:

∀ (t,y) ∈ A∞θ,δ ×D(0, r), |B(f̂)(t,y)| 6M. exp(λ|t|)

if and only if there exists λ, L,B > 0 such that for all j ∈ Nn,

∀ t ∈ A∞θ,δ, |B(F̂j)(t)| 6 L.B|j| exp(λ|t|) .
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Remark 2.29.
(1) Condition (1) above states that the formal power series f̂ is

Gevrey-1.
(2) As usual, there exists an equivalent lemma for the second definitions

of the Borel transform (see Remark 2.9).

The following corollary gives a link between 1-summability and weak
1-summability.

Corollary 2.30. — Let

(2.6) f̂(x,y) =
∑
j∈Nn

F̂j(x)yj ∈ CJx,yK

be a formal power series. Then, f̂ is 1-summable in the direction θ ∈ R, of
1-sum f ∈ O(Sθ,π), if and only if the following two conditions hold:

• f̂ is weakly 1-summable in the direction θ;
• there exists λ, δ, ρ such that for all j ∈ Nn, ‖F̂j‖λ,θ,δ,ρ <∞ and the

power series
∑

j∈Nn ‖F̂j‖λ,θ,δ,ρyj is convergent near the origin of Cn.

Proof. — This is an immediate consequence of Lemma 2.28. �

Remark 2.31. — We can replace the norm ‖ · ‖λ,θ,δ,ρ by ‖ · ‖bis
λ,θ,δ,ρin the

second point of the above corollary.

Notice that there exists formal power series which are weakly 1-summable
in some direction but which are not Gevrey-1: for instance, the series

f̂ :=
∑
j

F̂j(x)yj ,

where for all j ∈ N, F̂j(x) is such that B(F̂j)(t) = 1
t+ 1

j

, is weakly 1-

summable in the direction 0 ∈ R, but is not Gevrey-1, since B(F̂j) has
a pole in every − 1

j −→j→+∞
0.

2.5. Some useful tools on 1-summability of solutions of singular
linear differential equations

For future reuse, we give here two results on the 1-summability of formal
solutions to some singular linear differential equations with 1-summable
right hand side, which generalize (and precise) a similar result proved in [17]
(Proposition p. 126). The authors use a norm ‖ · ‖β , but we will need to
use a norm ‖ · ‖bis

β later (in the proof of Proposition 3.15).
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Proposition 2.32. — Let b̂ be a formal power series 1-summable in the
direction θ; consider a domain ∆θ,δ,ρ as in Definition 2.10. Let use denote
by bθ its 1-sum in this direction θ. Let us also fix α, k ∈ C.

(1) Assume ‖b̂‖bis
β < +∞ and that k ∈ C\{0} is such that dk :=

dist(−k,∆θ,δ,ρ) > 0 and βdk > C|αk|, where C > 0 is a con-
stant large enough, independent from parameters k, β, θ, δ, ρ (for
instance, one can take C = 2 exp(2)

5 + 5). Then, the irregular singu-
lar differential equation

(2.7) x2 da
dx (x) + (1 + αx)ka(x) = b̂(x)

has a unique formal solution â such that â(0) = 1
k b̂(0). Moreover, â

is 1-summable in the direction θ, and

(2.8) ‖â‖β 6
β

βdk − C|αk|
‖b̂‖β .

Finally, the 1-sum aθ of â in the direction θ is the only solution to

x2 daθ
dx (x) + (1 + αx)kaθ(x) = bθ(x)

which is bounded in some Sθ,π ∈ Sθ,π.
(2) Assume ‖b̂‖β < +∞ and that <(k) > 0. Then the regular singular

differential equation

(2.9) x
da
dx (x) + ka(x) = b̂(x)

admits a unique formal solution â which is also 1-summable in the
direction θ, of 1-sum aθ. Moreover, aθ is the only germ of solution
to the differential equation

x
da
dx (x) + ka(x) = bθ(x)

which is bounded in some Sθ,π ∈ Sθ,π.

Proof. — (1) Since b̂ is 1-summable in the direction θ, we can choose
ρ > 0 and δ > 0 such that B̃(b̂) can be analytically continued to (and is
bounded in) any domain of the form ∆θ,δ,ρ ∩D(0, R), R > 0.

Let us apply the Borel transform B̃ to equation (2.7): we obtain

(2.10) (t+ k)B̃(â)(t) + αk

∫ t

0
B̃(â)(s)ds = B̃(b̂)(t) .

The derivative with respect to t of this equation shows that B̃(â) is solution
of a linear differential equation, with only one (regular) singularity at t =
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−k (but this singularity is not in ∆θ,δ,ρ by assumption):

(t+ k)dB̃(â)
dt (t) + (1 + αk)B̃(â)(t) = dB̃(b̂)

dt (t) .

Since B̃(b̂) can be analytically continued to ∆θ,δ,ρ, the same goes for dB̃(b̂)
dr (t)

and then for B̃(â). Since B̃(â)(0) = B̃(b̂)(0)
k = b̂′(0)

k , we can write:

B̃(â)(t) = (t+ k)−1−αk(b̂′(0).kαk +
∫ t

0

dB̃(b̂)
ds (s).(s+ k)αkds)

= (t+ k)−1−αk

(
b̂′(0).kαk + B̃(b̂)(t).(t+ k)αk − B̃(b̂)(0).kαk

− αk
∫ t

0
B̃(b̂)(s).(s+ k)αk−1ds

)

= (t+ k)−1−αk

(
B̃(b̂)(t).(t+ k)αk

− αk
∫ t

0
B̃(b̂)(s).(s+ k)αk−1ds

)

B̃(â) = B̃(b̂)(t)
(t+ k) − αk.(t+ k)−1−αk

∫ t

0
B̃(b̂)(s).(s+ k)αk−1ds .

The fact that B̃(b̂) is bounded in any domain of the form ∆θ,δ,ρ ∩D(0, R),
R > 0, implies that the same goes for B̃(â). Let us prove inequality (2.8).
For all R > 0, for all Gevrey-1 series f̂ ∈ CJx,yK such that B(f̂) can be
analytically continued to ∆θ,δ,r, we set:

‖f̂‖bis
β,R := sup

t∈∆θ,δ,ρ∩D(0,R)
{|B̃(f̂)(t)(1 + β2|t|2) exp(−β|t|)|} ∈ R ∪ {∞} .

Notice that ‖f̂‖bis
β = supR>0{‖f̂‖bis

β,R} for all f̂ as above, and that for all
R > 0, ‖â‖bis

β,R < +∞, since B̃(â) is bounded in any domain of the form
∆θ,δ,ρ ∩ D(0, R). Fix some R > 0, and let t ∈ ∆θ,δ,ρ ∩ D(0, R). From
equation (2.10) we obtain

(2.11) B̃(â)(t) = 1
(t+ k)

(
B̃(b̂)(t)− αk

∫ t

0
B̃(â)(s)ds

)
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an then

|B̃(â)(t)| 6 1
|t+ k|

[
‖b̂‖bis

β

exp(β|t|)
1 + β2|t|2

+ |αk|.‖â‖bis
β,R

∫ |t|
0

exp(βu)
1 + β2u2 du

]

6
1
dk

exp(β|t|)
1 + β2|t|2

[
‖b̂‖bis

β + |αk|‖â‖bis
β,R

C

β

]
,

with C = 2 exp(2)
5 + 5. Here we use the following:

Lemma 2.33. — There exists a constant C > 0 (e.g. C = 2 exp(2)
5 + 5),

such that for all β > 0, we have:

∀ t > 0,
∫ t

0

exp(βu)
1 + β2u2 du 6 C

β

exp(βt)
1 + β2t2

.

Proof. — Let F : u 7→ exp(βu)
1+β2u2 , for u > 0. For t ∈ [0, 2

β ], we have:∫ t

0
F (u)du 6 exp(2)

5 .
2
β
,

since F is an increasing function over R+:

F ′(u) = βF (u). (1− βu)2

1 + β2u2 > 0 .

Moreover for all t > 0, we have F (t) > F (0) = 1. Hence for all t ∈ [0, 2
β ]:∫ t

0
F (u)du 6 exp(2)

5 .
2
β
.F (t) .

For t > 2
β , the following inequality holds:

(2.12)
∫ t

0
F (u)du 6 exp(2)

5 .
2
β
F (t) +

∫ t

2
β

F (u)du .

In addition, if u > β
2 , then:

(2.13) (1− βu)2

1 + β2u2 >
1
5 ,

Therefore, for all u > β
2 :

F ′(u) = βF (u). (1− βu)2

1 + β2u2 >
β

5F (u) .
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Hence: ∫ t

0
F (u)du 6

∫ 2
β

0
F (u)du+

∫ t

2
β

F (u)du .

6
exp(2)

5 .
2
β
F (t) + 5

β

∫ t

2
β

F ′(u)du

6
F (t)
5β .(2 exp(2) + 25) .

�

Let us go back to the proof of the original lemma. Finally, we have:

(2.14) ‖â‖bis
β,R 6

1
dk

[
‖b̂‖bis

β +
C.|αk|.‖â‖bis

β,R

β

]
,

and consequently:

‖â‖bis
β,R 6

β

βdk − C|αk|
‖b̂‖bis

β .

As a conclusion:
‖â‖bis

β 6
β

βdk − C|αk|
‖b̂‖bis

β ,

and aθ is the 1-sum of â in the direction θ.
(2) Let us write b̂(x) =

∑
j>0 bjx

j . A direct computation shows that the
only formal solution to equation (2.9) is â(x) =

∑
j>0 ajx

j where for all
j ∈ N, aj = bj

j+k : it exists since k /∈ Z60, and then k+ j 6= 0. In particular,
we see immediately that â is Gevrey-1, because the same goes for b̂. In other
words, the Borel transform B(â) is analytic in some disc D(0, ρ), ρ > 0. In
D(0, ρ), B(â) satisfies:

(2.15) t
dB(â)

dt (t) + kB(â)(t) = B(b̂)(t) .

The general solution near the origin to this equation is

y(t) = c

tk
+ 1
tk

∫ t

0
B(b̂)(s)sk−1ds , c ∈ C.

In particular, the only solution analytic in D(0, ρ) is the one with c = 0,
i.e.

B(â)(t) = 1
tk

∫ t

0
B(b̂)(s)sk−1ds .

Since B(b̂) can be analytically continued to an infinite domain that have
denoted by ∆θ,δ,ρ bisected by R+e

iθ (because b̂ is 1-summable in the di-
rection θ), B(â) can also be analytically continued to the same domain.
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Moreover, there exists β > 0 such that ‖b̂‖β < +∞, i.e. ∀ t ∈ ∆θ,δ,ρ:

|B(b̂)(t)| 6 ‖b̂‖β exp(β|t|) .

Thus, for all t ∈ ∆θ,δ,ρ, we have:

| exp(−β|t|)B(â)(t)|

6
1
|tk|

∫ |t|
0
| exp(−β|t|)|

∣∣∣B(b̂)
(
s ei arg(t)

)∣∣∣ ∣∣∣sk−1 ei(k−1) arg(t)
∣∣∣ds

6
1

|t|<(k)

∫ |t|
0
| exp(−βs)|

∣∣∣B(b̂)
(
s ei arg(t)

)∣∣∣ s<(k)−1ds

6
‖b̂‖β
|t|<(k)

∫ |t|
0

s<(k)−1ds

= ‖b̂‖β
<(k) .

Thus, â is 1-summable in the direction θ. �

3. 1-summable preparation up to any order N

The aim of this section is to prove that we can always formally conjugate
a non-degenerate doubly-resonant saddle-node, which is also div-integrable,
to its normal form up to a remainder of order O(xN ) for every N ∈ N>0.
Moreover, we prove that this conjugacy is in fact 1-summable in every
direction θ 6= arg(±λ), hence analytic over sectorial domains of opening at
least π.

Proposition 3.1. — Let Y ∈ SN diag be a non-degenerate diagonal
doubly-resonant saddle-node which is div-integrable, such that d0Y =
diag(0,−λ, λ), λ 6= 0. Then, for all N ∈ N>0, there exists a formal fibered
diffeomorphism Ψ(N) ∈ D̂ifffib(C3; Id) tangent to the identity and 1-summ-
able in every direction θ 6= arg(±λ) such that:

(Ψ(N))∗(Y ) = x2 ∂

∂x
+
((
−
(
λ+d(N)(y1y2)

)
+a1x

)
+xNF (N)

1 (x,y)
)
y1

∂

∂y1

+
((
λ+ d(N)(y1y2) + a2x

)
+ xNF

(N)
2 (x,y)

)
y2

∂

∂y2

=: Y (N) ,

where λ ∈ C∗, (a1 + a2) = res(Y ) ∈ C\Q60, d(N)(v) ∈ vC{v} is an analytic
germ vanishing at the origin, and F (N)

1 , F
(N)
2 ∈ CJx,yK are 1-summable in
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the direction θ, and of order at least one with respect to y. Moreover, one
can choose d(2) = · · · = d(N) for all N > 2.

Definition 3.2. — A vector field Y (N) as is the proposition above is
said to be normalized up to order N .

Remark 3.3.
(1) Observe that this result does not require the more restrictive as-

sumption of being “strictly non-degenerate” (i.e. <(a1 + a2) > 0).
(2) As a consequence of Corollary 2.21, the 1-sum Ψ(N)

θ of Ψ(N) in the
direction θ is a germ of sectorial fibered diffeomorphism tangent
to the identity, i.e. Ψ(N)

θ ∈ Difffib(Sθ,π; Id), which conjugates Y to
the 1-sum Y

(N)
θ of Y (N) in the direction θ.

In order to prove this result we will proceed in several steps and use
after each step Proposition 2.20 and Corollary 2.21 in order to prove the
1-summability in every direction θ 6= arg(±λ) of the different objects. First,
we will normalize analytically the vector field restricted to {x = 0}. Then,
we will straighten the formal separatrix to {y1 = y2 = 0} in suitable
coordinates. Next, we will simplify the linear terms with respect to y. After
that, we will straighten two invariant hypersurfaces to {y1 = 0} and {y2 =
0}. Finally, we will conjugate the vector field to its final normal form up
to remaining terms of order O(xN ).

3.1. Analytic normalization on the hyperplane {x = 0}

3.1.1. Transversally Hamiltonian versus div-integrable

We start by proving that an element of SN diag which is transversally
Hamiltonian is necessarily div-integrable.

Proposition 3.4. — If Y ∈ SN diag is transversally Hamiltonian, then
Y is div-integrable.

Proof. — Let us consider more generally a diagonal doubly-resonant
saddle-node Y ∈ SN diag such that Y|{x=0} is a Hamiltonian vector field
with respect to dy1 ∧ dy2 (this is the case if Y is transversally Hamil-
tonian): there exists a Hamiltonian H(y) = λy1y2 +O(‖y‖3) ∈ C{y}, such
that

Y = x2 ∂

∂x
+
((
−∂H
∂y2

+ xF1(x,y)
)

∂

∂y1
+
(
∂H

∂y1
+ xF2(x,y)

)
∂

∂y2

)
,
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where F1, F2 ∈ C{x,y} are vanishing at the origin. If we define J :=(
0 −1
1 0

)
∈ M2(C) and ∇H := t(dH), then Y|{x=0} = J∇H. According

to the Morse lemma for holomorphic functions, there exists a germ of an
analytic change of coordinates ϕ ∈ Diff(C2, 0) given by

(3.1) y = (y1, y2) 7→ ϕ(y) = (y1 +O(‖y‖2), y2 +O(‖y‖2)) ,

such that H̃(y) := H(ϕ−1(y)) = y1y2. Let us now recall a trivial result
from linear algebra.

Lemma 3.5. — Let J :=
(

0 −1
1 0

)
∈M2(C), and P ∈ M2(C). Then,

PJ tP = det(P )J .

As a consequence we have:

Corollary 3.6. — Let H ∈ C{y} be a germ of an analytic function at
0, Y0 := J∇H the associated Hamiltonian vector field in C2 (for the usual
symplectic form dy1∧dy2), and an analytic diffeomorphism near the origin
denoted by ϕ. Then:

(3.2) ϕ∗(Y0) := (Dϕ ◦ ϕ−1) · (Y0 ◦ ϕ−1) = det(Dϕ ◦ ϕ−1)J∇H̃ ,

where H̃ := H ◦ ϕ−1.

As a conclusion we have proved that Y is div-integrable. �

3.1.2. General case

Now we prove how to normalize the restriction to {x = 0} of a div-
integrable element of SN diag.

Proposition 3.7. — Let Y ∈ SN diag be div-integrable. Then, there
exists ψ ∈ Difffib(C3, 0; Id) of the form

ψ : (x,y) 7→ (x, y1 +O(‖y‖2), y2 +O(‖y‖2))

such that

ψ∗(Y ) = x2 ∂

∂x
+ (−(λ+ d(v))y1 + xT1(x,y)) ∂

∂y1

+ ((λ+ d(v))y2 + xT2(x,y)) ∂

∂y2
,

with v := y1y2, d(v) ∈ vC{v} and T1, T2 ∈ C{x,y} vanishing at the origin.
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Proof. — By assumption, and according to a theorem due to Brjuno
(cf. [16]), up to a first transformation analytic at the origin in C2, we can
suppose that

Y|{x=0} = (λ+ h(y))
(
−y1

∂

∂y1
+ y2

∂

∂y2

)
.

Then, it remains to apply the following lemma to Y|{x=0}. �

Lemma 3.8. — Let Y0 be a germ of analytic vector field in (C2, 0) of
the form

(3.3) Y0 = (λ+ h(y))
(
−y1

∂

∂y1
+ y2

∂

∂y2

)
,

with h ∈ C{y} vanishing at the origin. Then there exists φ ∈ Diff(C2, 0; Id)
such that

(3.4) φ∗(Y0) = (λ+ d(v))
(
−y1

∂

∂y1
+ y2

∂

∂y2

)
,

with v := y1y2 and d ∈ vC{v}.

Remark 3.9. — In other words, we have removed every non-resonant
term in h(y). In fact, we re-obtain here a particular case (with one vector
field in dimension 2) of the principal result in [29] (which is itself inspired
of Vey’s works).

Proof. — We claim that φ can be chosen of the form

φ(y) = (y1e
−γ(y), y2e

γ(y)) ,

for a conveniently chosen γ ∈ C{y}. Indeed, let us study how such a
diffeomorphism acts on Y0. Let us consider U := (λ + h(v)) and L :=
(−y1

∂
∂y1

+ y2
∂
∂y2

), such that Y0 = UL. An easy computation shows:

φ∗(Y0) = φ∗(U.L)

= ([U · (1− LL(γ))] ◦ φ−1)L ,

where LL is the Lie derivative of associate to L. We want to find γ such
that the unit

D := [U(1− LL(γ))] ◦ φ−1

is free from non-resonant terms, i.e. is of the form

D = λ+ d(y1y2) = λ+
∑
k>1

dk(y1y2)k .
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Notice that if a unit W =
∑
k>0Wk(y1y2)k ∈ C{y}× is free from non-

resonant terms, then: {
W ◦ φ−1 = W

LL(W ) = 0 .
Thus, let us split both U and γ in a “resonant” and a “non-resonant” part:{

U = Ures + Un-res

γ = γres + γn-res

where 

Un-res =
∑
k1 6=k2

Uk1,k2y
k1
1 yk2

2

Ures =
∑
k

Uk,k(y1y2)k

γn-res =
∑
k1 6=k2

γk1,k2y
k1
1 yk2

2

γres =
∑
k

γk,k(y1y2)k.

Then the non-resonant terms of U(1− LL(γ)) are

(Un-res − (Un-res + Ures)LL(γn-res)) ◦ φ−1 .

Hence, the partial differential equation we want to solve is:

LL(γ) = Un-res

Ures + Un-res
.

One sees immediately that this equation admit an analytic solution (and
even infinitely many solutions) γ ∈ C{y}, since the unit U ∈ C{y} is
analytic. �

3.2. 1-summable simplification of the “dependent” affine part

We are concerned by studying vector fields of the form

(3.5) Y = x2 ∂

∂x
+ (−λy1 + f1(x,y)) ∂

∂y1
+ (λy2 + f2(x,y)) ∂

∂y2
,

with {
f1(x,y) = −d(y1y2)y1 + xT1(x,y)
f2(x,y) = d(y1y2)y2 + xT2(x,y),

where d(v) ∈ vC{v} and T1, T2 ∈ C{x,y} are of order at least one.

ANNALES DE L’INSTITUT FOURIER



DOUBLY-RESONANT SADDLE-NODES IN (C3, 0) 1755

Proposition 3.10. — Let Y ∈ SN diag be a doubly-resonant saddle-
node of the form

Y = x2 ∂

∂x
+ (−λy1 + f1(x,y)) ∂

∂y1
+ (λy2 + f2(x,y)) ∂

∂y2
,

where f1, f2 ∈ C{x,y} are such that f1(x,y), f2(x,y) = O(‖(x,y)‖2). Then
there exist formal power series ŷ1, ŷ2, α̂1, α̂2, β̂1, β̂2 ∈ xCJxK which are
1-summable in every direction θ 6= arg(±λ), such that the formal fibered
diffeomorphism

Φ̂ : (x, y1, y2) 7−→
(
x, ŷ1(x) + (1 + α̂1(x))y1 + β̂1(x)y2,

ŷ2(x) + α̂2(x)y1 + (1 + β̂1(x))y2

)
,

(which is tangent to the identity and 1- summable in every direction θ 6=
arg(±λ)) conjugates Y to

Φ̂∗(Y ) = x2 ∂

∂x
+ ((−λ+ a1x)y1 + F̂1(x,y)) ∂

∂y1

+ ((λ+ a2x)y2 + F̂2(x,y)) ∂

∂y2
,

where a1, a2 ∈ C and F̂1, F̂2 ∈ CJx,yK are of order at least 2 with respect
to y, and 1-summable in every direction θ 6= arg(±λ).

Remark 3.11. — Notice that Φ̂|{x=0} = Id, so that F̂i(0,y) = fi(0,y) for
i = 1, 2. Moreover, the residue of Φ̂∗(Y ) is a1 + a2.

The proof of Proposition 3.10 is postponed to Subsection 3.2.2.

3.2.1. Technical lemmas on irregular differential systems

Lemma 3.12. — There exists a pair of formal power series

(ŷ1(x), ŷ2(x)) ∈ (xCJxK)2

which are 1-summable in every direction θ 6= arg(±λ), such that the formal
diffeomorphism given by

Φ̂1(x, y1, y2) = (x, y1 − ŷ1(x), y2 − ŷ2(x)),

(which is 1-summable in every direction θ 6= arg(±λ)) conjugates Y in (3.5)
to:

(3.6) Ŷ1(x,y) = x2 ∂

∂x
+ (−λy1 + ĝ1(x,y)) ∂

∂y1
+ (λy2 + ĝ2(x,y)) ∂

∂y2
,

where ĝ1, ĝ2 are formal power series of order at least 2 such that ĝ1(x,0) =
ĝ2(x,0) = 0, and are 1-summable in every direction θ 6= arg(±λ).
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In other words, in the new coordinates, the curve given by (y1, y2) = (0, 0)
is invariant by the flow of the vector field, and contains the origin in its
closure: it is usually called the (formal, 1-summable) center manifold.

Proof. — This is an immediate consequence of an important theorem
by Ramis and Sibuya on the summability of formal solutions to irregu-
lar differential systems [24]. This theorem proves the existence and the
1-summability in every direction θ 6= arg(±λ), of ŷ1 and ŷ2: (ŷ1(x), ŷ2(x))
is defined as the unique formal solution to

x2 dy1

dx = −λy1(x) + f1(x, y1(x), y2(x))

x2 dy2

dx = λy2(x) + f2(x, y1(x), y2(x)) ,

such that (ŷ1(0), ŷ2(0)) = (0, 0). The 1-summability of ĝ1 and ĝ2 comes
from Proposition 2.20. �

The next step is aimed at changing to linear terms with respect to y in
“diagonal” form.

Lemma 3.13. — There exists a pair of formal power series (p̂1, p̂2) ∈
(CJxK)2 which are 1-summable in every direction θ 6= arg(±λ), such that
the formal fibered diffeomorphism given by

Φ̂2(x, y1, y2) = (x, y1 + xp̂2(x)y2, y2 + xp̂1(x)y1) ,

(which is tangent to the identity and 1-summable in every direction θ 6=
arg(±λ)) conjugates Ŷ1 in (3.6), to

(3.7) Ŷ2(x,y) = x2 ∂

∂x
+ ((−λ+ xâ1(x))y1 + Ĥ1(x,y)) ∂

∂y1

+ ((λ+ xâ2(x))y2 + Ĥ2(x,y)) ∂

∂y2
,

where â1, â2, Ĥ1, Ĥ2 are formal power series which are 1-summable in every
direction θ 6= arg(±λ) and Ĥ1, Ĥ2 are of order at least 2 with respect to y.

Proof. — Let us write{
ĝ1(x,y) = xb̂1(x)y1 + xĉ1(x)y2 + Ĝ1(x,y)
ĝ2(x,y) = xĉ2(x)y1 + xb̂2(x)y2 + Ĝ2(x,y) ,

where b̂1, b̂2, ĉ1, ĉ2, Ĝ1, Ĝ2 are formal power series 1-summable in the direc-
tion θ 6= arg(±λ), such that Ĝ1 and Ĝ2 are of order at least 2 with respect
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to y. Let us consider the following irregular differential system naturally
associated to Ŷ1:

(3.8) x2 dz
dx (x) = B̂(x)z(x) + Ĝ(x, z(x)) ,

where

B̂(x) =
(
−λ+ xb̂1(x) xĉ1(x)
xĉ2(x) λ+ xb̂2(x)

)
, Ĝ(x, z(x)) =

(
Ĝ1(x, z(x))
Ĝ2(x, z(x))

)
.

We are looking for

P̂(x) =
(

1 xp̂2(x)
xp̂1(x) 1

)
∈ GL2(CJxK) ,

where p̂1, p̂2 are 1-summable formal power series in x every direction θ 6=
arg(±λ), such that the linear transformation given by z(x) = P̂(x)y(x)
changes equation (3.8) to

x2 dy
dx (x) = Â(x)y(x) + Ĥ(x,y(x)) ,

with

Â(x) =
(
−λ+ xâ1(x) 0

0 λ+ xâ2(x)

)
, Ĥ(x,y(x)) =

(
Ĥ1(x,y(x))
Ĥ2(x,y(x))

)
,

where â1, â2, Ĥ1, Ĥ2 are 1-summable formal power series in x every direc-
tion θ 6= arg(±λ). We have:

x2 dy
dx (x) = P̂(x)−1(B̂(x)P̂(x)− x2 dP̂

dx (x))y(x) + P̂(x)−1Ĝ(x, P̂(x)y(x))

and we want to determine Â(x) and P̂(x) as above so that

B̂(x)P̂(x)− x2 dP̂
dx (x) = Â(x) .

This gives four equations:
(3.9)
â1(x) = b̂1(x) + xĉ1(x)p̂1(x)
â2(x) = b̂2(x) + xĉ2(x)p̂2(x)
x2 dp̂1

dx (x) = (2λ+xb̂2(x)−x−xb̂1(x))p̂1(x) + ĉ2(x)−x2ĉ1(x)p̂1(x)2

x2 dp̂2
dx (x) = (−2λ+xb̂1(x)−x−xb̂2(x))p̂2(x) + ĉ1(x)−x2ĉ2(x)p̂2(x)2.

Thanks to the theorem by Ramis and Sibuya on the summability of for-
mal solutions to irregular systems [24], we have the existence and the 1-
summability in every direction θ 6= arg(±λ), of p̂1 and p̂2: (p̂1(x), p̂2(x)) is
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defined as the unique formal solution to
x2 dp̂1

dx (x) = (2λ+ xb̂2(x)− x− xb̂1(x))p̂1(x) + ĉ2(x)− x2ĉ1(x)p̂1(x)2

x2 dp̂2

dx (x) = (−2λ+ xb̂1(x)− x− xb̂2(x))p̂2(x) + ĉ1(x)− x2ĉ2(x)p̂2(x)2

such that
(p̂1(0), p̂2(0)) = (−ĉ2(0)

2λ ,
ĉ1(0)
2λ ) .

Notice that â1 and â2 are defined by the first two equations in (3.9). Finally,
Ĥ is defined by

Ĥ(x,y) := P̂(x)−1Ĝ(x, P̂(x)y) ,
and, by Proposition 2.20, it is 1-summable in every direction θ 6=
arg(±λ). �

The goal of the last following lemma is to transform â1(x) and â2(x)
in (3.7) to constant terms.

Lemma 3.14. — There exists a pair of formal power series (q̂1, q̂2) ∈
(CJxK)2 with q̂1(0) = q̂2(0) = 1, which are 1-summable in every direction
θ 6= arg(±λ), such that the formal fibered diffeomorphism of the form

Φ̂3(x, y1, y2) = (x, q̂1(x)y1, q̂2(x)y2) ,

(which is tangent to the identity and 1-summable in every direction θ 6=
arg(±λ)) conjugates Ŷ2 in (3.7), to

Ŷ3(x,y) = x2 ∂

∂x
+ ((−λ+ a1x)y1 + F̂1(x,y)) ∂

∂y1

+ ((λ+ a2x)y2 + F̂2(x,y)) ∂

∂y2
,

where F̂1, F̂2 are formal power series of order at least 2 with respect to
y which are 1-summable in every direction θ 6= arg(±λ) and (a1, a2) =
(â1(0), â2(0)).

Proof. — We can associate to Ŷ2 the following irregular differential sys-
tem:

x2 dz
dx (x) = Â(x)z(x) + Ĥ(x, z(x)) ,

and we are looking for a change of coordinates of the form z(x) = Q̂(x)y(x),
where

Q̂(x) =
(
q̂1(x) 0

0 q̂2(x)

)
∈ GL2(CJxK)
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with q̂1(0) = q̂2(0) = 1, such that the new system is

x2 dy
dx (x) = A(x)y(x) + F̂(x,y(x)) ,

with

A(x) =
(
−λ+ a1x 0

0 λ+ a2x

)
, F̂(x,y(x)) =

(
F̂1(x,y(x))
F̂2(x,y(x))

)
,

and (a1, a2) = (â1(0), â2(0)). We have

x2 dy
dx (x)

= Q̂(x)−1(Â(x)Q̂(x)− x2 dQ̂
dx (x))︸ ︷︷ ︸y(x) + Q̂(x)−1Ĥ(x, Q̂(x)y(x))

=(
−λ+ a1x 0

0 λ+ a2x

)
so that

x2 dQ̂
dx (x) = Â(x)Q̂(x)− Q̂(x)

(
−λ+ a1x 0

0 λ+ a2x

)
and we obtain:{
x2 dq̂1

dx (x) = xq̂1(x)(â1(x)− a1)
x2 dq̂2

dx (x) = xq̂2(x)(â2(x)− a2)
⇐⇒


dq̂1

dx (x) = q̂1(x)
(
â1(x)− a1

x

)
dq̂2

dx (x) = q̂2(x)
(
â2(x)− a2

x

)

⇐⇒


q̂1(x) = exp

(∫ x

0

â1(s)− a1

s
ds
)

q̂2(x) = exp
(∫ x

0

â2(s)− a2

s
ds
)

if we set q̂1(0) = q̂2(0) = 1 ,

and the expression
∫ x

0
âj(s)−aj

s ds, for j = 1, 2, means the only anti-deriv-
ative of âj(s)−aj

s without constant term. Since â1 and â2 are 1-summable
in every direction θ 6= arg(±λ), the same goes for q̂1 and q̂2, and then for
F̂1 and F̂2 by Proposition 2.20. �

3.2.2. Proof of Proposition 3.10.

We are now able to prove Proposition 3.10.
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Proof of Proposition 3.10. — We have to use successively Lemma 3.8
(with Y0 := Y|{x=0}), followed by Proposition 3.10, then Proposition 3.15
and finally Proposition 3.19, using at each step Corollary 2.21 to obtain
the 1-summability. �

3.3. 1-summable straightening of two invariant hypersurfaces

For any θ ∈ R, we recall that we denote by Fθ the 1-sum of a 1-summable
series F̂ in the direction θ. Let θ ∈ R with θ 6= arg(±λ) and consider a
formal vector field Ŷ , 1-summable in the direction θ of 1-sum Yθ, of the
form

(3.10) Ŷ = x2 ∂

∂x
+ (λ1(x)y1 + F̂1(x,y)) ∂

∂y1
+ (λ2(x)y2 + F̂2(x,y)) ∂

∂y2
,

where:
• λ1(x) = −λ+ a1x

• λ2(x) = λ+ a2x

• λ 6= 0
• a1, a2 ∈ C
• for j = 1, 2,

F̂j(x,y) =
∑

n∈N2

|n|>2

F̂ (j)
n (x)yn ∈ CJx,yK

is 1-summable in the direction θ of 1-sum

Fj,θ(x,y) =
∑

n∈N2

|n|>2

Fj,n,θ(x)yn .

In particular, there exists A,B, µ > 0 such that for all n ∈ N2,
|n| > 2, for j = 1, 2:

∀ t ∈ ∆θ,ε,ρ, |B̃(F̂j,n)(t)| 6 A.B|n| exp(µ)
1 + µ2|t|2

,

for some ρ > 0 and ε > 0 such that (R.λ) ∩ Aθ,ε = ∅ (see Def-
inition 2.10 and Remark 2.11 for the notations). Notice that Fj,θ
is analytic and bounded in some sectorial neighborhood S ∈ Sθ,π
of the origin. For technical reasons, we use in this subsection the
alternative definition of the Borel transform B̃, with its associate
norm ‖ · ‖bis

µ (see Remarks 2.9 and 2.11 and Proposition 2.12).
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Proposition 3.15. — Under the assumptions above, there exists a pair
of formal power series (φ̂1, φ̂2) ∈ (CJx,yK)2 of order at least two with
respect to y which are 1-summable in every direction θ 6= arg(±λ), such
that the formal fibered diffeomorphism

Φ̂(x,y) = (x, y1 + φ̂1(x,y), y2 + φ̂2(x,y)) ,

(which is tangent to the identity and 1-summable in every direction θ 6=
arg(±λ)) conjugates Ŷ in (3.10) to

Ŷprep = x2 ∂

∂x
+ ((−λ+ a1x) + y2R̂1(x,y))y1

∂

∂y1

+ ((λ+ a2x) + y1R̂2(x,y))y2
∂

∂y2
,

where R̂1, R̂2 ∈ CJx,yK are 1-summable in every direction θ 6= arg(±λ).

Proof. — We follow and adapt the proof of analytic straightening of in-
variant curves for resonant saddles in two dimensions in [19]. We are looking
for

Ψ̂(x,y) = (x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y)) ,
with ψ̂1, ψ̂2 of order at least 2, and R̂1, R̂2 as above such that:

Ψ̂∗(Ŷprep) = Ŷ ,

i.e.

(3.11) dΨ̂ · Ŷprep = Ŷ ◦ Ψ̂ .

Then, we will set Φ := Ψ−1. Let us write

T̂1 := y1y2R̂1 =
∑
|n|>2

T̂1,n(x)yn

T̂2 := y1y2R̂2 =
∑
|n|>2

T̂2,n(x)yn

ψ̂1 =
∑
|n|>2

ψ̂1,n(x)yn

ψ̂2 =
∑
|n|>2

ψ̂2,n(x)yn ,

so that equation (3.11) becomes:

x2 ∂ψ̂1

∂x2 +
(

1 + ∂ψ̂1

∂y1

)
(λ1(x)y1 + T̂1) + ∂ψ̂1

∂y2
(λ2(x)y2 + T̂2)

= λ1(x)(y1 + ψ̂1) + F̂1(x, y1 + ψ̂1, y2 + ψ̂2)
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and

x2 ∂ψ̂2

∂x2 + ∂ψ̂2

∂y1
(λ1(x)y1 + T̂1) +

(
1 + ∂ψ̂2

∂y2

)
(λ2(x)y2 + T̂2)

= λ2(x)(y2 + ψ̂2) + F̂2(x, y1 + ψ̂1, y2 + ψ̂2) .

These equations can be written as:
(3.12)

∑
|n|>2

(
δ1,n(x)ψ̂1,n(x) + x2 dψ̂1,n

dx (x) + T̂1,n(x)
)

yn

= F̂1(x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y))− T̂1(x)∂ψ̂1

∂y1
(x,y)− T̂2(x)∂ψ̂1

∂y2
(x,y)

=:
∑
|n|>2

ζ1,n(x)yn

∑
|n|>2

(
δ2,n(x)ψ̂2,n(x) + x2 dψ̂2,n

dx (x) + T̂2,n(x)
)

yn

= F̂2(x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y))− T̂1(x)∂ψ̂2

∂y1
(x,y)− T̂2(x)∂ψ̂2

∂y2
(x,y)

=:
∑
|n|>2

ζ2,n(x)yn

where δj,n(x) = λ1(x)n1 + λ2(x)n2 − λj(x), j = 1, 2. We are looking for
T̂1, T̂2 such that {

T̂1,n = 0, if n1 = 0 or n2 = 0
T̂2,n = 0, if n1 = 0 or n2 = 0 .

Notice that ζj,n, for j = 1, 2 and |n| > 2, depends only on the ψ̂i,k’s and
the F̂i,k’s, for i = 1, 2, |k| < n. We can then determine the coefficients ψ̂j,n
and T̂j,n, j = 1, 2, |n| > 2, by induction on |n|, setting

T̂1,n = 0, if n1 = 0 or n2 = 0
T̂2,n = 0, if n1 = 0 or n2 = 0
ψ̂1,n = 0, if n1 > 1 and n2 > 1
ψ̂2,n = 0, if n1 > 1 and n2 > 1 ,

and solving for each n = (n1, n2) ∈ N2 with |n| > 2, the equations
δ1,n(x)ψ̂1,n(x) + x2 dψ̂1,n

dx (x) = ζ1,n(x), if n1 = 0 or n2 = 0

δ2,n(x)ψ̂2,n(x) + x2 dψ̂2,n

dx (x) = ζ2,n(x), if n1 = 0 or n2 = 0 .
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Lemma 3.16. — There exists β > 4π,M > 0 such that for all n ∈ N2

with |n| > 2, and for j = 1, 2, ‖ζj,n‖bis
β < +∞ and:

‖ψ̂j,n‖bis
β 6M.‖ζj,n‖bis

β ,

where the norm corresponds to the domain 4θ,ε,ρ (see Definition 2.10).

Proof. — For n = (n1, n2) ∈ N2 with n1 + n2 > 2 we have :

δ1,n(x) = λ1(x)(n1 − 1) + λ2(x)n2

=
{
λ(n2 + 1) + x(−a1 + a2n2), if n1 = 0
−λ(n1 − 1) + a1x(n1 − 1), if n2 = 0

and

δ2,n(x) = λ2(x)(n2 − 1) + λ1(x)n1

=
{
λ(n2 − 1) + a2x(n2 − 1), if n1 = 0
−λ(n1 + 1) + x(−a2 + a1n1), if n2 = 0.

We will only deal with δ1,n(x) (the case of δ2,n(x) being similar). Notice
that we are exactly in the situation of Proposition 2.32. In particular, using
notation in this definition, we respectively have on the one hand:

(3.13) k = λ(n2 + 1), α = (−a1 + a2n2)
λ(n2 + 1) ,

and

dk = min{|λ(n2 + 1)| − ρ, |λ(n2 + 1)|| sin(θ + ε)|, |λ(n2 + 1)|| sin(θ − ε)|}

n1 = 0, and on the other hand

(3.14) k = −λ(n1 + 1), α = (−a2 + a1n1)
−λ(n1 + 1) ,

and
(3.15)
dk = min{|λ(n1 + 1)| − ρ, |λ(n1 + 1)|| sin(θ + ε)|, |λ(n1 + 1)|| sin(θ − ε)|}

when n2 = 0. We can chose the domain ∆θ,ε,ρ corresponding to the 1-
summability of F̂1 and F̂2 with 0 < ρ < |λ|, so that dk > 0, since ε > 0 is
such that (R.λ) ∩ Aθ,ε = ∅. Finally, we chose

β >
C(|a1|+ |a2|)

min{|λ| − ρ, |λ sin(θ + ε)|, |λ sin(θ − ε)|} > 0

(with C = 2 exp(2)
5 + 5), so that ‖F̂1‖bis

β < +∞. This choice of β implies
βdk > C|αk| as needed in Proposition 2.32, in both considered situations,
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namely n1 = 0 and n2 = 0 respectively. Since for j = 1, 2 and |n| > 2, ζj,n
depends only on the ψ̂i,k’s and the F̂i,k’s, for i = 1, 2, |k| < n, we deduce
by induction that{

‖ζ1,n‖bis
β < +∞, if n1 = 0 or n2 = 0

‖ζ2,n‖bis
β < +∞, if n1 = 0 or n2 = 0

and then, thanks to Proposition 2.32:

‖ψ̂j,n‖bis
β 6 ( β

β(|λ| − ρ)− C(|a1|+ |a2|)
).‖ζj,n‖bis

β for j = 1, 2.

The lemma is proved, with

M =
(

β

βmin{|λ| − ρ, |λ sin(θ + ε)|, |λ sin(θ − ε)|} − C(|a1|+ |a2|)

)
. �

In order to finish the proof of Proposition 3.15, we have to prove that
for j = 1, 2, the series ψ̂j :=

∑
n∈N2 ‖ψ̂j,n‖bis

β yn is convergent in a poly-disc
D(0, r), with r = (r1, r2) ∈ (R>0)2 (then, Corollary 2.30 gives 1-summab-
ility). We will prove this by using a method of dominant series. Let us
introduce some useful notations. If (B, ‖ · ‖) is a Banach algebra, for any
formal power series f(y) =

∑
n fnyn ∈ BJyK, we define f :=

∑
n ‖fn‖yn,

and f(y) := f(y, y). If g =
∑

n gnyn ∈ BJyK is another formal power series,
we write f ≺ g if for all n ∈ N2, we have ‖fn‖ 6 ‖gn‖. We remind the
following classical result (the proof is performed in [26] when (B, ‖ · ‖) =
(C, | · |), but the same proof works for any Banach algebra).

Lemma 3.17 ([26, Theorem 2.2, p. 48]). — For j = 1, 2, let

fj =
∑
|n|>2

fj,nyn ∈ BJyK

be formal power series with coefficients in a Banach algebra (B, ‖ · ‖), and
of order at least two. Consider also two other series

gj =
∑
|n|>2

gj,nyn ∈ B{y}, j = 1, 2,

of order at least two, which have a non-zero radius of convergence at the
origin. Assume that there exists σ > 0 such that for j = 1, 2:

σfj ≺ gj(y1 + f1, y2 + f2) .

Then, f1 and f2 have a non-zero radius of convergence.

Taking β > 4π, according to Proposition 2.12, for all f̂ , ĝ ∈ Bbis
β , we

have:
‖f̂ ĝ‖bis

β 6 ‖f̂‖bis
β ‖ĝ‖bis

β .
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This implies that (Bbis
β , ‖ · ‖bis

β ) is a Banach algebra as needed in the above
lemma. It remains to prove that there exists σ > 0 such that for j = 1, 2:

σψ̂j ≺ F̂j(y1 + ψ̂1, y2 + ψ̂2) .

Remember that there exists M > 0 such that for j = 1, 2:

‖ψ̂j,n‖bis
β 6M.‖ζj,n‖bis

β

where

ζ1 :=
∑
|n|>2

ζ1,n(x)yn

= F̂1(x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y))− T̂1(x)∂ψ̂1

∂y1
(x,y)− T̂2(x)∂ψ̂1

∂y2
(x,y)

ζ2 :=
∑
|n|>2

ζ2,n(x)yn

= F̂2(x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y))− T̂1(x)∂ψ̂2

∂y1
(x,y)− T̂2(x)∂ψ̂2

∂y2
(x,y) .

If we set σ := 1
M , then we have

σψ̂1 ≺ ζ1 ≺ F̂ 1(x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y))

+T̂1(x)∂ψ̂1

∂y1
(x,y) + T̂2(x)∂ψ̂1

∂y2
(x,y)

σψ̂2 ≺ ζ2 ≺ F̂ 2(x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y))

+T̂1(x)∂ψ̂2

∂y1
(x,y) + T̂2(x)∂ψ̂2

∂y2
(x,y).

Moreover, we recall that
T̂1,n = 0, if n1 = 0 or n2 = 0
T̂2,n = 0, if n1 = 0 or n2 = 0
ψ̂1,n = 0, if n1 > 1 and n2 > 1
ψ̂2,n = 0, if n1 > 1 and n2 > 1 ,

so that we have in fact more precise dominant relations:σψ̂1 ≺ ζ1 ≺ F̂ 1

(
x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y)

)
σψ̂2 ≺ ζ2 ≺ F̂ 2

(
x, y1 + ψ̂1(x,y), y2 + ψ̂2(x,y)

)
.

It remains the apply the lemma above to conclude. �
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Remark 3.18. — In the previous proposition, assume that for j = 1, 2,

F̂j(x,y) =
∑

n∈N2, |n|>2

F̂ (j)
n (x)yn

in the expression of Ŷ satisfies{
F̂

(1)
n (0) = 0, ∀ n = (n1, n2) | n1 + n2 > 2 and

(
n1 = 0 or n2 = 0

)
F̂

(2)
n (0) = 0, ∀ n = (n1, n2) | n1 + n2 > 2 and

(
n1 = 0 or n2 = 0) .

Then, the diffeomorphism Φ̂ in the proposition can be chosen to be the
identity on {x = 0}, so that{

y1y2R̂1(x,y) = F̂1(0,y) + xŜ1(x,y)

y1y2R̂2(x,y) = F̂2(0,y) + xŜ2(x,y) ,

where Ŝ1, Ŝ2 are 1-summable in the direction θ 6= arg(±λ) and both
F̂1(0,y), F̂2(0,y) ∈ C{y} are convergent in neighborhood of the origin in
C2. Indeed, we easily see by induction on |n| = n1 + n2 > 2 that ψ̂1 and
ψ̂2 can be chosen “divisible” by x, and that ζ1, ζ2 are such that ζj,n(x) is
also “divisible” by x if n1 = 0 or n2 = 0.

3.4. 1-summable normal form up to arbitrary order N

We consider now a (formal) non-degenerate diagonal doubly-resonant
saddle node, which is supposed to be div-integrable and 1-summable in
every direction θ 6= arg(±λ), of the form

Ŷprep = x2 ∂

∂x
+
(
− λ+ a1x− d(y1y2) + xŜ1(x,y)

)
y1

∂

∂y1

+
(
λ+ a2x+ d(y1y2) + xŜ2(x,y)

)
y2

∂

∂y2
,

where:
• λ ∈ C\{0};
• Ŝ1, Ŝ2 ∈ CJx,yK are of order at least one with respect to y and
1-summable in every direction θ ∈ R with θ 6= arg(±λ);

• a := res(Ŷprep) = a1 + a2 /∈ Q60 ;
• d(v) ∈ vC{v} is the germ of an analytic function in v := y1y2
vanishing at the origin.

ANNALES DE L’INSTITUT FOURIER



DOUBLY-RESONANT SADDLE-NODES IN (C3, 0) 1767

As usual, we denote by Yprep,θ, S1,θ, S2,θ the respective 1-sums of Ŷ , Ŝ1, Ŝ2
in the direction θ. Let us introduce some useful notations:

(3.16) Ŷprep = Y0 +D
−→
C +R

−→
R ,

where
•
−→
C := −y1

∂
∂y1

+ y2
∂
∂y2

•
−→
R := y1

∂
∂y1

+ y2
∂
∂y2

• Y0 := λ
−→
C + x

(
x ∂
∂x + a1y1

∂
∂y1

+ a2y2
∂
∂y2

)
• D(x,y) = d(y1y2) + xD(1)(x,y) = d(y1y2) + x

(
Ŝ2−Ŝ1

2

)
is 1−sum-

mable in the direction θ of 1-sum Dθ : it is called the “tangential”
part. Dθ is also dominated by ‖y‖ = max(|y1|, |y2|) (D is of order
at least one with respect to y).

• R(x,y) = xR(1)(x,y) = x
(
Ŝ2+Ŝ1

2

)
is 1-summable in the direction

θ of 1-sum Rθ: it is called the “radial” part. Rθ is also dominated
by ‖y‖∞ = max(|y1|, |y2|) (R is of order at least one with respect
to y).

The following proposition gives the existence of a 1-summable normalizing
map, up to any order N ∈ N>0, with respect to x.

Proposition 3.19. — Let

(3.17) Ŷprep = Y0 +D
−→
C +R

−→
R

be as above. Then for all N ∈ N>0 there exist d(N)(v) ∈ C{v} of order
at least one and Φ(N) ∈ Difffib(C3, 0; Id) which conjugates Ŷprep (resp. its
1-sums Yprep,θ in the direction θ) to

Y (N) = Y0 +
(
d(N)(y1y2) + xND(N)(x,y)

)−→
C + xNR(N)(x,y)−→R(

resp. Y (N)
θ = Y0 +

(
d(N)(y1y2) + xND

(N)
θ (x,y)

)−→
C + xNR

(N)
θ (x,y)−→R

)
where D(N), R(N) are 1-summable in the direction θ, of order at least one
with respect to y, of 1-sums D(N)

θ , R
(N)
θ in the direction θ. Moreover, one

can choose d(2) = · · · = d(N) for all N > 2, and d(1) = d.

Proof. — The proof is performed by induction on N .
• The case N = 1 is the initial situation here, and is already proved
with Ŷprep = Y (1).

• Assume that the result holds for N ∈ N>0. We will proceed in three
steps.
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First step. — Let us write

R(N)(x,y) =
∑

n1+n2>1
R(N)
n1,n2

(x)yn1
1 yn2

2 .

We are looking for an analytic solution τ to the equations:

LY (N)(τ) = −xNR(N) + (xN+1R̃(N+1)) ◦ Λτ(3.18)

L
Y

(N)
θ

(τ) = −xNR(N)
θ + (xN+1R̃

(N+1)
θ ) ◦ Λτ ,

for a convenient choice of R̃(N+1), R̃
(N+1)
θ , with

Λτ (x,y) := (x, y1 exp(τ(x,y)), y2 exp(τ(x,y))) ,

and

τ(x,y) = xN−1τ0(y1y2) + xNτ1(y) ,

where τ1(y) =
∑
j1 6=j2

τ1,j1j2y
j1
1 y

j2
2 . More concretely, Λτ is the for-

mal flow of −→R at “time” τ(x,y).
If we admit for a moment that such an analytic solution τ exists,

then Λτ ∈ Difffib(C3, 0; Id) and therefore Λ−1
τ ∈ Difffib(C3, 0; Id).

Consider d(N) and D̃(N−1) such that

d(N+1)(z1z2) + xN−1D̃(N−1)(x, z)

:=
(
d(N)(y1y2) + xND(N)(x,y)

)
◦ Λ−1

τ (x, z)

d(N+1)(z1z2) + xN−1D̃θ
(N−1)(x, z)

:=
(
d(N)(y1y2) + xND

(N)
θ (x,y)

)
◦ Λ−1

τ (x, z),

with D̃(N−1) = 0 if N = 1. Consequently, the two equations given
in (3.18) imply that

(Λτ )∗(Y (N)) = Y0 +
(
d(N+1)(z1z2) + xN−1D̃(N−1)(x, z)

)−→
C

+ xN+1R̃(N+1)(x, z)−→R

(Λτ )∗(Y (N)
θ ) = Y0 +

(
d(N+1)(z1z2) + xN−1D̃

(N−1)
θ (x, z)

)−→
C

+ xN+1R̃
(N+1)
θ (x, z)−→R .
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Indeed:

dΛτ · Y (N) =

 LY (N)(x)
LY (N)(y1 exp(τ(x,y)))
LY (N)(y2 exp(τ(x,y)))


=

 x2

(LY (N)(y1) + y1(LY (N)(τ))) exp(τ(x,y))
(LY (N)(y2) + y2(LY (N)(τ))) exp(τ(x,y))


=
(
Y0 +

(
d(N+1) + xN−1D̃(N−1)

)−→
C

+ xN+1R̃(N+1)−→R
)
◦ Λτ (x,y) .

These computations are also true with the corresponding 1-sums
of formal objects considered here, i.e. with Y

(N)
θ , D(N)

θ , D̃(N−1)
θ ,

R̃
(N+1)
θ instead of Y (N), D(N), D̃(N−1), R̃(N+1) respectively. We

use Proposition 2.20 to obtain the 1-summability of the objects
defined by compositions.
Let us prove that there exists a germ of analytic function of the

form

τ(x,y) = xN−1τ0(y1y2) + xNτ1(y) ,

of order ate least one with respect to y in the origin, with

τ1(y) =
∑
j1 6=j2

τ1,j1j2y
j1
1 y

j2
2

satisfying equation (3.18). This equation can be written

x2 ∂τ

∂x
+
(
−λ+ a1x− d(N)(y1y2)− xND(N)(x,y) + xNR(N)(x,y)

)
y1
∂τ

∂y1

+
(
λ+ a2x+ d(N)(y1y2) + xND(N)(x,y) + xNR(N)(x,y)

)
y2
∂τ

∂y2

= −xNR(N) +
(
xN+1R̃(N+1)

)
◦ Λτ ,

or equivalently

x2 ∂τ

∂x
+a1xy1

∂τ

∂y1
+a2xy2

∂τ

∂y2
+
(
λ+ d(N)(y1y2) + xND(N)(x,y)

)
L−→C (τ)

+
(
xNR(N)(x,y)

)
L−→R(τ) = −xNR(N) +

(
xN+1R̃(N+1)

)
◦ Λτ .
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Let us consider terms of degree N with respect to x:

(3.19) (N − 1)τ0(y1y2) +
(
a1 + a2 + 2δN,1R(N)(0,y)

)
y1y2

∂τ0
∂v

(y1y2)

+
(
λ+ d(N)(y1y2)

)
L−→C (τ1) = −R(N)(0,y)

(here δN,1 is the Kronecker notation), and let us define

R(N)
res (0, v) :=

∑
k>1

R
(N)
k,k (0)vk .

We use now the fact that Im(L~C)�Ker(L~C) is a direct sum, and that
Ker(L~C) is the set of formal power series in the resonant monomial
v = y1y2. Isolating the term L~C(τ1) on the one hand, and the others
on the other hand, the direct sum above gives us:

v
(
a1 + a2 + 2δN,1R(N)

res (0, v)
)dτ0

dv (v) + (N − 1)τ0(v) = −R(N)
res (0, v)

τ0(0) = 0

and


L−→C (τ1)= −1

λ+d(N)(y1y2)

((
2δN,1

(
R(N)(0,y)−R(N)

res (0,v)
))
y1y2

dτ0
dv (y1y2)

+R(N)(0,y)−R(N)
res (0, v)

)
τ1(0) = 0 .

Since R(N) is analytic with respect to y, R(N)
res (0, v) is analytic near

v = 0. Furthermore, as R(N)
res (0, 0) = 0 and a1+a2 /∈ Q60, the first of

the two equation above has a unique formal solution τ0 with τ0(0),
and this solution is convergent in a neighborhood of the origin.
Once τ0 is determined, there exists a unique formal solution τ1 to
the second equation satisfying τ1(y) =

∑
j1 6=j2

τ1,j1j2y
j1
1 y

j2
2 , which

is moreover convergent in a neighborhood of the origin of C2.
Therefore Λτ is a germ of analytic diffeomorphism fixing the ori-

gin, fibered, tangent to the identity and conjugates Y (N) (resp.
Y

(N)
θ ) to Ỹ (N) := (Λτ )∗(Y (N)) (resp. to Ỹ (N)

θ := (Λτ )∗(Y (N)
θ )).
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Equation (3.19) implies that both (LY (N)(τ) + xNR(N)) and
(L

Y
(N)
θ

(τ) + xNR
(N)
θ ) are divisible by xN+1, so that we can define:

R̃(N+1)(x, z) :=
(
LY (N)(τ) + xNR(N)

xN+1

)
◦ Λ−1

τ (x, z)

R̃
(N+1)
θ (x, z) :=

LY (N)
θ

(τ) + xNR
(N)
θ

xN+1

 ◦ Λ−1
τ (x, z) .

By Proposition 2.20, R̃(N+1) (resp. D̃(N−1)) is 1-summable in the
direction θ, of 1-sum R̃

(N+1)
θ (resp. D̃(N−1)

θ ).
Finally, notice that d(N+1) ◦ Λτ (0,y) = d(N)(y1, y2), τ(0,y) = 0

and then Λτ (0,y) = (0, y1, y2) if N > 1, so that d(N+1) = d(N)

when N > 1.
Second step. — Exactly as in the previous step which dealt with

the “radial part” (in fact the computations are even easier here), we
can prove the existence of a germ of an analytic function σ, solution
to the equation:

(3.20)
LỸ (N)(σ) = −xN−1D̃(N−1) + (xN ˜̃D(N)) ◦ Γσ

L
Ỹ

(N)
θ

(σ) = −xN−1D̃
(N−1)
θ + (xN ˜̃D(N)

θ ) ◦ Γσ ,

for a good choice of ˜̃D(N), ˜̃D(N)
θ , with

Γσ(x, z) := (x, y1 exp(−σ(x, z)), y2 exp(σ(x, z)))

and

σ(x, z) = xN−2σ0(z1z2) + xN−1σ1(z) ,

where σ1(z) =
∑
j1 6=j2

σ1,j1,j2z
j1
1 z

j2
2 . Here, we take σ0 = 0 if N = 1.

Notice that Γσ is the formal flow of −→C at “time” σ(x, z).
Again, as in the first step with the “radial part”, we have on a

Γσ ∈ Difffib(C3, 0; Id) and then also Γ−1
σ ∈ Difffib(C3, 0; Id). If we

consider ˜̃R(N+1) and ˜̃R(N+1)
θ such that

˜̃R(N+1)(x,y) := R̃(N+1) ◦ Γ−1
σ (x,y)

˜̃R(N+1)
θ (x, z) := R̃

(N+1)
θ ◦ Γ−1

σ (x,y) ,
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then it follows from (3.20) that

(Γσ)∗(Ỹ (N)) = Y0 +
(
d(N+1)(y1y2) + xN ˜̃D(N)(x,y)

)−→
C

+ xN+1 ˜̃R(N+1)(x,y)−→R

(Γσ)∗(Ỹ (N)
θ ) = Y0 +

(
d(N+1)(y1y2) + xN ˜̃D(N)

θ (x,y)
)−→
C

+ xN+1 ˜̃R(N+1)
θ (x,y)−→R .

Notice that the degree of the monomial xN+1 in front of ˜̃R(N+1)

is indeed N + 1 (and not N): this essentially comes form the fact
that Γσ (and Γ−1

σ ) preserves the resonant monomial v = y1y2. We
choose:

˜̃D(N)(x,y) :=
(
LỸ (N)(σ) + xN−1D̃(N−1)

xN

)
◦ Γ−1

σ (x,y)

˜̃D(N)
θ (x,y) :=

(L
Ỹ

(N)
θ

(σ) + xN−1D̃
(N−1)
θ

xN

)
◦ Γ−1

σ (x,y) .

By Proposition 2.20, ˜̃D(N) (resp. ˜̃R(N+1)) is 1-summable in the
direction θ, of 1-sum ˜̃D(N)

θ (resp. ˜̃R(N+1)
θ ). We finally define ˜̃Y (N) :=

(Γσ)∗(Ỹ (N)), and ˜̃Y (N)
θ := (Γσ)∗(Ỹ (N)

θ ).
Third (and last) step. — As in both previous steps, we can prove

the existence of a germ of an analytic function ϕ, solution to the
equation:

L ˜̃Y (N)(ϕ) = −xN ˜̃D(N) +
(
xN+1D(N+1)

)
◦ Γϕ ,

L ˜̃Y (N)
θ

(ϕ) = −xN ˜̃D(N)
θ +

(
xN+1D

(N+1)
θ

)
◦ Γϕ ,

for a good choice of D(N+1), D
(N+1)
θ , with

Γϕ(x,y) := (x, y1 exp(−ϕ(x,y)), y2 exp(ϕ(x,y)))

and
ϕ(x,y) = xN−1ϕ0(y1y2) + xNϕ1(y) ,

where ϕ1(y) =
∑
j1 6=j2

ϕ1,j1,j2y
j1
1 y

j2
2 .

Again, we have on a Γϕ ∈ Difffib(C3, 0; Id) and then also Γ−1
ϕ ∈

Difffib(C3, 0; Id). If we consider R(N+1) and R(N+1)
θ such that

R(N+1)(x,y) := ˜̃R(N+1) ◦ Γ−1
ϕ (x,y)

R
(N+1)
θ (x, z) := ˜̃R(N+1)

θ ◦ Γ−1
ϕ (x,y) ,
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then we have:

(Γϕ)∗( ˜̃Y (N)) = Y0 + (d(N+1)(y1y2) + xN+1D(N+1)(x,y))−→C

+ xN+1R(N+1)(x,y)−→R

(Γϕ)∗( ˜̃Y (N)
θ ) = Y0 + (d(N+1)(y1y2) + xN+1D

(N+1)
θ (x,y))−→C

+ xN+1R
(N+1)
θ (x,y)−→R .

As above, notice that the degree of the monomial xN+1 in front of
R(N+1) is indeed N + 1. We choose:

D(N+1)(x,y) :=
(
L ˜̃Y (N)(ϕ) + xN ˜̃D(N)

xN+1

)
◦ Γ−1

ϕ (x,y)

D
(N+1)
θ (x,y) :=

(L ˜̃Y (N)
θ

(ϕ) + xN ˜̃D(N)
θ

xN+1

)
◦ Γ−1

ϕ (x,y) .

By Proposition 2.20,D(N+1) (resp.R(N+1)) is 1-summable in the di-
rection θ, of 1-sumD

(N)
θ (resp.R(N+1)

θ ). We finally define Y (N+1) :=
(Γϕ)∗( ˜̃Y (N)), and Y (N+1)

θ := (Γϕ)∗( ˜̃Y (N)
θ ).

�

3.5. Proof of Proposition 3.1

We now give a short proof of Proposition 3.1, using the different results
proved in this section.

Proof of Proposition 3.1. — We just have to use consecutively Propo-
sition 3.7 (applied to Y0 := Y|{x=0}), Proposition 3.10, Proposition 3.15
and finally Proposition 3.19, using at each time Corollary 2.21 in order to
obtain the directional 1-summability. �

4. Sectorial analytic normalization

The aim of this section is to prove that for any Y ∈ SN diag,0 and for
any η ∈ [π, 2π[, there exists a unique pair

(Φ+,Φ−) ∈ Difffib(Sarg(iλ),η; Id)×Difffib(Sarg(−iλ),η; Id)

whose elements analytically conjugate Y to its normal form Ynorm (given by
Theorem 1.5) in sectorial neighborhoods of the origin with wide opening.
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The existence of sectorial normalizing maps Φ+ and Φ− in domains of the
form S+ ∈ Sarg(iλ),η and S− ∈ Sarg(−iλ),η for all η ∈ [π, 2π[, is equivalent
to the existence of a sectorial normalizing map Φθ in domains S ∈ Sθ,π,
for all θ ∈ R such that θ 6= arg(±λ). At the end of this section we will also
prove that Φ+ and Φ− both admit the unique formal normalizing map Φ̂
(given by Theorem 1.5) as weak Gevrey-1 asymptotic expansion in domains
S+ ∈ Sarg(iλ),η and S− ∈ Sarg(−iλ),η respectively. In particular, this will
prove that Φ̂ is weakly 1-summable in every direction θ 6= arg(±λ). We start
with a vector field Y (N) normalized up to orderN > 2 as in Proposition 3.1.
First of all, we prove the existence of germs of sectorial analytic functions
α+ ∈ O(S+), α− ∈ O(S−), which are solutions to homological equations of
the form:

LY (N)(α±) = xM+1A±(x,y) ,

where M ∈ N>0 and A± ∈ O(S±) is analytic in S± (see Lemma 4.6).
In order to construct such solutions, we will integrate some appropriate
meromorphic 1-form on asymptotic paths (see Subsection 4.4). Once we
have these solutions α+, α−, we will construct the desired germs of sectorial
diffeomorphisms as the flows of some elementary linear vector fields at
“time” α±(x,y). After that, we will prove in Subsection 4.5 that there exist
unique germs of sectorial fibered diffeomorphisms tangent to the identity
which conjugate Y ∈ SN fib,0 to its normal form, by studying the sectorial
isotropies in sectorial domains with wide opening. We go on using the
notations introduced in Subsection 3.4, i.e.

• λ ∈ C∗
• a1 + a2 /∈ Q60

•
−→
C := −y1

∂
∂y1

+ y2
∂
∂y2

•
−→
R := y1

∂
∂y1

+ y2
∂
∂y2

• Y0 := λ
−→
C + x

(
x ∂
∂x + a1y1

∂
∂y1

+ a2y2
∂
∂y2

)
.

For ε ∈ ]0, π2 [ and r > 0, we will consider two sectors, namely

S+(r, ε) := S
(
r, arg(iλ)− π

2 − ε, arg(iλ) + π

2 + ε
)

and

S−(r, ε) = S
(
r, arg(−iλ)− π

2 − ε, arg(−iλ) + π

2 + ε
)
.
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Let us consider a (weakly) 1-summable non-degenerate div-integrable
doubly-resonant saddle-node normalized up to an order N+2, with N > 0:

Y (N+2) = Y0 + (c(y1y2) + xN+2D(N+2)(x,y))−→C + xN+2R(N+2)(x,y)−→R
(formal)

Y
(N+2)
± = Y0 + (c(y1y2) + xN+2D

(N+2)
± (x,y))−→C + xN+2R

(N+2)
± (x,y)−→R

(analytic in S±(r, ε)×D(0, r))

where D(N+2), R(N+2) are of order at least one with respect to y, and
(weak) 1-summable in every direction θ ∈ R with θ 6= arg(±λ): their
respective (weak) 1-sums in the direction arg(±iλ) are D(N+2)

± , R
(N+2)
± ,

which can be analytically extended in S±(r, ε) × (C2, 0). In order to have
the complete sectorial normalizing map, we have to assume now that our
vector field is strictly non-degenerate, i.e.

<(a1 + a2)>0 .

Proposition 4.1. — Under the assumptions above, for all η ∈ ]π, 2π[,
there exist two germs of sectorial fibered diffeomorphisms{

Ψ+ ∈ Difffib(Sarg(iλ),η; Id)
Ψ− ∈ Difffib(Sarg(−iλ),η; Id)

of the form

(4.1) Ψ± : (x,y) 7→ (x,y + O(‖y‖2)) ,

which conjugate Y (N+2)
± to its formal normal form

Ynorm = x2 ∂

∂x
+ (−λ+ a1x− c(y1y2))y1

∂

∂y1
+ (λ+ a2x+ c(y1y2))y2

∂

∂y2
,

where c(v) ∈ vC{v} is the germ of an analytic function in v := y1y2 van-
ishing at the origin. Moreover, we can choose Ψ± above such that

Ψ±(x,y) = Id(x,y) + xNP(N)
± (x,y) ,

where P(N)
± = (0, P1,±, P2,±) is analytic in S±(r, ε)×(C2, 0) (for some r > 0

and ε > η
2 ) and of order at least two with respect to y.

By combining Propositions 3.1 and 4.1 we immediately obtain the fol-
lowing result.

Corollary 4.2. — Let Y ∈ SN fib,0 be a strictly non-degenerate di-
agonal doubly-resonant saddle-node which is div-integrable. Then, for all
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η ∈ ]π, 2π[, there exist two germs of sectorial fibered diffeomorphisms{
Φ+ ∈ Difffib(Sarg(iλ),η; Id)
Φ− ∈ Difffib(Sarg(−iλ),η; Id)

tangent to the identity such that:

(Φ±)∗(Y ) = x2 ∂

∂x
+ (−λ+ a1x− c(y1y2))y1

∂

∂y1

+ (λ+ a2x+ c(y1y2))y2
∂

∂y2

=: Ynorm ,

where λ ∈ C∗, <(a1 + a2) > 0, and c(v) ∈ vC{v} is the germ of an analytic
function in v := y1y2 vanishing at the origin.

As already mentioned, we will also prove at the end of this section that
Φ+ and Φ− are unique as germs (see Proposition 1.13), and that they
are the weak 1-sums of the unique formal normalizing map Φ̂ given by
Theorem 1.5.

4.1. Proof of Proposition 4.1

We give here two consecutive propositions which allow to prove Propo-
sition 4.1 as an immediate consequence. When we say that a function
f : U → C is dominated by another g : U → R+ in U , it means that
there exists L > 0 such that for all u ∈ U , we have |f(u)| 6 L.g(u).

Proposition 4.3. — Let Y (N+2)
± = Y0 +D±

−→
C +R±

−→
R, where{

D±(x,y) = c(y1y2) + xN+2D
(N+2)
± (x,y)

R±(x,y) = xN+2R
(N+2)
± (x,y) ,

with N ∈ N>0, c(v) ∈ vC{v} of order at least one, and D
(N+2)
± , R

(N+2)
±

analytic in S±(r, ε)× (C2, 0) and dominated by ‖y‖∞.
Assume <(a1 +a2) > 0. Then, possibly by reducing r > 0 and the neigh-

borhood (C2, 0), there exist two germs of sectorial fibered diffeomorphisms
ϕ+ and ϕ− in S+(r, ε) × (C2, 0) and S−(r, ε) × (C2, 0) respectively, which
conjugate Y (N+2)

± to

(4.2) Y−→C ,± := Y0 + C±
−→
C ,
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where C±(x,y) = D± ◦ ϕ−1
± (x, z). Moreover we can chose ϕ± to be of the

form

(4.3) ϕ±(x,y) = (x, y1 exp(ρ±(x,y)), y2 exp(ρ±(x,y))) ,

where ρ±(x,y) = xN+1ρ̃±(x,y) and ρ̃± is analytic in S±(r, ε)× (C2, 0) and
dominated by ‖y‖∞.

Remark 4.4. — Notice that ϕ−1
± is of the form

ϕ−1
± (x, z) =

(
x, z1

(
1 + xN+1ϑ(x, z)

)
, z2
(
1 + xN+1ϑ(x, z)

))
,

where ϑ is analytic in S±(r, ε) × (C2, 0) and dominated by ‖z‖∞. Conse-
quently:

C±(x, z) = c(z1z2) + xN+1C
(N+1)
± (x, z) ,

where c is the same as above and C± is analytic in S±(r, ε) × (C2, 0) and
dominated by ‖z‖∞.

Proposition 4.5. — Let YC,± := Y0 + C±
−→
C , where

C±(x, z) = c(z1z2) + xN+1C
(N+1)
± (x, z) ,

with N ∈ N>0, c(v) ∈ vC{v} of order at least one, and C(N+1)
± analytic in

S±(r, ε)× (C2, 0) and dominated by ‖z‖∞. Assume <(a1 + a2) > 0. Then,
possibly by reducing r > 0 and the neighborhood (C2, 0), there exist two
germs of sectorial fibered diffeomorphisms ψ+ and ψ− in S+(r, ε)× (C2, 0)
and S−(r, ε)× (C2, 0) respectively, which conjugate YC,± to

(4.4) Ynorm := Y0 + c(v)−→C .

Moreover, we can chose ψ± to be of the form

(4.5) ψ±(x, z) = (x, z1 exp(−χ±(x, z)), z2 exp(χ±(x, z))) ,

where χ±(x, z) = xN χ̃±(x, z) and χ̃ is analytic in S±(r, ε) × (C2, 0) and
dominated by ‖z‖∞.

If we assume for a moment the two propositions above, the proof of
Proposition becomes obvious.

Proof of Proposition 4.1. — It is an immediate consequence of the
consecutive application of the previous two propositions, just by taking
Ψ± = ψ± ◦ ϕ± with the notations above. �
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4.2. Proof of Propositions 4.3 and 4.5

In order to prove Propositions 4.3 and 4.5, we will need the following
lemmas. The first one gives the existence of analytic solutions (in sectorial
domains) to a homological equations we need to solve.

Lemma 4.6. — Let Z± := Y0 + C±(x,y)−→C + xR
(1)
± (x,y)−→R, with C±,

R
(1)
± analytic in S±(r, ε) × (C2, 0) and dominated by ‖y‖∞ and let also

A±(x,y) be analytic in S±(r, ε) × (C2, 0) and dominated by ‖y‖∞. Then
for all M ∈ N>0, possibly by reducing r > 0 and the neighborhood (C2, 0),
there exists a solution α± to the homological equation

(4.6) LZ±(α±) = xM+1A±(x,y) ,

such that α±(x,y) = xM α̃±(x,y), where α̃± is a germ of analytic function
in S±(r, ε)× (C2, 0) and dominated by ‖y‖∞.

We will prove this lemma in Subsection 4.4. The following lemma proves
that ϕ± and ψ± constructed in Propositions 4.3 and 4.5 are indeed germs of
sectorial fibered diffeomorphisms in domains of the form S±(r, ε)× (C2, 0).

Lemma 4.7. — Let f±, g± be two germs of analytic and bounded func-
tions in S±(r, ε)× (C2, 0), which tend to 0 as (x,y)→ (0,0) in S±(r, ε)×
(C2, 0). Then

φ± : (x,y) 7→ (x, y1 exp(f±(x,y)), y2 exp(g±(x,y)))

defines a germ of sectorial fibered diffeomorphism analytic in S±(r, ε) ×
(C2, 0) (possibly by reducing r > 0 and the neighborhood (C2, 0)).

Let us explain why these lemmas imply Propositions 4.3 and 4.5.

Proof of both Propositions 4.3 and 4.5. — It is sufficient to apply
Lemma 4.6 with M = N + 1, A± = −R(N+2)

± , α± = ρ± and Z± = Y
(N+2)
±

for Proposition 4.3, and with M = N , A± = −C(N+1)
± , α± = χ± and

Z± = Y−→C ,± for Proposition 4.5. Then we use Lemma 4.7 to see that ϕ±
and ψ± are germs of sectorial fibered diffeomorphisms on the considered
domains, and we finally check that they do the conjugacy we want. With
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the notations above:

dϕ± · Y (N+2)
± =


L
Y

(N+2)
±

(x)
L
Y

(N+2)
±

(y1 exp(ρ±(x,y)))
L
Y

(N+2)
±

(y2 exp(ρ±(x,y)))



=

 x2

(L
Y

(N+2)
±

(y1) + y1(L
Y

(N+2)
±

(ρ±))) exp(ρ±(x,y))
(L

Y
(N+2)
±

(y2) + y2(L
Y

(N+2)
±

(ρ±))) exp(ρ±(x,y))


=

 x2

(−λ+ a1x−D±(x,y))y1 exp(ρ±(x,y))
(λ+ a2x+D±(x,y))y2 exp(ρ±(x,y))


(
we have used L

Y
(N+2)
±

(ρ±) = −xN+2R
(N+2)
±

)
= (Y0 + C±

−→
C ) ◦ ϕ±(x,y)

= Y−→C ,± ◦ ϕ±(x,y),

so that (ϕ±)∗(Y (N+2)
± ) = Y−→C ,± and then

dψ± · Y−→C ,± =

 LY−→C ,±(x)
LY−→C ,±(z1 exp(−χ(x, z)))
LY−→C ,±(z2 exp(χ(x, z)))


=

 x2

(LY−→C ,±(z1) + z1(LY−→C ,±(χ))) exp(−χ(x, z))
(LY−→C ,±(z2) + z2(LY−→C ,±(χ))) exp(χ(x, z))


=

 x2

(−λ+ a1x− c(z1z2))z1 exp(−χ(x, z))
(λ+ a2x+ c(z1z2))z2 exp(χ(x,y))


(
we have used LY−→C ,±(χ±) = −xN+1C

(N+1)
±

)
= (Y0 + c(u)−→C ) ◦ ψ±(x, z)
= Ynorm ◦ ψ±(x, z),

so that (ψ±)∗(Y−→C ,±) = Ynorm. �

4.3. Proof of Lemma 4.7

Proof of Lemma 4.7. — We consider two germs of analytic functions
f±, g± in S±(r, ε)× (C2, 0) which tend to 0 as (x,y)→ (0,0) in S±(r, ε)×
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(C2, 0), and we define

φ± : (x,y) 7→ (x, y1 exp(f±(x,y)), y2 exp(g±(x,y))) .

Let us first prove that φ± is into. Let x = (x, y1, y2) and x′ = (x′, y′1, y′2) in
S±(r, ε)×(C2, 0) such that φ±(x) = φ±(x′). Since φ± is fibered, necessarily
x = x′. Then assume that (y1, y2) 6= (y′1, y′2), such that

‖(y1 − y′1, y2 − y′2)‖∞ > 0

and for instance ‖(y1−y′1, y2−y′2)‖∞ = |y1−y′1| > 0 (the other case can be
done similarly). We denote by Dy the derivative with respect to variables
(y1, y2). According to the mean value theorem:

(4.7)

∣∣∣∣∣ef±(x) − ef±(x′)

y1 − y′1

∣∣∣∣∣ 6 sup
z∈[y,y′]

‖Dy(ef±)(x, z)‖∞,

where z = (z1, z2), y = (y1, y2) and y′ = (y′1, y′2). Consequently we have:

0 =
∣∣∣y1e

f±(x) − y′1ef±(x′)
∣∣∣

=
∣∣∣ef±(x)

∣∣∣ |y1 − y′1|

∣∣∣∣∣1 + y′1
ef±(x) .

ef±(x) − ef±(x′)

y1 − y′1

∣∣∣∣∣
>
∣∣∣ef±(x)

∣∣∣ |y1 − y′1|

(
1−

∣∣∣∣ y′1
ef±(x)

∣∣∣∣
∣∣∣∣∣ef±(x) − ef±(x′)

y1 − y′1

∣∣∣∣∣
)

>
∣∣∣ef±(x)

∣∣∣ |y1 − y′1|

(
1−

∣∣∣∣ y′1
ef±(x)

∣∣∣∣
∣∣∣∣∣ sup
z∈[y,y′]

‖Dy(ef±)(x, z)‖∞

∣∣∣∣∣
)
.

Assume that we chose (C2, 0) = D(0, r) small enough such that f± is
analytic in

S±(r, ε)×D(0, 3r1 + δ)×D(0, 3r2 + δ)

with δ > 0 small. Without lost of generality we can take r1 = r2. We apply
Cauchy’s integral formula to z1 7→ ef±(x,z1,z2), for all fixed z2, integrating
on the circle of center 0 and radius 3r1 = 3r2. Similarly we also apply
Cauchy’s integral formula to z2 7→ ef±(x,z1,z2), for all fixed z1, integrating
on the circle of center 0 and radius 3r2 = 3r1. Then we obtain

sup
z∈[y,y′]

‖Dy(ef±)(x, z)‖∞ 6
3

4r1
. exp

(
sup

x∈S±(r,ε)×D(0,r)
(|f±(x)|)

)
,
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such that:

0 =
∣∣∣y1e

f±(x) − y′1ef±(x′)
∣∣∣

>
∣∣∣ef±(x)

∣∣∣ |y1 − y′1|

[
1− 3

4 exp
(

sup
x∈S±(r,ε)×D(0,r)

(2|f±(x)|)
)]

.

Since f±(x) −→
x→0

0, we can choose r, r1 and r2 small enough such that:

exp
(

sup
x∈S±(r,ε)×D(0,r)

(2|f±(x)|)
)
6

5
4 <

4
3 .

Finally we obtain:

0 =
∣∣∣y1e

f±(x) − y′1ef±(x′)
∣∣∣

>
∣∣∣ef±(x)

∣∣∣ |y1 − y′1|
16 > 0.

and so, if y1 6= y′1, we have 0 = |y1e
f±(x) − y′1e

f±(x′)| > 0, which is
a contradiction. Conclusion: (y1, y2) = (y′1, y′2) and then φ± is into in
S±(r, ε) × (C2, 0). Since φ± is into and analytic in S±(r, ε) × (C2, 0), it
is a biholomorphism between S±(r, ε)× (C2, 0) and its image which is nec-
essarily open (an analytic function is open), and of the same form. �

4.4. Resolution of the homological equation: proof of Lemma 4.6

The goal of this subsection is to prove Lemma 4.6 by studying the ex-
istence of paths asymptotic to the singularity and tangent to the folia-
tion, and then to use them to construct the solution to the homological
equation (4.6). For convenience and without lost of generality we assume
λ = 1 during this subsection (otherwise we can divide our vector field by
λ 6= 0, make x 7→ λx and finally consider exp(−i arg(λ)).S±(r, ε) instead of
S±(r, ε): these modifications do not change a1 and a2,

)
.

4.4.1. Domain of stability and asymptotic paths

We consider

Z± = Y0 + C±(x,y)−→C + xR
(1)
± (x,y)−→R

=

 x2

y1(−(1 + C±(x,y)) + a1x+ xR
(1)
± (x,y))

y2(1 + C±(x,y) + a2x+ xR
(1)
± (x,y))


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with <(a1 + a2) > 0, and C±, R(1)
± analytic in S±(r, ε)×D(0, r) and dom-

inated by ‖y‖∞. More precisely, we consider the Cauchy problem of un-
known x(t) := (x(t), y1(t), y2(t)), with real and increasing time t > 0,
associated to

X± := ±i
1 + (a2−a1

2 )x+ C±
Z± ,

i.e.
(4.8)

dx
dt = ±ix2

1 + (a2−a1
2 )x+ C±

dy1

dt = ±iy1

1 + (a2−a1
2 )x+ C±

(−(1 + C±(x,y)) + a1x+ xR
(1)
± (x,y))

dy2

dt = ±iy2

1 + (a2−a1
2 )x+ C±

(1 + C±(x,y) + a2x+ xR
(1)
± (x,y))

x(t) = x0 = (x0, y1,0, y2,0) ∈ S±(r, ε)×D(0, r).

We denote by (t,x0) 7→ ΦtX±(x0) the flow of X± with increasing time t > 0
and with initial point x0: Φ0

X±(x0) = x0. We will prove the following:

Proposition 4.8. — For all ε∈ ]0, π2 [, there exists finite sectors S±(r, ε),
S±(r′, ε) with r, r′ > 0 and an open domain Ω± stable by the flow of (4.8)
with increasing time t > 0 such that

S±(r′, ε)×D(0, r′) ⊂ Ω± ⊂ S±(r, ε)×D(0, r) ,

(cf. Figure 4.1). Moreover, if x0 ∈ Ω± then the corresponding solution
of (4.8), namely x(t) := ΦtX±(x0) exists for all t > 0 and x(t) → 0 as
t→ +∞.

Remark 4.9. — This will prove that the solution x(t) to (4.8) exists for
all t > 0 and tends to the origin: it defines a path tangent to the foliation
and asymptotic to the origin. Moreover, notice that the domain Ω± depends
on the choice of r and r′ > 0.

Definition 4.10. — We define the asymptotic path with base point
x0 ∈ Ω± associated to X± the path γ±,x0 := {ΦtX±(x0), t > 0}.

For convenience and without lost of generality we only detail the case
where “± = +” (the case where “± = −” is totally similar). If we write
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Figure 4.1. Representation of the projection prx(Ω+) of the stable do-
main Ω+ in the x-space.

a := a1 + a2 and b := a2−a1
2 , in the case “± = +” we have:

dx
dt = ix2

1 + bx+ C+
dy1

dt = iy1

(
−1 +

(
a
2 +R

(1)
+ (x,y)

1 + bx+ C+(x,y)

)
x

)
dy2

dt = iy2

(
1 +

(
a
2 +R

(1)
+ (x,y)

1 + bx+ C+(x,y)

)
x

)
x(t) = x0 = (x0, y1,0, y2,0) ∈ S+(r, ε)×D(0, r).

We also consider the differential equations satisfied by |x(t)|, |y1|(t), |y2|(t)
and θ(t) := arg(x(t)):

d|x(t)|
dt = |x(t)|<

(
ix(t)

1 + bx(t) + C+(x(t))

)
d|y1|(t)

dt = |y1|(t)<
(
ix(t)

(
a
2 +R

(1)
+ (x(t))

1 + bx(t) + C+(x(t))

))
d|y2|(t)

dt = |y2|(t)<
(
ix(t)

(
a
2 +R

(1)
+ (x(t))

1 + bx(t) + C+(x(t))

))
dθ(t)

dt = =
(

ix(t)
1 + bx(t) + C+(x(t))

)
.

For any non-zero complex number ζ and positive numbers R,B > 0,
we denote by Σ+(ζ,R,B) the sector of radius R bisected by iζ̄R+ and of
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opening π − 2 arcsin(B) = 2 arccos(B):

Σ+(ζ,R,B) := {x ∈ D(0, R) | =(ζx) > B|ζx|}

= {x∈D(0, R) | − arccos(B)< arg(x)−arg(iζ̄)< arccos(B)}.

For T,R > 0, we denote by Θ+(R, T ) (resp. Θ−(R, T )) the sector of radius
R bisected by R+ (resp. R−) and of opening 2 arccos(T ):

Θ+(R, T ) := {x ∈ D(0, R) | <(x) > T |x|}
= {x ∈ D(0, R) | − arccos(T ) < arg(x) < arccos(T )}

Θ−(R, T ) := {x ∈ D(0, R) | <(x) < −T |x|}
= {x ∈ D(0, R) | − arccos(T ) < arg(x)− π < arccos(T )}

Since <(a) > 0 by assumption, we can choose ω′ ∈ ]0, <(a)
|a| [, such that

Σ+(a, r, ω′) contains iR>0. Indeed, we have

|arg(i)− arg(ia)| = |arg(a)| < arccos(ω′) .

In particular, we have:

0 < arccos(ω′)− |arg(a)| < π

2
so that

0 < cos(arccos(ω′)− |arg(a)|) < 1 .
Hence we take ω > 0 such that

(4.9) ω ∈ ]cos(arccos(ω′)− |arg(a)|), 1[,

and then Σ+(1, r, ω) ⊂ Σ+(a, r, ω′). Indeed, if x ∈ Σ+(1, r, ω), then:

(4.10) − arccos(ω) < arg(x)− π

2 < arccos(ω) ,

and therefore

|arg(x)− arg(i.a)| < arccos(ω) + |arg(a)| (by (4.10))
< arccos(ω′) (by (4.9)).

Finally, we fix µ ∈ ]0,
√

1− ω2[ small enough such that

Θ+(r, µ) ∩ Σ+(1, r, ω) 6= ∅
Θ−(r, µ) ∩ Σ+(1, r, ω) 6= ∅

and
S+(r, ε) ⊂ Σ+(1, r, ω) ∪Θ+(r, µ) ∪Θ−(r, µ) .

More precisely, we must have 0 < ε < arccos(µ). The idea is now to study
the behavior of t 7→ x(t) (where t 7→ x(t) = (x(t), y1(t), y2(t)) is the solution
of (4.8)) over each domains Σ+(1, r, ω),Θ+(r, µ),Θ−(r, µ) (cf. Figure 4.2).
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Figure 4.2. Representation of domains Σ+(1, r, ω), Σ+(a, r, ω′),
Θ+(r, µ), Θ−(r, µ), S+(r, ε) (with modified radii for more clarity).

We can now prove the following result, which is a precision of Proposi-
tion 4.8.

Lemma 4.11.
(1) There exists r, r1, r2 > 0 such that Σ+(1, r, ω) × D(0, r) is stable

by the flow of (4.8) with increasing time t > 0. Moreover in this
region |x(t)|, |y1|(t) and |y2|(t) decrease and go to 0 as t→ +∞.

(2) There exists 0 < r′ < r, 0 < r′1 < r1, 0 < r′2 < r2 and an open
domain Ω+ stable under the action flow of (4.8) with increasing
time t > 0 such that

S+(r′, ε)×D(0, r′) ⊂ Ω+ ⊂ S+(r, ε)×D(0, r) .

Moreover, if x0 ∈ Θ+(r′, µ) (resp. x0 ∈ Θ−(r′, µ)), then θ(t) =
arg(x(t)), t > 0 is increasing (resp. decreasing) as long as x(t)
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remains in Θ+(r′, µ) (resp. Θ−(r′, µ)). Finally, there exists t0 > 0
such that for all t > t0, x(t) ∈ Σ+(1, r, ω).

Proof. — We fix δ ∈ ]0,min(ω, µ)[, δ′ ∈ ]0, ω′[ and we take r > 0 small
enough such that for all x = (x,y) ∈ S+(r, ε)×D(0, r), we have

∣∣∣∣ 1
1 + bx+ C+(x) − 1

∣∣∣∣ < δ∣∣∣∣∣ a
2 +R

(1)
+ (x)

1 + bx+ C+(x) −
a
2

∣∣∣∣∣ < δ′ .

Consequently for all x ∈ S+ ×D(0, r) we have the following estimations:
−|x|(1 + δ) < <

(
ix

1 + bx+ C+(x)

)
< |x|(1 + δ)

−|x|
(∣∣∣a2 ∣∣∣+ δ′

)
< <

(
ix

(
a
2 +R

(1)
+ (x,y)

1 + bx+ C+(x,y)

))
< |x|

(∣∣∣a2 ∣∣∣+ δ′
)
.

Moreover:
• if x ∈ Σ+(1, r, ω) then

(4.11) <
(

ix

1 + bx+ C+(x)

)
< −|x|(ω − δ) ;

• if x ∈ Σ+(a, r, ω′) (in particular if x ∈ Σ+(1, r, ω)) then

(4.12) <

(
ix

(
a
2 +R

(1)
+ (x,y)

1 + bx+ C+(x,y)

))
< −|x|(ω′ − δ′) ;

• if x ∈ Θ−(r, µ) (resp. Θ+(r, µ)) then

=
(

ix

1 + bx+ C+(x)

)
< −|x|(µ− δ)(

resp. =
(

ix

1 + bx+ C+(x)

)
> |x|(µ− δ)

)
.

Hence:
• for all t > 0

(4.13) − (1 + δ)|x(t)|2 < d|x(t)|
dt < −(1 + δ)|x(t)|2

and then, as long as x(t) ∈ S+(r, ε)×D(0, r), we have

|x(t)| > |x0|
1 + (1 + δ)|x0|t

;
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• for all t > 0, if x(t) ∈ Σ+(1, r, ω), then

(4.14) d|x(t)|
dt < −(ω − δ)|x(t)|2

and

(4.15)


d|y1|(t)

dt < −(ω′ − δ′)|y1|(t)|x(t)|

d|y2|(t)
dt < −(ω′ − δ′)|y2|(t)|x(t)|

so that |x(t)|, |y1|(t) and |y2|(t) are decreasing as long as x(t) ∈
Σ+(1, r, ω);

• for all t > 0, if x(t) ∈ Θ−(r, µ) (resp. Θ+(r, µ)) then
dθ
dt (t) < −(µ− δ)|x(t)| < −(µ− δ)|x0|

1 + (1 + δ)|x0|t(
resp. dθ

dt (t) > (µ− δ)|x(t)| > (µ− δ)|x0|
1 + (1 + δ)|x0|t

)
so that t 7→ θ(t) is strictly decreasing (resp. increasing) as long as
x(t) ∈ Θ−(r, µ) (resp. Θ+(r, µ)). Moreover, if θ0 = θ(0) is such that
x0 = x(0) ∈ Θ−(t, µ)\Σ+(1, r, ω) (resp. Θ+(r, µ)\Σ+(1, r, ω)), then
as long as x(t) ∈ Θ−(r, µ) (resp. Θ+(r, µ)) we have:

θ(t) < θ0 − (µ− δ1 + δ
) ln(1 + (1 + δ)|x0|t)(

resp. θ(t) > θ0 + (µ− δ1 + δ
) ln(1 + (1 + δ)|x0|t)

)
.

We see that x(t) ∈ Σ+(1, r, ω) for all

t > t0 :=
(exp( 1+δ

µ−δ (θ0 − π
2 − arccos(ω)))− 1)

(1 + δ)|x0|(
resp. t0 :=

(exp( 1+δ
µ−δ (π2 − arccos(ω)− θ0))− 1)

(1 + δ)|x0|

)
.

Indeed, if t > t0, with t0 as above, and if x(t) ∈ Θ+(r, µ), then we
have:

θ(t) > θ0 +
(
µ− δ
1 + δ

)
ln(1 + (1 + δ)|x0|t)

> θ0 +
(
µ− δ
1 + δ

)
ln
(

exp
(

1 + δ

µ− δ

(
θ0 −

π

2 − arccos(ω)
)))

= θ0 + π

2 − arccos(ω)− θ0 = π

2 − arccos(ω)
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and therefore

− arccos(ω) < arg(x(t))− π

2 < 0 .

Hence, we have x(t) ∈ Σ+(1, r, ω). Moreover, notice that

(4.16) t0 6
exp(( 1+δ

µ−δ )(ε+ arcsin(ω)))
(1 + δ)|x0|

.

On the one hand Σ+(1, r, ω) × D(0, r) is stable by the flow of (4.8)
with increasing time t > 0. Indeed in this region |x(t)|, |y1|(t) and |y2|(t)
are decreasing, and as soon as x(t) goes in Σ+(1, r, ω) ∩ Θ−(r, µ) (resp.
Σ+(1, r, ω) ∩ Θ+(r, µ)), which is non-empty and contains a part of the
boundary of Σ+(1, r, ω) with constant argument, θ(t) is decreasing (resp.
increasing). Then, x(t) remains in Σ+(1, r, ω). On the other hand, as long
as we are x(t) belongs to Θ−(r, µ) (resp. Θ+(r, µ)) we can re-parametrized
the solutions by (−θ) (resp θ) (we are now going to make an abuse of
notation, writing when needed x(θ) or x(t)):



d|x|
d(−θ) = −|x|

<( ix
1+bx+C+(x) )

=( ix
1+bx+C+(x) )

6 |x|. 1 + δ

µ− δ(
resp. d|x|

dθ = |x|
<( ix

1+bx+C+(x) )
=( ix

1+bx+C+(x) )
6 |x|. 1 + δ

µ− δ

)

d|y1|
d(−θ) = −|y1|

<
(
ix
( a

2 +R(1)
+ (x,y)

1+bx+C+(x,y)

))
=( ix

1+bx+C+(x) )
6 |y1|.

|a2 |+ δ′

µ− δ(
resp. d|y1|

dθ = |y1|
<
(
ix
( a

2 +R(1)
+ (x,y)

1+bx+C+(x,y)

))
=( ix

1+bx+C+(x) )
6 |y1|.

| a2 |+δ
′

µ−δ

)

d|y2|
d(−θ) = −|y2|

<
(
ix
( a

2 +R(1)
+ (x,y)

1+bx+C+(x,y)

))
=( ix

1+bx+C+(x) )
6 |y2|.

|a2 |+ δ′

µ− δ(
resp. d|y2|

dθ = |y2|
<
(
ix
( a

2 +R(1)
+ (x,y)

1+bx+C+(x,y)

))
=( ix

1+bx+C+(x) )
6 |y2|.

|a2 |+ δ′

µ− δ

)
.
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Hence, if θ0 := θ(0) is such that x0 := x(0) ∈ Θ−(r, µ) (resp. Θ+(r, µ)), for
t 6 t0 we have:

(4.17)



|x(t)| 6 |x0| exp
(

1 + δ

µ− δ
(θ0 − θ(t))

)
(
resp. |x(t)| 6 |x0| exp

(
1 + δ

µ− δ
(θ(t)− θ0)

))
|y1|(t) 6 |y1,0| exp

( |a2 |+ δ′

µ− δ
(θ0 − θ(t)

)
)(

resp. |y1|(t) 6 |y1,0| exp
( |a2 |+ δ′

µ− δ
(θ(t)− θ0)

))
|y2|(t) 6 |y2,0| exp

( |a2 |+ δ′

µ− δ
(θ0 − θ(t))

)
(
resp. |y1|(t) 6 |y1,0| exp

( |a2 |+ δ′

µ− δ
(θ(t)− θ0)

))
.

Definition 4.12. — We define the domain Ω+ as the set of all

x = (x, y1, y2) ∈ S+(r, ε)×D(0, r)

such that:

• if =(x) > ω|x| then:

|x| 6 r exp
(

1 + δ

µ− δ
(arg(x)− arcsin(ω))

)
|y1| 6 r1 exp

( |a2 |+ δ′

µ− δ
(arg(x)− arcsin(ω))

)
|y2| 6 r2 exp

( |a2 |+ δ′

µ− δ
(arg(x)− arcsin(ω))

)
;

• if =(x) 6 −ω|x| then:

|x| 6 r exp
(

1 + δ

µ− δ
(π − arcsin(ω)− arg(x))

)
|y1| 6 r1 exp

( |a2 |+ δ′

µ− δ
(π − arcsin(ω)− arg(x))

)
|y2| 6 r2 exp

( |a2 |+ δ′

µ− δ
(π − arcsin(ω)− arg(x))

)
.

We see that Ω+ is stable by the flow of (4.8) with increasing time t > 0.
We have seen that for any initial condition in Ω+, the solution exists for
any t > 0, stays in Ω+, and after a finite time t0 > 0 enters and remains in
Σ+(1, r, ω). Finally, we have:

S+(r′, ε)×D(0, r′) ⊂ Ω+ ⊂ S+(r, ε)×D(0, r) ,
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where 

r′ = r exp
(
−
(

1 + δ

µ− δ

)
(ε+ arcsin(ω))

)
< r

r′1 = r1 exp
(
−
( |a2 |+ δ′

µ− δ

)
(ε+ arcsin(ω))

)
< r1

r′2 = r2 exp
(
−
( |a2 |+ δ′

µ− δ

)
(ε+ arcsin(ω))

)
< r2 .

Let x0 = (x0,y0) ∈ Σ+(1, r, ω) ×D(0, r). From (4.14) and (4.15) we have
for all t > 0:

(4.18)



|x(t)| 6 |x0|
1 + (ω − δ)|x0|t

|y1|(t) 6
|y1,0|

(1 + (1 + δ)|x0|t)
ω′−δ′

1+δ

|y1|(t) 6
|y2,0|

(1 + (1 + δ)|x0|t)
ω′−δ′

1+δ

,

which proves that the solutions goes to 0 as t→ +∞. �

Remark 4.13. — Another stable domain Ω− is defined similarly when
dealing with the case “± = −”

4.4.2. Construction of a sectorial analytic solution to the homological
equation

We consider the meromorphic 1-form τ := dx
x2 , which satisfies τ ·(Z±) = 1.

Let also A±(x,y) be analytic in S±(r, ε)× (C2, 0) and dominated by ‖y‖∞,
and M ∈ N>0. The following proposition is a precision of Lemma 4.6.

Proposition 4.14. — For all x0 ∈ Ω± (see Definition 4.12), the integral
defined by

α±(x0) := −
∫
γ±,x0

xM+1A±(x) τ

is absolutely convergent (the integration path γ±,x0 is the one of Defini-
tion 4.10). Moreover, the function x0 7→ α±(x0) is analytic in Ω±, satisfies

LZ±(α±) = xM+1A±(x)

and α±(x,y) = xM α̃±(x,y), where α̃± is analytic on Ω± and dominated
by ‖y‖∞.

Proof. — We are going to use the estimations obtained in the previous
paragraph.
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• Let us start by proving that the integral above is convergent. We
begin with:

α±(x0) = −
∫ +∞

0

x(t)M+1A±(x(t))
x(t)2

ix(t)2

1 + bx(t) + C+(x(t))dt

= −i
∫ +∞

0

x(t)M+1A±(x(t))
1 + bx(t) + C+(x(t))dt .

Since x(t) ∈ Ω± for all t > 0 and A±(x,y) is dominated by ‖y‖∞,
we have then:

(4.19)
∣∣∣∣ x(t)M+1A±(x(t))
1 + bx(t) + C+(x(t))

∣∣∣∣ 6 C|x(t)|M+1‖y(t)‖∞

where C > 0 is some constant, independent of x0 and t. For t > 0
big enough, we deduce from paragraph 4.4.1 that:∣∣∣∣ x(t)M+1A±(x(t))

1 + bx(t) + C+(x(t))

∣∣∣∣
6 C‖y0‖

(
|x0|

1 + (ω − δ)|x0|t

)M+1 1

(1 + (1 + δ)|x0|t)
ω′−δ′

1+δ

= O
t→+∞

( 1
tM+1 )

and then the integral is absolutely convergent.
• Let us prove the analyticity of α± in Ω±: it is sufficient to prove

that it is analytic in every compact K ⊂ Ω±. Let K be such a
compact subset. Let L > 0 such that for all x ∈ K, we have:∣∣∣∣ A±(x)

1 + bx+ C+(x)

∣∣∣∣ 6 L.
Since K in a compact subset of Ω± ⊂ S±(r, ε)×(C2, 0) and S±(r, ε)
is open (0 /∈ S±(r, ε)), there exists δ > 0 such that for all x =
(x, y1, y2) ∈ K, we have δ < |x| < r. Finally, according to the
several estimates in paragraph 4.4.1, there exists B > 0 such that
for all x0 ∈ K and t > 0, we have:

|x(t)| 6 B |x0|
1 + (ω − δ)|x0|t

.

Hence:∣∣∣∣ x(t)M+1A±(x(t))
1 + bx(t) + C+(x(t))

∣∣∣∣ 6 LBM+1 |x0|M+1

(1 + (ω − δ)|x0|t)M+1

6
LBM+1rM+1

(1 + (ω − δ)δt)M+1 ,
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and the classical theorem concerning the analyticity of integral with
parameters proves that α± is analytic in any compact K ⊂ Ω±, and
consequently in Ω±.

• Let us write F (x) := ±ixM+1A±(x)
1+bx+C+(x) , so that

α±(x0) = −
∫ +∞

0
F (ΦtX±(x0))dt .

For all x0 ∈ Ω±, the function t 7→ x(t) = ΦtX±(x0) satisfies:

∂

∂t
(ΦtX±(x0)) = ±i

1 + b|x(Φt0X±(x0))|+ C+(ΦtX±(x0))
Z±(Φt±(x)) .

The classical theorem about the analyticity of integral with param-
eters tells us that we can compute the derivatives inside the integral
symbol:

(LZ±α±)(x0)

= −
∫ +∞

0
LZ±(F ◦ Φs)(x0)ds

= −
∫ +∞

0
dF (ΦsX±(x0)).dΦsX±(x0).Z±(x0)ds

= −
∫ +∞

0
dF (ΦsX±(x)). ∂

∂t
(Φs+tX±

(x0))|t=0

(
±1 + bx0 + C±(x0)

i

)
ds

= −
(
±1 + bx0 + C±(x0)

i

)
.

∫ +∞

0
dF (ΦsX±(x0)). ∂

∂t
(ΦtX±(x0))|t=sds

= −
(
±1 + bx0 + C±(x0)

i

)
.

∫ +∞

0

∂

∂s
(F ◦ ΦsX±(x0))ds

= −
(
±1 + bx0 + C±(x0)

i

)
.[F ◦ ΦsX±(x0)]s=+∞

s=0

= −
(
±1 + bx0 + C±(x0)

i

)
.(−F (x0))

= xM+1
0 A±(x0).

• Let us prove that α̃±(x,y) := α±(x,y)
xM

is bounded and dominated
by ‖y‖∞ in Ω±. The fact that it is analytic in Ω± is clear because
α± is analytic there and 0 /∈ Ω±. As above, there exists there exists
C > 0 such that for all x0 := (x0,y0) ∈ Ω± and for all t > 0:∣∣∣∣∣ x(Φt0X±(x0))M+1A±(ΦtX±(x0))

(1 + bx(Φt0X±(x0)) + C+(ΦtX±(x0)))

∣∣∣∣∣ 6 C||x(Φt0X±(x0))||M+1‖y(ΦtX±(x0))‖∞.
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We will only deal with the case where x0 ∈ Θ±(r, µ) (the case where
Σ±(1, r, ω) is easier and can be deduced from that case). On the one
hand from (4.17) we have for all t 6 t0:

||x(Φt0X±(x0))|| 6 D|x0|, where D := exp
(

1+δ
µ−δ

(arccos(µ)+ε)
)

‖y(ΦtX±(x0))‖∞6D′‖y0‖∞, where D′ := exp
( |a2 |+δ′

µ−δ
(arccos(µ)+ε)

)
.

On the other hand we have seen in (4.18) that for all t > t0:||x(Φt0X±(x0))|| 6
|x(Φt0X±(x0))|

1 + (ω − δ)||x(Φt0X±(x0))||(t− t0)
‖y(ΦtX±(x0))‖∞ 6 ‖y0‖∞ .

Hence, we use the Chasles relation and the estimations above to
obtain:

|α̃±(x0,y0)| 6 |α±(x0,y0)|
|x0|M

6
CDM+1D′‖y0‖∞|x0|M+1|t0|

|x0|M

+ C‖y0‖∞
|x0|M

∫ +∞

t0

dt
(1 + (ω − δ)|x(Φt0X±(x0))|(t− t0))

6 CDM+1D′‖y0‖∞|x0||t0|

+
C‖y0‖∞|x(Φt0X±(x0))|M+1

M(ω − δ)|x0|M |x(Φt0X±(x0))|
;

and according to (4.16) we have

�(4.20) |α̃±(x0,y0)| 6
(
D2D′

(1 + δ) + 1
M(ω − δ)

)
CDM‖y0‖∞ .

4.5. Sectorial isotropies in “wide” sectors and uniqueness of the
normalizations: proof of Proposition 1.13.

We consider a normal form Ynorm as given by Corollary 4.2. We study
here the germs of sectorial isotropies of the normal form Ynorm in S± ×
(C2, 0), where S± ∈ Sarg(±iλ),η is a sectorial neighborhood of the origin
with opening η ∈ ]π, 2π[ in the direction arg(±iλ). Proposition 1.13 states
that the normalizing maps (Φ+,Φ−) are unique as sectorial germs. It is
a straightforward consequence of Proposition 4.16 below, which show that
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the only sectorial fibered isotropy (tangent to the identity) of the normal
form in over “wide” sector (i.e. of opening > π) is the identity itself.

Definition 4.15. — A germ of sectorial fibered diffeomorphism Φθ,η
in the direction θ ∈ R with opening η > 0 and tangent to the identity, is
a germ of fibered sectorial isotropy of Ynorm (in the direction θ ∈ R with
opening η > 0 and tangent to the identity) if (Φθ,η)∗(Ynorm) = Ynorm in
S ∈ Sθ,η. We denote by Isotfib(Y,Sθ,η; Id) ⊂ Difffib(Sθ,η; Id) the subset
formed composed of these elements.

Proposition 1.13 is an immediate consequence of the following one.

Proposition 4.16. — For all η ∈ ]π, 2π[:

Isotfib(Ynorm,Sarg(±iλ),η; Id) = {Id} .

Proof. — Let

φ : (x,y) 7→ (x, φ1(x,y), φ2(x,y)) ∈ Isotfib(Ynorm,Sarg(±iλ),η; Id)

be a germ of a sectorial fibered isotropy (tangent to the identity) of Ynorm in
S± ∈ Sarg(±iλ),η with η ∈ ]π, 2π[. Possibly by reducing our domain, we can
assume that S± is bounded and of the form S±×D(0, r) (where, as usual,
S± is an adapted sector and D(0, r) a polydisc), and that φ is bounded in
this domain. We have

φ∗(Ynorm) = Ynorm

i.e.
dφ · Ynorm = Ynorm ◦ φ

which is also equivalent to:

(4.21)



x2 ∂φ1

∂x
+ (−1−c(y1y2)+a1x)y1

∂φ1

∂y1
+ (1+c(y1y2)+a2x)y2

∂φ1

∂y2
= φ1(−1− c(φ1φ2) + a1x)

x2 ∂φ2

∂x
+ (−1−c(y1y2)+a1x)y1

∂φ2

∂y1
+ (1+c(y1y2)+a2x)y2

∂φ2

∂y2
= φ2(1 + c(φ1φ2) + a2x) .

Let us consider ψ := φ1φ2. Then

x2 ∂ψ

∂x
+(−1−c(y1y2)+a1x)y1

∂ψ

∂y1
+(1+c(y1y2)+a2x)y2

∂ψ

∂y2
= (a1+a2)xψ.

By assumption we can write

ψ(x,y) =
∑

j1+j2>2
ψj1,j2(x)yj1

1 y
j2
2 ,
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where ψj1,j2(x) is analytic and bounded in S± for all j1, j2 > 0 and such
that ∑

j1+j2>1
( sup
x∈S±

(|ψj1,j2(x)|))yj1
1 y

j2
2

is convergent near the origin of C2 (e.g. in D(0, r)). Consequently, with an
argument of uniform convergence in every compact subset, we have for all
j1, j2 > 0:

x2 dψj1;j2

dx (x) + (j2 − j1 + (a1(j1 − 1) + a2(j2 − 1))x)ψj1,j2(x)

= (j1 − j2)
min(j1,j2)∑

l=1
ψj1−l,j2−l(x)cl .

For j1 = j2 = j > 1, we have

ψj,j(x) = bj,jx
−(j−1)(a1+a2), bj,j ∈ C.

Since <(a1 + a2) > 0, the function x 7→ ψj,j(x) is bounded near the origin
if and only if bj,j = 0 or j = 1. For j1 > j2, we see recursively that
ψj1,j2(x) = 0. Indeed, we obtain by induction that

ψj1,j2(x) = bj1,j2 exp
(
j2 − j1
x

)
x−(a1(j1−1)+a2(j2−1)) ,

and since it has to be bounded on S±, we necessarily have bj1,j2 = 0.
Similarly, for j1 < j2, we see recursively that ψj1,j2(x) = 0. As a conclusion,
ψ(x,y) = b1,1y1y2 = y1y2 (we must have b1,1 = 1 since φ is tangent to the
identity). We can now solve separately each equation in (4.21):

x2 ∂φ1

∂x
+ (−1− c(y1y2) + a1x)y1

∂φ1

∂y1
+ (1 + c(y1y2) + a2x)y2

∂φ1

∂y2

= φ1(−1− c(y1y2) + a1x)

x2 ∂φ2

∂x
+ (−1− c(y1y2) + a1x)y1

∂φ2

∂y1
+ (1 + c(y1y2) + a2x)y2

∂φ2

∂y2

= φ2(1 + c(y1y2) + a2x) .

As above for i = 1, 2 we can write

φi(x,y) =
∑

j1+j2>1
φi,j1,j2(x)yj1

1 y
j2
2 ,

where φi,j1,j2(x) is analytic and bounded in S± for all j1, j2 > 0 and such
that ∑

j1+j2>1

(
sup
x∈S±

(|φi,j1,j2(x)|)
)
yj1

1 y
j2
2
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is a convergent entire series near the origin of C2 (e.g. in D(0, r)). As above,
using the uniform convergence in every compact subset and identifying
terms of same homogeneous degree (j1, j2), we obtain:



x2 dφ1,j1;j2

dx (x) + (j2 − j1 + 1 + (a1(j1 − 1) + a2j2)x)φ1,j1,j2(x)

=
min(j1,j2)∑

l=1
φ1,j1−l,j2−l(x)(j1 − j2 − 1)cl

x2 dφ2,j1;j2

dx (x) + (j2 − j1 − 1 + (a1j1 + a2(j2 − 1))x)φ2,j1,j2(x)

=
min(j1,j2)∑

l=1
φ2,j1−l,j2−l(x)(j1 − j2 + 1)cl .

From this we deduce:

{
φ1,1,0(x) = p1,0 ∈ C\{0}
φ2,0,1(x) = q0,1 ∈ C\{0}

with p1,0q0,1 = 1. Then, using the assumption that φi,j1,j2(x) is analytic
and bounded in S± for all j1, j2 > 0, we see (by induction on j > 1) that

∀ j > 1
{
φ1,j+1,j = 0
φ2,j,j+1 = 0 .

Indeed, we show recursively that for all j > 1, we have:

x2 dφ1,j+2,j+1

dx (x) + (j + 1)(a1 + a2)xφ1,j+2,j+1(x) = 0 ,

and the general solution to this equation is:

φ1,j+2,j+1(x) = pj+2,j+1x
−(j+1)(a1+a2) , with pj+2j+1 ∈ C .

The quantity φ1,j+2,j+1(x) is bounded near the origin if and only if
pj+2,j+1 = 0, since <(a1 + a2) > 0. The same arguments work for φ2,j,j+1,
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j > 1. Consequently:

x2 dφ1,j1;j2

dx (x) + (j2 − j1 + 1 + (a1(j1 − 1) + a2j2)x)φ1,j1,j2(x)

= (j1 − j2 − 1)
min(j1,j2)∑

l=1
φ1,j1−l,j2−l(x)cl

x2 dφ2,j1;j2

dx (x) + (j2 − j1 − 1 + (a1j1 + a2(j2 − 1))x)φ2,j1,j2(x)

= (j1 − j2 + 1)
min(j1,j2)∑

l=1
φ2,j1−l,j2−l(x)cl .

Once again, we see recursively that for j1 > j2 + 1, φ1,j1,j2(x) = 0. Indeed,
we obtain by induction that

φ1,j1,j2(x) = pj1,j2 exp
(
j2 − j1 + 1

x

)
x−(a1(j1−1)+a2j2) ,

and since this has to be bounded on S±, we necessarily have pj1,j2 = 0,
and therefore φ1,j1,j2(x) = 0. Similarly, for j1 < j2 + 1, we prove that
φj1,j2(x) = 0. As a conclusion, φ1(x,y) = y1. By exactly the same kind of
arguments we have φ2(x,y) = y2. �

4.6. Weak 1-summability of the normalizing map

Let us consider the same data as in Lemma 4.6. The following lemma
states that an analytic solution to the considered homological equation
in S± ∈ Sarg(±iλ),η with η ∈ [π, 2π[, admits a weak Gevrey-1 asymptotic
expansion in this sector. In other words, it is the weak 1-sum of a formal
solution the homological equation. Let us re-use the notations introduced
at the beginning of the latter section.

Lemma 4.17. — Let

Z := Y0 + C(x,y)−→C + xR(1)(x,y)−→R

be a formal vector field weakly 1-summable in S± ∈ Sarg(±iλ),η, with η ∈
[π, 2π[ and C,R(1) of order at least one with respect to y. We denote by

Z± := Y0 + C±(x,y)−→C + xR
(1)
± (x,y)−→R

the associate weak 1-sum in S±. Let also A ∈ CJx,yK be weakly 1-summable
in S±, of 1-sum A± and of order at least one with respect to y. Then, any
sectorial germ of an analytic function of the form α±(x,y) = xM α̃±(x,y),
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with M ∈ N>0 and α̃± analytic in S±, which is dominated by ‖y‖∞ and
satisfies

LZ±(α±) = xM+1A±(x,y) ,

has a Gevrey-1 asymptotic expansion in S±, denoted by α. Moreover, α is
a formal solution to

LZ(α) = xM+1A(x,y) .

Proof. — Let us write Z as follow:

Z = x2 ∂

∂x
+ (−(λ+ d(y1y2)) + a1x+ F1(x,y))y1

∂

∂y1

+ (λ+ d(y1y2) + a2x+ F2(x,y))y2
∂

∂y2
,

with F1, F2 weakly 1-summable in S± ∈ Sarg(±iλ),η, with η ∈
[
π, 2π

[
, of

weak 1-sums F1,±, F2,± respectively, which are dominated by ‖y‖, and with
d(v) ∈ vC{v} without constant term. Consider the Taylor expansion with
respect to y of d,F1,F2,A and α:

d(y1y2) =
∑
k>1 dky

k
1y
k
2

F1(x,y) =
∑
j1+j2>1 F1,j(x)yj

F2(x,y) =
∑
j1+j2>1 F2,j(x)yj

A(x,y) =
∑
j1+j2>1Aj(x)yj

α(x,y) =
∑
j1+j2>1 αj(x)yj

(same expansions are valid in S± for the corresponding weak 1-sums). As
usual, possibly by reducing S±, we can assume that S± = S± × D(0, r)
(where S± is an adapted sector and D(0, r) a polydisc). The homological
equation

LZ(α) = xM+1A±(x,y)

can be re-written:

x2 ∂α

∂x
+ (−(λ+ d(y1y2)) + a1x+ F1,±(x,y))y1

∂α

∂y1

+ (λ+ d(y1y2) + a2x+ F2,±(x,y))y2
∂α

∂y2
= xM+1A±(x,y) .

Using normal convergence in any compact subset of S±, we can compute
the partial derivatives of

α(x,y) =
∑

j1+j2>1
αj(x)yj
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with respect to x, y1 or y2 term by term, in order to obtain after identifi-
cation: ∀ j = (j1, j2) ∈ N2,

(4.22) x2 dαj,±

dx (x) + (λ(j2 − j1) + (a1j1 + a2j2)x)αj,±(x) = Gj,±(x) ,

where Gj,±(x) depends only on dk, F1,k,±, F2,k,±, αk,± and Al,±, for k 6
min(j1, j2), |k| 6 |j| − 1 and |l| 6 |j|. We obtain a similar differential
equation for the associated formal power series. Let us prove by induction
on |j| > 0 that:

(1) Gj,± is the 1-sum of Gj in S±,
(2) Gj,j(0) = 0 if j = (j, j)
(3) αj,± is the 1-sum αj in S±.

It is paramount to use the fact that for all j ∈ N2, αj,± is bounded in S±.
• For j = (0, 0), we have G(0,0) = 0 and then α(0,0) = 0.
• Let j = (j1, j2) ∈ N2 with |j| = j1 + j2 > 1. Assume the property
holds for all k ∈ N2 with |k| 6 |j| − 1.
(1) Since Gj(x) depends only on dk, F1,k, F2,k, αk and Al, for k 6

min(j1, j2), |k| 6 |j| − 1 and |l| 6 |j|, then Gj is 1-summable
in S±, of 1-sum Gj,±.

(2) We also see that Gj,j(0) = 0, if j = (j, j).
(3) If j1 6= j2, then point 1. in Proposition 2.32 tells us that

there exists a unique formal solution αj(x) to the irregular dif-
ferential equation we are looking at, and such that αj(0) =

1
λ(j2−j1)Gj(0). Moreover, this solution is 1-summable in S±
since the same goes for Gj.

(4) If however j1 = j2 = j > 1, since G(j,j)(0) = 0 we can write
G(j,j)(x) = xG̃(j,j)(x) with G̃(j,j)(x) 1-summable in S±, and
then the differential equation becomes regular:

x
dα(j,j),±

dx (x) + (a1 + a2)jα(j,j),±(x) = G̃(j,j),±(x) .

Since <(a1 +a2) > 0, according to point 2. in Proposition 2.32,
the latter equation has a unique formal solution α(j,j)(x) such
that α(j,j)(0) = G̃(j,j)(0)

(a1+a2)j , and this solution is moreover 1-
summable in S±, and its 1-sum is the only solution to this
equation bounded in S±. Thus, it is necessarily α(j,j),±.

�

We are now able to prove the weak 1-summability of the formal normal-
izing map.
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Proposition 4.18. — The sectorial normalizing maps (Φ+,Φ−) in
Corollary 4.2 are the weak 1-sums in S± ∈ Sarg(±λ),η of the formal normal-
izing map Φ̂ given by Theorem 1.5, for all η ∈ [π, 2π[. In particular, Φ̂ is
weakly 1-summable, except for arg(±λ).

Proof. — The normalizing map Φ± from Corollary 4.2 is constructed
as the composition of two germs of sectorial diffeomorphisms, using suc-
cessively Propositions 3.1 and 4.1. The sectorial map obtained in Proposi-
tion 3.1 is 1-summable except in directions arg(±λ). The sectorial transfor-
mation in Proposition 4.1 is constructed as the composition of two germs of
sectorial diffeomorphisms, using successively Proposition 4.3 and 4.5. Both
of these two sectorial maps are built thanks to Lemma 4.6. Lemma 4.17
above justifies that each of these maps admits in fact a weak Gevrey-1
asymptotic expansion in a domain of the form S± ∈ Sarg(±λ),η, for all
η ∈ [π, 2π[. Consequently, the same goes for the sectorial diffeomorphisms
of Proposition 4.1, and then for those of Corollary 4.2 (we used here Propo-
sition 2.26 for the composition). Using item 3 in Lemma 2.25, we deduce
that the weak Gevrey-1 asymptotic expansion of the sectorial normalizing
maps of Corollary 4.2 is therefore a formal normalizing map, such as the
one given by Theorem 1.5. By uniqueness of such a normalizing map, it
is Φ̂. �

5. Analytic classification

In this section, we end up the proofs of both Theorems 1.10 and 1.16.
In order to do this, we prove that the Stokes diffeomorphisms Φλ and Φ−λ
obtained from the germs of sectorial normalizing maps Φ+ and Φ−, which
a priori admit identity as weak Gevrey-1 asymptotic expansion, admit in
fact identity as “true” Gevrey-1 asymptotic expansion. This will be done
by studying more generally germs of sectorial isotropies of the normal form
Ynorm in sectorial domains with “narrow” opening, and by considering the-
ses isotropies in the of space of leaves. Using Theorem 2.22, which is a
“non-abelian” version of the Ramis–Sibuya theorem due to Martinet and
Ramis [17], this will has as consequence the fact that the sectorial normaliz-
ing maps Φ+ and Φ− both admit the formal normalizing map Φ̂ as Gevrey-1
asymptotic expansion in the corresponding sectorial domains. This proves
Theorem 1.10. Moreover, another consequence will be Theorem 1.16. Fi-
nally, we will describe the moduli space of analytic classification in terms
of some spaces of power series.
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From now on, we fix a normal form

Ynorm = x2 ∂

∂x
+ (−λ+ a1x− c(y1y2))y1

∂

∂y1
+ (λ+ a2x+ c(y1y2))y2

∂

∂y2
,

with λ ∈ C∗, <(a1 + a2) > 0 and c ∈ vC{v} vanishing at the origin. We
denote by [Ynorm] the set of germs of holomorphic doubly-resonant saddle-
nodes in (C3, 0), formally conjugate to Ynorm by formal fibered diffeomor-
phisms tangent to the identity. We refer the reader to Definition 2.1 for
notions relating to sectors.

Definition 5.1. — We define Λ(weak)
λ (Ynorm) (resp. Λ(weak)

−λ (Ynorm)) as
the group of germs of sectorial fibered isotropies of Ynorm, admitting the
identity as weak Gevrey-1 asymptotic expansion in sectorial domains of
the form Sλ × (C2, 0) (resp. S−λ × (C2, 0)), where:

Sλ ∈ ASarg(λ),π

S−λ ∈ ASarg(−λ),π

(see Definition 2.3).

We recall the notations given in the introduction: we have defined
Λλ(Ynorm) (resp. Λ−λ(Ynorm)) as the group of germs of sectorial fibered
isotropies of Ynorm, admitting the identity as Gevrey-1 asymptotic expan-
sion in sectorial domains of the form Sλ × (C2, 0) (resp. S−λ × (C2, 0)). It
is clear that we have:

Λ±λ(Ynorm) ⊂ Λ(weak)
±λ (Ynorm) ⊂ Isotfib(Y,Sarg(±λ),η; Id), ∀ η ∈ ]0, π[ .

The main result of this section is the following.

Proposition 5.2. — Any ψ ∈ Λ(weak)
±λ (Ynorm) admits the identity as

Gevrey-1 asymptotic expansion in S±λ × (C2, 0). In other words:

Λ(weak)
±λ (Ynorm) = Λ±λ(Ynorm) .

5.1. Proofs of the main results (assuming Proposition 5.2)

In this subsection, we prove the main results of this paper, assuming
Proposition 5.2 above holds.

TOME 68 (2018), FASCICULE 4



1802 Amaury BITTMANN

5.1.1. Analytic invariants: Stokes diffeomorphisms

According to Corollary 4.2, to any Y ∈ [Ynorm], we can associate a pair
of germs of sectorial fibered isotropies in Sλ × (C2, 0) and S−λ × (C2, 0)
respectively, denoted by (Φλ,Φ−λ):{

Φλ := (Φ+ ◦ Φ−1
− )|Sλ×(C2,0) ∈ Isotfib(Y,Sarg(λ),η; Id) , ∀ η ∈ ]0, π[

Φ−λ := (Φ− ◦ Φ−1
+ )|S−λ×(C2,0) ∈ Isotfib(Y,Sarg(−λ),η; Id) , ∀ η ∈ ]0, π[ ,

where (Φ+,Φ−) is the pair of the sectorial normalizing maps given by
Corollary 4.2.

Proposition 5.3. — For any given η ∈ ]0, π[ the map

[Ynorm] −→ Isotfib(Y,Sarg(λ),η; Id)× Isotfib(Y,Sarg(−λ),η; Id)
Y 7−→ (Φλ,Φ−λ) ,

actually ranges in Λ(weak)
λ (Ynorm)× Λ(weak)

−λ (Ynorm).

Proof. — The fact that the sectorial normalizing maps Φ+,Φ− given by
Corollary 4.2 both conjugate Y ∈ [Ynorm] to Ynorm in the corresponding
sectorial domains proves that the arrow above is well-defined, with values
in Isotfib(Y,Sarg(λ),η; Id) × Isotfib(Y,Sarg(−λ),η; Id), for all η ∈ ]0, π[. The
fact that Φ±λ admits the identity as weak Gevrey-1 asymptotic expansion
in S±λ× (C2, 0) comes from Proposition 4.18 (Φ+ and Φ− admits the same
weak Gevrey-1 asymptotic expansion in Sλ × (C2, 0) and S−λ × (C2, 0))
and from Proposition 2.26. �

The subgroup Difffib(C3, 0; Id) ⊂ Difffib(C3, 0) formed by fibered diffeo-
morphisms tangent to the identity acts naturally on [Ynorm] by conjugacy.
Now we show that the uniqueness of germs of sectorial normalizing maps
(Φ+,Φ−) implies that the Stokes diffeomorphisms (Φλ,Φ−λ) of a vector
field Y ∈ [Ynorm] is invariant under the action of Difffib(C3, 0; Id). Further-
more, this map is one-to-one.

Proposition 5.4. — The map

[Ynorm] −→ Λ(weak)
λ (Ynorm)× Λ(weak)

−λ (Ynorm)
Y 7−→ (Φλ,Φ−λ)

factorizes through a one-to-one map

[Ynorm]/Difffib(C3, 0; Id) −→ Λ(weak)
λ (Ynorm)× Λ(weak)

−λ (Ynorm)
Y 7−→ (Φλ,Φ−λ) .
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Remark 5.5. — This very result means that the Stokes diffeomorphisms
encode completely the class of Y in the quotient [Ynorm]/Difffib(C3, 0; Id)
as they separate conjugacy classes.

Proof. — First of all, let us prove that the latter map is well-defined.
Let Y, Ỹ ∈ [Ynorm] and Θ ∈ Difffib(C3, 0; Id) be such that Θ∗(Y ) = Ỹ . We
denote by Φ± (resp. Φ̃±) the sectorial normalizing maps of Y (resp. Ỹ ), and
(Φλ,Φ−λ) (resp. (Φ̃λ, Φ̃−λ)) the Stokes diffeomorphisms of Y (resp. Ỹ ). By
assumption, Φ̃± ◦ Θ is also a germ of a sectorial fibered normalization of
Y in S± × (C2, 0), which is tangent to the identity. Thus, according to the
uniqueness statement in Theorem 1.10:

Φ± = Φ̃± ◦Θ .

Consequently, in S±λ × (C2, 0) we have

Φλ = (Φ+ ◦ Φ−1
− )|Sλ×(C2,0)

= Φ̃+ ◦Θ ◦Θ−1 ◦ Φ̃−
= Φ̃λ ,

and similarly

Φ−λ = (Φ− ◦ Φ−1
+ )|S−λ×(C2,0)

= Φ̃− ◦Θ ◦Θ−1 ◦ (Φ̃+)−1

= Φ̃−λ .

Let us prove that the map is one-to-one. Let Y, Ỹ ∈ [Ynorm] share the
same Stokes diffeomorphisms (Φλ,Φ−λ). We denote by Φ± (resp. Φ̃±) the
germ of a sectorial fibered normalizing map of Y (resp. Ỹ ) S± × (C2, 0).
We have:{

Φ+ ◦ (Φ−)−1 = Φλ = Φ̃+ ◦ (Φ̃−)−1 in Sλ × (C2, 0)
Φ− ◦ (Φ+)−1 = Φ−λ = Φ̃− ◦ (Φ̃+)−1 in S−λ × (C2, 0) .

Thus: {
(Φ̃+)−1◦Φ+ = (Φ̃−)−1◦Φ− in Sλ × (C2, 0)
(Φ̃+)−1◦Φ+ = (Φ̃−)−1◦Φ− in S−λ × (C2, 0) .

We can then define a map ϕ analytic in a domain of the form (D(0, r)\{0})×
D(0, r) by setting: {

ϕ|S+ = (Φ̃+)−1◦Φ+ in S+

ϕ|S− = (Φ̃−)−1◦Φ− in S− .

TOME 68 (2018), FASCICULE 4



1804 Amaury BITTMANN

This map is analytic and bounded in (D(0, r)\{0}) × D(0, r), and the
Riemann singularity theorem tells us that this map can be analytically
extended to the entire poly-disc D(0, r) × D(0, r). As a conclusion, ϕ ∈
Difffib(C3, 0; Id), Φ± = Φ̃± ◦ ϕ and ϕ∗(Y ) = Ỹ . �

5.1.2. Proof of Theorem 1.10: 1-summability of the formal normalization

As a first consequence of Proposition 5.2, we obtain Proposition 5.6,
which states that the formal normalizing map from Theorem 1.5 [3] is in
fact 1-summable.

Proposition 5.6. — The unique formal normalizing map Φ̂ given in 1.5
is the Gevrey-1 asymptotic expansion of the unique germs of sectorial nor-
malizing maps Φ+ and Φ− in S+× (C2, 0) and S−× (C2, 0) respectively. In
particular, Φ̂ is 1-summable in every direction θ 6= arg(±λ), and (Φ+,Φ−)
is its Borel–Laplace 1-sum.

Proof. — Let us consider the unique germs of a sectorial normalizing
map Φ+ and Φ− in S+ × (C2, 0) and S− × (C2, 0) respectively, and their
associated Stokes diffeomorphisms:{

Φλ = (Φ+ ◦ Φ−1
− )|Sλ×(C2,0) ∈ Λ(weak)

λ (Ynorm)
Φ−λ = (Φ− ◦ Φ−1

+ )|S−λ×(C2,0) ∈ Λ(weak)
−λ (Ynorm) .

According to Proposition 5.2,

Λ(weak)
±λ (Ynorm) = Λ±λ(Ynorm) ,

so that Φλ and Φ−λ both admit the identity as Gevrey-1 asymptotic ex-
pansion, in Sλ×(C2, 0) and S−λ×(C2, 0) respectively. Then, Theorem 2.22
gives the existence of

(φ+, φ−) ∈ Difffib(Sarg(iλ),η; Id)×Difffib(Sarg(−iλ),η; Id)

for all η ∈ ]π, 2π[, such that:{
φ+ ◦ (φ−)−1

|Sλ×(C2,0) = Φλ
φ− ◦ (φ+)−1

|S−λ×(C2,0) = Φ−λ ,

and the existence of a formal diffeomorphism φ̂ which is tangent to the
identity, such that φ+ and φ− both admit φ̂ as Gevrey-1 asymptotic ex-
pansion in S+ × (C2, 0) and S− × (C2, 0) respectively. In particular, we
have:

((Φ+)−1 ◦ φ+)|(Sλ∪S−λ)×(C2,0) = ((Φ−)−1 ◦ φ−)|(Sλ∪S−λ)×(C2,0) .
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This proves that the function Φ defined by (Φ+)−1 ◦φ+ in S+× (C2, 0) and
by (Φ−)−1 ◦φ− in S−×(C2, 0) is well-defined and analytic in D(0, r)\{0}×
D(0, r). Since it is also bounded, it can be extended to an analytic map Φ
in D(0, r)×D(0, r) by Riemann’s theorem. Hence:{

φ+ = Φ+ ◦ Φ
φ− = Φ− ◦ Φ .

In particular, by composition, Φ+ and Φ− both admit φ̂ ◦Φ−1 as Gevrey-1
asymptotic expansion in Sλ × (C2, 0) and S−λ × (C2, 0) respectively. Since
Φ+ and Φ− conjugates Y to Ynorm and since the notion of asymptotic
expansion commutes with the partial derivative operators, the formal dif-
feomorphism φ̂ ◦ Φ−1 formally conjugates Y to Ynorm. Finally, notice that
φ̂ ◦ Φ−1 is necessarily tangent to the identity. Hence, by uniqueness of the
formal normalizing map given by Theorem 1.5, we deduce that φ̂◦Φ−1 = Φ̂,
the unique formal normalizing map tangent to the identity. �

We are now ready to prove Theorem 1.10.
Proof of Theorem 1.10. It is a straightforward consequence of Proposi-

tion 5.6 above. �

5.1.3. Proof of Theorem 1.16

Proof of Theorem 1.16. — Propositions 5.4, together with Proposi-
tion 5.2, tell us that the considered map is well-defined and one-to-one.
It remains to prove that this map is onto. Let{

Φλ ∈ Λλ(Ynorm)
Φ−λ ∈ Λ−λ(Ynorm) .

According to Theorem 2.22, there exists

(φ+, φ−) ∈ Difffib(Sarg(iλ),η; Id)×Difffib(Sarg(−iλ),η; Id)

with η ∈ ]π, 2π[, which extend analytically to S+× (C2, 0) and S−× (C2, 0)
respectively, such that:

φ± ◦ (φ∓)−1
|S±λ×(C2,0) = Φ±λ

and there also exists a formal diffeomorphism φ̂ which is tangent to the
identity, such that φ± both admit φ̂ as asymptotic expansion in S±×(C2, 0).
Let us consider the two germs of sectorial vector fields obtained as

Y± := (φ−1
± )∗(Ynorm)
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In particular, since φ̂ is the Gevrey-1 asymptotic expansion of φ±, the
vector fields Y± both admit (φ̂)∗(Ynorm) as Gevrey-1 asymptotic expansion.
The fact that φ+ ◦ (φ−)−1 is an isotropy of Ynorm implies immediately that
Y+ = Y− on

(5.1) (S+ ∩ S−)× (C2, 0) = (Sλ ∪ S−λ)× (C2, 0) .

Then, the vector field Y , which coincides with Y± in S± × (C2, 0), de-
fines a germ of analytic vector field in (C3, 0) by Riemann’s theorem. By
construction, Y ∈ Difffib(C3, 0; Id)∗(Ynorm) and admits (Φλ,Φ−λ) as Stokes
diffeomorphisms. �

5.1.4. Proof of Theorem 1.24

In a similar way, we prove now Theorem 1.24.
Proof of Theorem 1.24. — Let Ynorm ∈ SN diag,0 be a normal form which

is also transversally symplectic. We refer to Subsection 1.3 for the notations.
It is clear from Theorems 1.16 and 1.22 that the mapping is well-defined
and one-to-one. It remains to prove that it is also onto. Let{

Φλ ∈ Λωλ(Ynorm)
Φ−λ ∈ Λω−λ(Ynorm) .

Since Λωλ(Ynorm) ⊂ Λλ(Ynorm) and Λω−λ(Ynorm) ⊂ Λ−λ(Ynorm), according to
Theorem 2.22 there exists

(φ+, φ−) ∈ Difffib(Sarg(iλ),η; Id)×Difffib(Sarg(−iλ),η; Id)

with η ∈ ]π, 2π[, which extend analytically in S+× (C2, 0) and S−× (C2, 0)
respectively, such that:

φ± ◦ (φ∓)−1
|S±λ×(C2,0) = Φ±λ

and there also exists a formal diffeomorphism φ̂ which is tangent to the
identity, such that φ± both admit φ̂ as Gevrey-1 asymptotic expansion in
S±×(C2, 0). According to Corollary 2.23, there exists a germ of an analytic
fibered diffeomorphism ψ ∈ Difffib(C3, 0; Id) (tangent to the identity), such
that

σ± := φ± ◦ ψ
both are transversally symplectic. Then, we have:

σ± ◦ (Ψ∓)−1
|S±λ×(C2,0) = Φ±λ .

The end of the proof goes exactly as at the end of the proof of the previous
theorem. �
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5.2. Sectorial isotropies in narrow sectors and space of leaves:
proof of Proposition 5.2.

A normal form

Ynorm = x2 ∂

∂x
+ (−λ+ a1x− c(y1y2))y1

∂

∂y1
+ (λ+ a2x+ c(y1y2))y2

∂

∂y2

is fixed for some λ ∈ C∗, <(a1 + a2) > 0 and c ∈ vC{v} (vanishing at the
origin). The aim of this subsection is to prove Proposition 5.2 stated at the
beginning of this section. Let us denote a : res(Ynorm) = a1 + a2, m := 1

a

and

c(v) =
+∞∑
k=1

ckv
k .

If m /∈ N>0, we set cm := 0. We also define the following power series

(5.2) c̃(v) = m
∑
k 6=m

ck
k −m

vk ,

and we notice that c̃(v) ∈ vC{v}.

5.2.1. Sectorial first integrals and the space of leaves

In a sectorial neighborhood of the origin of the form Sλ × (C2, 0) (resp.
S−λ × (C2, 0)), with S±λ ∈ Sarg(±λ),ε and ε ∈ ]0, π[, we can give three first
integrals of Ynorm which are analytic in the considered domain. Let us start
with the following proposition.

Proposition 5.7. — The following quantities are first integrals of
Ynorm, analytic in S±λ × (C2, 0):

(5.3)



w±λ := y1y2

xa

h1,±λ(x,y) := y1 exp
(
−λ
x

+ cm(y1y2)m log(x)
x

+ c̃(y1y2)
x

)
x−a1

h2,±λ(x,y) := y2 exp
(
λ

x
− cm(y1y2)m log(x)

x
− c̃(y1y2)

x

)
x−a2

(we fix here a branch of the logarithm analytic in S±λ, and we write simply
hj and w instead of hj,±λ and w±λ respectively, if there is no ambiguity on
the sector S±λ). Moreover, we have the relation:

h1h2 = w .

Proof. — It is an elementary computation. �
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Remark 5.8. — In other words, in a sectorial domain, we can parametrize
a leaf (which is not in {x = 0}) of the foliation associated to Ynorm by:

(5.4)


y1(x) = h1 exp

(
λ

x
− cm(h1h2)m log(x)− c̃(h1h2x

a)
x

)
xa1

y2(x) = h2 exp
(
−λ
x

+ cm(h1h2)m log(x) + c̃(h1h2x
a)

x

)
xa2

(h1, h2) ∈ C2 .

Corollary 5.9. — The map

H±λ : S±λ × (C2, 0) −→ S±λ × C2

(x,y) 7−→ (x, h1,±λ(x,y), h2,±λ(x,y)) ,

(where h1,±λ, h2,±λ are defined in (5.3)) is a sectorial germ of a fibered
analytic map in S±λ × (C2, 0), which is into. Moreover, there exists an
open neighborhood of the origin in C2, denoted by Γ±λ ⊂ C2, such that

H±λ(S±λ × (C2, 0)) = S±λ × Γ±λ .

In particular, H± induces a fibered biholomorphism

S±λ × (C2, 0) H±λ−→ S±λ × Γ±λ
which conjugates Ynorm to x2 ∂

∂x , i.e.

(H±λ)∗(Ynorm) = x2 ∂

∂x
.

Definition 5.10. — We call Γ±λ the space of leaves of Ynorm in S±λ×
(C2, 0).

Remark 5.11. — The set Γ±λ depends on the choice of the neighbor-
hood (C2, 0), but also on the choice of the sectorial neighborhood S±λ ∈
Sarg(±λ),ε.

5.2.2. Sectorial isotropies in the space of leaves

Now, we consider a germ of a sectorial isotropy ψ±λ ∈ Λ(weak)
±λ (Ynorm)

and we denote by Γ′±λ the (germ of an) open subset of C2 such that:

H±λ ◦ ψ±(S±λ × (C2, 0)) = S±λ × Γ′±λ .

Proposition 5.12. — With the notations and assumptions above, the
map

(5.5) Ψ±λ := H±λ ◦ ψ± ◦ H−1
±λ : S±λ × Γ±λ −→ S±λ × Γ′±λ
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is a sectorial germ of a fibered biholomorphism from S±λ × Γ±λ to S±λ ×
Γ′±λ, which is of the form:

Ψ±λ(x, h1, h2) = (x,Ψ1,±λ(h1, h2),Ψ2,±λ(h1, h2)) .

In particular, Ψ1,±λ and Ψ2,±λ are analytic and depend only on (h1, h2) ∈
Γ±λ, while Ψ±λ induces a biholomorphism (still written Ψ±λ):

Ψ±λ : Γ±λ −→ Γ′±λ
(h1, h2) 7−→ (Ψ1,±λ(h1, h2),Ψ2,±λ(h1, h2)) .

Proof. — We only have to prove that Ψ1,±λ and Ψ2,±λ depend only on
(h1, h2) ∈ Γ±λ. By assumption, Ψ±λ is an isotropy of x2 ∂

∂x :

(5.6) (Ψ±λ)∗(x2 ∂

∂x
) = x2 ∂

∂x
.

We immediately obtain:
∂Ψ1,±λ

∂x
= ∂Ψ2,±λ

∂x
= 0 . �

In the space of leaves Γ±λ equipped with coordinates (h1, h2), we denote
by w the product of h1 and h2:

w(h1, h2) := h1h2 .

We define the two following quantities:

(5.7)


f1(x,w) := exp

(
λ

x
− cmwm log(x)− c̃(wxa)

x

)
xa1

f2(x,w) := exp
(
−λ
x

+ cmw
m log(x) + c̃(wxa)

x

)
xa2 ,

such that the leaves of the foliations are parametrized by:{
y1(x) = h1f1(x, h1h2)
y2(x) = h2f2(x, h1h2)

, (h1, h2) ∈ C2 .

Notice that:

(5.8) f1(x,w)f2(x,w) = xa .

Moreover, one checks immediately the following statement.

Lemma 5.13. — For all w ∈ C:
lim
x→0
x∈Sλ

|f1(x,w)| = lim
x→0
x∈S−λ

|f2(x,w)| = +∞

lim
x→0
x∈S−λ

|f1(x,w)| = lim
x→0
x∈Sλ

|f2(x,w)| = 0 .
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Using notations of Proposition 5.12, we also assume from now on that
(C2, 0) = D(0, r), with r = (r1, r2) ∈ (R>0)2 and r1, r2 > 0 small enough
so that

ψ±λ(S±λ ×D(0, r)) ⊂ S±λ ×D(0, r′)

for some r′ = (r′1, r′2) ∈ (R>0)2. Let us now define in a general way the
following set associated to the sector S±λ and to a polydisc D(0, r̃), with
r̃ := (r̃1, r̃2).

Definition 5.14. — For all x ∈ S±λ et r̃ := (r̃1, r̃2) ∈ (R>0)2, we
define

Γ±λ(x, r̃) :=
{

(h1, h2) ∈ C2
∣∣∣∣ |hj | 6 r̃j

|fj(x, h1h2)| , for j ∈ {1, 2}
}

We also consider the:

Γ±λ(r̃) :=
⋃
x∈s±

Γ±λ(x, r̃)

=
{

(h1, h2) ∈ C2
∣∣∣∣ ∃ x ∈ S±λ s.t. |hj | 6

r̃j
|fj(x, h1h2)| , for j ∈ {1, 2}

}
(cf. Figure 5.1).

Since we assume now that (C2, 0) = D(0, r), then we have:

Γ±λ = Γ±λ(r) ,

and
Γ′±λ ⊂ Γ±λ(r′) .

Remark 5.15.
(1) It is important to notice that the particular form of Ψ±λ implies

that the image of any fiber

{x = x0} × Γ±λ(x0, r)

by Ψ±λ is included in a fiber of the form

{x = x0} × Γ±λ(x0, r′) .

(2) If (h1, h2) ∈ Γ±λ(x, r), then

(5.9) |h1h2| <
r1r2

|xa|
.

(3) As (h1, h2) ∈ Γ±λ varies the values of w = h1h2 cover the whole C.
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Figure 5.1. Representation of the space of leaves in terms of |h1| and
|h2| when c = 0: in this case, it is a Reinhardt domain (cf. [8]).

5.2.3. Action on the resonant monomial in the space of leaves

Let us study the action of Ψ±λ on the resonant monomial w = h1h2 in
the space of leaves.

Lemma 5.16. — We consider a biholomorphism

Ψ±λ : Γ±λ
∼−→ Γ′±λ

(h1, h2) 7−→ (Ψ1,±(h1, h2),Ψ2,±(h1, h2)) ,

such that for all x ∈ S±λ, we have

Ψ±λ(Γ±λ(x0, r)) ⊂ Γ±λ(x0, r′) .

We also define Ψw,±λ := Ψ1,±λΨ2,±λ. Then, for all n ∈ N, there exists
entire (i.e. analytic over C) functions Ψw,λ,n and Ψw,−λ,n such that

Ψw,λ(h1, h2) =
∑
n>0

Ψw,λ,n(h1h2)hn1

Ψw,−λ(h1, h2) =
∑
n>0

Ψw,−λ,n(h1h2)hn2 .

Moreover, the series above uniformly converge (for the sup-norm) in every
subset of Γ±λ of the form Γ±λ(r̃), with r̃ := (r̃1r̃2) and

0 < r̃j < rj , j ∈ {1, 2}
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(cf. Definition 5.14). More precisely, for all r̃1, r̃2, δ > 0 such that

0 < r̃j + δ < rj , j ∈ {1, 2}

for all x ∈ S±λ and w ∈ C we have

|wxa| 6 r̃1r̃2 =⇒


|Ψw,λ,n(w)| 6 r′1r

′
2

|xa|

∣∣∣∣f1(x,w)
r̃1 + δ

∣∣∣∣n
|Ψw,−λ,n(w)| 6 r′1r

′
2

|xa|

∣∣∣∣f2(x,w)
r̃2 + δ

∣∣∣∣n , ∀ n > 0 .

Proof. — Let us give the proof for Ψw,λ,Ψ1,λ and Ψ2,λ in Γλ (the same
proof applies also for Ψw,−λ in Γ−λ by exchanging the role played by h1
and h2). We fix some 0 < r̃j < rj , j ∈ {1, 2}, and δ > 0 such that

0 < r̃j + δ < rj , j ∈ {1, 2}.

For a fixed value w ∈ C, we consider the restriction of Ψw,λ to the hyper-
surface Mw := {h1h2 = w} ∩ Γλ: this restriction is analytic in Mw. The
map

ϕw : h1 7→ Ψw,λ(h1,
w

h1
)

is analytic in
Mw,1 :=

⋃
x∈Sλ

|wxa|<r1r2

Ωx,w ,

where for all x ∈ Sλ with |wxa| < r1r2, the set Ωx,w is the following
annulus:

Ωx,w :=
{
h1 ∈ C

∣∣∣∣ ∣∣∣∣wf2(x,w)
r2

∣∣∣∣ < |h1| <
∣∣∣∣ r1

f1(x,w)

∣∣∣∣} .
In particular, ϕw admits a Laurent expansion

ϕw(h1) = Ψw,+

(
h1,

w

h1

)
=
∑
n>−L

Ψw,+,n(w)hn1

in every annulus Ωx,w, with x ∈ Sλ such that |wxa| < r1r2. Moreover for
all x ∈ Sλ such that |wxa| < r1r2, Cauchy’s formula gives

(5.10) Ψw,λ,n(w) = 1
2iπ

∮
γ(x,w)

Ψw,λ(h1,
w
h1

)
hn+1

1
dh1 , for all n ∈ N,

where γ(x,w) is any circle (oriented positively) centered at the origin with
a radius ρ(x,w) satisfying∣∣∣∣wf2(x,w)

r2

∣∣∣∣ < ρ(x,w) <
∣∣∣∣ r1

f1(x,w)

∣∣∣∣ .
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If |wxa| < (r̃1 + δ)(r̃2 + δ), we can take for instance

ρ(x,w) =
∣∣∣∣ r̃1 + δ

f1(x,w)

∣∣∣∣ .
Therefore, for all x ∈ Sλ and all w ∈ C such that |wxa| 6 r̃1r̃2, for all
ξ ∈ C with |ξ| < δ, we also have:

(5.11) Ψw,λ,n(w + ξ) = 1
2iπ

∮
γ(x,w)

Ψw,λ(h1,
w+ξ
h1

)
hn+1

1
dh1 , for all n ∈ Z,

where γ(x,w) is the same circle (of radius ρ(x,w) = | r̃1+δ
f1(x,w) |) for all |ξ| < δ.

Moreover, since for all x ∈ Sλ, we have

Ψλ(Γλ(x, r)) ⊂ Γλ(x, r′) ,

and since for all (h′1, h′2) ∈ Γλ(x, r′) we have

|h′1h′2| 6
r′1r
′
2

|xa|
,

then for all x ∈ Sλ and w ∈ C such that |wxa| 6 r̃1r̃2, the following
inequality holds for all h1 with |h1| < r1

f1(x,w) :

(5.12) |Ψw,λ(h1,
w

h1
)| < r′1r

′
2

|xa|
.

The well-known theorem regarding integrals depending analytically on a
parameter asserts that for all n ∈ Z the mapping Ψw,λ,n is analytic near
any point w ∈ C. Hence, it is an entire function (i.e. analytic over C).
Moreover, the inequality above and the Cauchy’s formula together imply
that for all n ∈ Z and for all (x,w) ∈ Sλ × C such that |wxa| 6 r̃1r̃2, we
have:

(5.13) |Ψw,λ,n(w)| < r′1r
′
2

|xa|ρ(x,w)n = r′1r
′
2

|xa|

∣∣∣∣f1(x,w)
r̃1 + δ

∣∣∣∣n .
According to Lemma 5.13, for a fixed value w ∈ C, if n < 0, the right
hand-side tends to 0 as x tends to 0 in Sλ. This implies in particular that
Ψw,λ,n = 0 for all n < 0. Consequently:

(5.14) Ψw,λ

(
h1,

w

h1

)
=
∑
n>0

Ψw,λ,n(w)hn1 .

Moreover, for all w ∈ C the series converges normally in every domain of
the form

Ωx,w :=
{
h1 ∈ C

∣∣∣∣ |h1| 6
∣∣∣∣ r̃1

f1(x,w)

∣∣∣∣} , for all x ∈ Sλ , 0 < r̃1 < r1,
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since the Laurent expansion’s range is n > 0. This actually means that the
series converges normally in an entire neighborhood of the origin in C. In
particular, for all fixed w ∈ C, the map

h1 7→ Ψw,λ

(
h1,

w

h1

)
=
∑
n>0

Ψw,λ,n(w)hn1

is analytic in a neighborhood of the origin. Finally, the series

(5.15) Ψw,λ(h1, h2) =
∑
n>0

Ψw,λ,n(h1h2)hn1

converges normally, and hence its sum is analytic in every domain of the
form Γλ(r̃), with 0 < r̃1 < r1 and 0 < r̃2 < r2. �

5.2.4. Action on the resonant monomial

Since ψ±λ ∈ Λ(weak)
±λ (Ynorm), the mapping ψ±λ is of the form

(5.16) ψ±λ(x,y) = (x, ψ1,±λ(x,y), ψ2,±λ(x,y)) ,

with ψ1,±λ, ψ2,±λ analytic and bounded in S±λ×D(0, r). Moreover, by as-
sumption ψ±λ admits the identity as weak Gevrey-1 asymptotic expansion,
i.e. we have a normally convergent expansion:

(5.17) ψi,±λ(x,y) = yi +
∑

k∈N2

ψi,±λ,k(x)yk ,

where ψi,±λ,k is holomorphic in S±λ and admits 0 as Gevrey-1 asymptotic
expansion, for i = 1, 2 and all k = (k1, k2) ∈ N2.

Lemma 5.17. — With the notations and assumptions above, let us de-
fine ψv,±λ := ψ1,±λψ2,±λ. Then ψv,λ and ψv,−λ can be expanded as the
series

ψv,λ(x,y) = y1y2 + xa
∑
n>1

Ψw,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n
ψv,−λ(x,y) = y1y2 + xa

∑
n>1

Ψw,−λ,n

(y1y2

xa

)( y2

f2(x, y1y2
xa )

)n
which are normally convergent in every subset of S±λ×D(0, r) of the form
S±λ × D(0, r̃), where D(0, r̃) is a closed poly-disc with r̃ = (r̃1, r̃2) such
that

0 < r̃j < rj , j ∈ {1, 2}.
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Here Ψw,λ,n and Ψw,−λ,n, for n ∈ N, are the ones appearing in Lemma 5.16.
Moreover, for all closed sub-sector S′ ⊂ S±λ and for all closed poly-disc
D ⊂ D(0, r), there exists A,B > 0 such that:

(5.18) |ψv,±λ(x, y1, y2)− y1y2| 6 A exp
(
− B
|x|

)
, ∀ (x,y) ∈ S′ ×D .

In particular, ψv,±λ admits y1y2 as Gevrey-1 asymptotic expansion in S±λ×
D(0, r).

Proof. — By definition, we have

Ψ±λ ◦ H±λ = H±λ ◦ ψ±λ .

In particular, for all (x,y) ∈ S±λ ×D(0, r):

(5.19) Ψw,±

(
x,

y1

f1(x, y1y2
xa ) ,

y2

f2(x, y1y2
xa )

)
= ψv,±(x, y1, y2)

xa
.

Thus, according to Lemma 5.16 we have:

(5.20)


ψv,λ(x,y) = xa

∑
n>0

Ψw,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n
ψv,−λ(x,y) = xa

∑
n>0

Ψw,−λ,n

(y1y2

xa

)( y2

f2(x, y1y2
xa )

)n
.

Besides we know that ψv,±λ admits y1y2 as weak Gevrey-1 asymptotic
expansion in S±λ ×D(0, r):

(5.21) ψv,±λ(x, y1, y2) = y1y2 +
∑

k∈N2

ψv,±λ,k(x)yk ,

where for all k = (k1, k2) ∈ N2 the mapping ψv,±λ,k is holomorphic in S±λ
and admits 0 as Gevrey-1 asymptotic expansion. Let us compare both ex-
pressions of ψv,±λ above. Looking at monomials yk with k1 = k2 in (5.21),
and at terms corresponding to n = 0 on the right-hand side of (5.20), we
must have for all x ∈ S±λ and v ∈ C with |v| < r1r2:

(5.22) v +
∑
k>0

ψv,λ,k(k,k)(x)vk = xaΨw,λ,0

( v
xa

)
.

Since Ψw,±λ,0 is analytic in C, there exists (α±λ,k)k∈N ⊂ C such that

(5.23) Ψw,±λ,0

( v
xa

)
=
∑
k>0

α±λ,k

( v
xa

)k
.
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This can only happen if α±λ,k = 0 whenever k 6= 1, for ψv,±λ,k is holo-
morphic in S±λ and admits 0 as Gevrey-1 asymptotic expansion. A further
immediate identification yields

Ψv,±λ,0(w) = w.

Thus
ψv,λ(x,y) = y1y2 + xa

∑
n>1

Ψw,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n
ψv,−λ(x,y) = y1y2 + xa

∑
n>1

Ψw,−λ,n

(y1y2

xa

)( y2

f2(x, y1y2
xa )

)n
.

Let us prove that ψv,±λ admits y1y2 as Gevrey-1 asymptotic expansion
in S±λ × (C2, 0). We have to show that |ψv,±λ(x, y1, y2)− y1y2| is expo-
nentially small with respect to x ∈ S±λ, uniformly in y ∈ D(0, r). As for
the previous lemma, we perform the proof for ψv,λ only (the same proof
applies for ψv,−λ by exchanging y1 and y2). From the computations above
we derive

(5.24) |ψv,λ(x, y1, y2)− y1y2| 6
∑
n>1

∣∣∣∣xaΨw,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n∣∣∣∣ .
Let us fix r̃1, r̃2, δ > 0 in such a way that

0 < r̃j + δ < rj , j ∈ {1, 2} .

Let us take |x|, |y1| and |y2| small enough so that

2x ∈ Sλ
and

|y1|y2 <
r̃1r̃2

|2a| < r1r2 .

According to Lemma 5.16, for all x̃ ∈ Sλ and all w ∈ C:

(5.25) |wx̃a| 6 r̃1r̃2 =⇒ |Ψw,λ,n(w)| 6 r′1r
′
2

|x̃a|

∣∣∣∣f1(x̃, w)
r̃1 + δ

∣∣∣∣n .
In particular for x̃ = 2x and w = y1y2

xa we derive |wx̃a| < r̃1r̃2, from which
we conclude

(5.26)
∣∣∣Ψw,λ,n

(y1y2

xa

)∣∣∣ 6 r′1r
′
2

|2axa|

∣∣∣∣f1(2x, y1y2
xa )

r̃1 + δ

∣∣∣∣n .
Consequently, for all (x, y1, y2) ∈ Sλ ×D(0, r̃) with

2x ∈ Sλ

|y1y2| <
r̃1r̃2

|2a| < r1r2,
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we have

|ψv,λ(x, y1, y2)− y1y2| 6
∑
n>1

∣∣∣∣xa r′1r′22axa

(
f1(2x, y1y2

xa )
r̃1 + δ

)n(
y1

f1(x, y1y2
xa )

)n∣∣∣∣
6
r′1r
′
2

|2a|
∑
n>1

∣∣∣∣( y1

r̃1 + δ

)n(f1(2x, y1y2
xa )

f1(x, y1y2
xa )

)n∣∣∣∣ .
Since c̃(v) is the germ of an analytic function near the origin which is null
at the origin, we can take r1,r2 > 0 small enough in order that for all closed
sub-sector S′ ⊂ Sλ, for all r̃1 ∈ ]0, r1[ and r̃2 ∈ ]0, r2[, there exist A,B > 0
satisfying:

(5.27) (x, y1, y2) ∈ S′ ×D(0, r̃) =⇒ |ψv,λ(x, y1, y2)− y1y2|A exp
(
− B
|x|

)
.

Let us prove this. We need here to estimate the quantity:

(5.28)
∣∣∣∣f1(2x, y1y2

xa )
f1(x, y1y2

xa )

∣∣∣∣
=
∣∣∣∣2a1 exp

(
− λ

2x − cm
(y1y2)m

x
log(2)− c̃(y1y22a)

2x + c̃(y1y2)
x

)∣∣∣∣ .
On only have tot deal with the case where x ∈ S′ is such that 2x ∈ S′

(otherwise, x is “far from the origin”, and we conclude without difficulty).
We have:

(5.29) (x, y1, y2) ∈ S′ ×D(0, r̃) et 2x ∈ S

=⇒
∣∣∣∣f1(2x, y1y2

xa )
f1(x, y1y2

xa )

∣∣∣∣ 6 |2a1 | exp
(
− B
|x|

)
< 1 .

Hence

|ψv,λ(x, y1, y2)− y1y2| 6
r′1r
′
2

|2a|
∑
n>1

∣∣∣∣ 2a1y1

r̃1 + δ
exp

(
− B
|x|

)∣∣∣∣n

6
r′1r
′
2

|2a|
| 2
a1y1
r̃1+δ exp(− B

|x| )|
1− | 2a1y1

r̃1+δ exp(− B
|x| )|

6 A exp
(
− B
|x|

)
,

for a convenient A > 0. �

The latter lemma implies Ψv,±λ,0(w) = w, having for consequence the
next result.
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Corollary 5.18. — For all closed sub-sector S′ ⊂ S±λ and for all
r̃1 ∈ ]0, r1[ and r̃2 ∈ ]0, r2[, there exists A,B > 0 such that for all x ∈ S′:

|h1| 6
r̃1

|f1(x, h1h2)|

|h2| 6
r̃2

|f2(x, h1h2)|

 =⇒ |Ψw,±(x, h1, h2)− h1h1| 6
A exp(− B

|x| )
|xa|

.

In particular, there exists C > 0 such that:


|h1| 6

r̃1

|f1(x, h1h2)|

|h2| 6
r̃2

|f2(x, h1h2)|

=⇒

∣∣∣exp
(
cm(h1h2)m log(x) + c̃(xa(h1h2)m)

x

)∣∣∣∣∣∣exp
(
cm(Ψw(x, h1, h2))m log(x) + c̃(xa(Ψw(x,h1,h2))m)

x

)∣∣∣ < C.

5.2.5. Power series expansion of sectorial isotropies in the space of leaves

Now, we give a power series expansion of Ψ1,±λ and Ψ2,±λ in the space
of leaves. Let us introduce the following notations:{

N(1,+) := N(2,−) := 1
N(1,−) := N(2,+) := −1 .

Lemma 5.19. — With the notations and assumptions above, there ex-
ists entire functions (i.e. analytic over C) denoted by Ψj,±λ,n, j ∈ {1, 2},
n > N(j,±), such that for j ∈ {1, 2} :{

Ψj,λ(h1, h2) =
∑
n>N(j,+) Ψj,λ,n(h1h2)hn1

Ψj,−λ(h1, h2) =
∑
n>N(j,−) Ψj,λ,n(h1h2)hn2 .

These series converge normally in every subset of Γ±λ of the form Γ±λ(r̃)
with 0 < r̃1 < r1 and 0 < r̃2 < r2 (cf. Definition 5.14). More precisely, for
all r̃1, r̃2, δ > 0 such that

0 < r̃j + δ < rj , j ∈ {1, 2}
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there exists C > 0 such that for all x ∈ S±λ and for all w ∈ C, we have:

|wxa| 6 r̃1r̃2 =⇒



|Ψ1,λ,n(w)| < Cr′1
|f1(x,w)|n−1

(r̃1 + δ)n , n > 1

|Ψ2,λ,n(w)| < Cr′2
|xa|
|f1(x,w)|n+1

(r̃1 + δ)n , n > −1

|Ψ1,−λ,n(w)| < Cr′1
|xa|
|f2(x,w)|n+1

(r̃2 + δ)n , n > −1

|Ψ2,−λ,n(w)| < Cr′2
|f2(x,w)|n−1

(r̃2 + δ)n , n > 1 .

Moreover:
Ψ1,−λ,−1(0) = Ψ2,λ,−1(0) = 0 .

Proof. — We use the same notations as in the proof of Lemma 5.16, and
as usual, we give the proof only for Ψλ (the proof for Ψ−λ is analogous, by
exchanging the role played by h1 and h2). For fixed w ∈ C, the maps

ϕ1 : h1 7→ Ψ1,λ

(
h1,

w

h1

)
and

ϕ2 : h1 7→ Ψ2,λ

(
h1,

w

h1

)
are analytic in

Mw,1 =
⋃
x∈Sλ

|wxa|<r1r2

Ωx,w

(see the proof of Lemma 5.16). In particular, ϕ1 and ϕ2 admit Laurent
expansions 

ϕ1(h1) = Ψ1,λ

(
h1,

w

h1

)
=

∑
n>−L1

Ψ1,λ,n(w)hn1

ϕ2(h1) = Ψ2,λ

(
h1,

w

h1

)
=

∑
n>−L2

Ψ2,λ,n(w)hn1

in every annulus Ωx,w, with x ∈ Sλ such that |wxa| < r1r2. Using the
same method as in the proof of Lemma 5.16, we prove without additional
difficulties that for all n ∈ Z, Ψ1,λ,n and Ψ2,λ,n are analytic in any point
w ∈ C, and thus are entire functions (i.e. analytic over C). Moreover, we
also show in the same way as earlier that for all r̃1, r̃2, δ > 0 with

0 < r̃j + δ < rj , j ∈ {1, 2} ,
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for all n ∈ Z and for all (x,w) ∈ Sλ × C such that |wxa| 6 r̃1r̃2, we have:
|Ψ1,λ,n(w)| < r′1

|f1(x,Ψw,λ(x, h1,
w
h1

))|

∣∣∣∣f1(x,w)
r̃1 + δ

∣∣∣∣n
|Ψ2,λ,n(w)| < r′2

|f2(x,Ψw,λ(x, h1,
w
h1

))|

∣∣∣∣f1(x,w)
r̃1 + δ

∣∣∣∣n .
According to Corollary 5.18, there exists C > 0 such that for all (x,w) ∈
Sλ × C with |wxa| 6 r̃1r̃2, we have:

|Ψ1,λ,n(w)| < Cr′1
|f1(x,w)|n−1

(r̃1 + δ)n

|Ψ2,λ,n(w)| < Cr′2
|xa|
|f1(x,w)|n+1

(r̃1 + δ)n .

According to the statement in Lemma 5.13, for a fixed value w ∈ C, if we
look at the limit as x tends to 0 in Sλ of the right hand-sides above we
deduce that: {

|Ψ1,λ,n(w)| = 0, ∀ n 6 0
|Ψ2,λ,n(w)| = 0, ∀ n 6 −2 .

Consequently: 
Ψ1,λ(h1, h2) =

∑
n>1

Ψ1,λ,n(h1h2)hn1

Ψ2,λ(h1, h2) =
∑
n>−1

Ψ2,λ,n(h1h2)hn1 .

These function series converges normally (and are analytic) in every domain
of the formΓλ(r̃) with r̃ := (r̃1, r̃2) and

0 < r̃j + δ < rj , j ∈ {1, 2}

(cf. Definition 5.14). Moreover, for any fixed value of h2, on the one hand
the function series

h1 7→ Ψ2,λ(h1, h2) =
∑
n>−1

Ψ2,λ,n(h1h2)hn1

is analytic in a punctured disc, since

|f2(x, h1, h2)| −→
x→0
x∈Sλ

0 ,

and on the other hand, we already know that the function h1 7→ Ψ2,λ(h1, h2)
is analytic in a neighborhood of the origin. Thus, we must have Ψ2,λ,−1(0) =
0. �
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5.2.6. Sectorial isotropies: proof of Proposition 5.2

The following lemma is a more precise version of Proposition 5.2. We
recall the notations: {

N(1,+) = N(2,−) = 1
N(1,−) = N(2,+) = −1.

Lemma 5.20. — With the notations and assumptions above, we con-
sider ψ±λ ∈ Λ(weak)

±λ (Ynorm), with

(5.30) ψ±λ(x,y) = (x, ψ1,±λ(x,y), ψ2,±λ(x,y)) .

Then, for i ∈ {1, 2}, ψi,λ and ψi,−λ can be written as power series as follows:
ψi,λ(x,y)=yi+fi

(
x,
ψv,λ(x,y)

xa

) ∑
n>N(i,+)+1

Ψi,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n
ψi,−λ(x,y)=yi+fi

(
x,
ψv,−λ(x,y)

xa

) ∑
n>N(i,−)+1

Ψi,−λ,n

(y1y2

xa

)( y2

f2(x, y1y2
xa )

)n
which are normally convergent in every subset of S±λ×D(0, r) of the form
S±λ × D(0, r̃), where D(0, r̃) is a closed poly-disc with r̃ = (r̃1, r̃2) such
that 0 < r̃j < rj , j ∈ {1, 2}. Here Ψi,λ,n, Ψi,−λ,n (for i = 1, 2 and n ∈ N)
are given in Lemma 5.19. Moreover, for all closed sub-sector S′ ⊂ S±λ and
for all closed poly-disc D ⊂ D(0, r), there exists A,B > 0 such that for
j = 1, 2:

(5.31) |ψj,±λ(x, y1, y2)− yj | 6 A exp
(
− B
|x|

)
, ∀ (x,y) ∈ S′ ×D .

As a consequence, ψj,±λ admits yj as Gevrey-1 asymptotic expansion in
S±λ ×D(0, r).

Remark 5.21. — In particular,we have Ψ1,λ,1(w) = Ψ2,−λ,1(w) = 1 and
Ψ1,−λ,−1(w) = Ψ2,λ,−1(w) = w.

Proof. — By definition, we have

Ψ±λ ◦ H±λ = H±λ ◦ ψ± .

In particular, for j = 1, 2 and all (x,y) ∈ S±λ ×D(0, r):

(5.32) Ψj,±λ

(
x,

y1

f1(x, y1y2
xa ) ,

y2

f2(x, y1y2
xa )

)
= ψj,±λ(x, y1, y2)
fj(x, ψv,±(x,y1,y2)

xa )
.
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Thus, according to Lemma 5.19 we have for i = 1, 2:
(5.33)
ψi,λ(x,y) = fi

(
x,
ψv,λ(x,y)

xa

) ∑
n>N(i,+)

Ψi,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n
ψi,−(x,y) = fi

(
x,
ψv,−λ(x,y)

xa

) ∑
n>N(i,−)

Ψi,−λ,n

(y1y2

xa

)( y2

f2(x, y1y2
xa )

)n

and these series are normally convergent (and then define analytic func-
tions) in any domain of the form S′×D(0, r̃), where S′ is a closed sub-sector
of S±λ and D(0, r̃) is a closed poly-disc with r̃ = (r̃1, r̃2) such that

0 < r̃j < rj , j ∈ {1, 2} .

Let us compare the different expressions of ψj,±λ, j = 1, 2. We know that
ψj,±λ(x, y1, y2) admits yj as weak Gevrey-1 asymptotic expansion in S±λ×
D(0, r). Thus, we can write:

(5.34) ψj,±λ(x, y1, y2) = yj +
∑

k∈N2

ψj,±λ,k(x)yk ,

where for all k = (k1, k2) ∈ N2, ψj,±λ,k is analytic in S±λ and admits 0 as
Gevrey-1 asymptotic expansion. As usual, let us deal with the case of ψ1,λ
and ψ2,λ (the other one being similar by exchanging y1 and y2). According
to the expressions given by Lemmas 5.16 and 5.19, we can be more precise
on the index sets in the sums above:

(5.35)



ψ1,λ(x, y1, y2) = y1 +
∑

k=(k1,k2)∈N2

k1>k2+1

ψ1,λ,k(x)yk1
1 yk2

2

ψ2,λ(x, y1, y2) = y2 +
∑

k=(k1,k2)∈N2

k1>k2

ψ2,λ,k(x)yk1
1 yk2

2 .

Let us deal with ψ1,λ (a similar proof holds for ψ2,λ). Looking at terms for
n = 1 in (5.33) and at monomials terms yk such that k1 6 k2 + 1 in (5.35),
we must have for all x ∈ Sλ, y1, y2 ∈ C with |y1| < r1, |y2| < r2:

(5.36) 1 +
∑
k>0

ψ1,λ,(k+1,k)(x)yk1yk2 =
f1(x, ψv,λ(x,y)

xa )
f1(x, y1y2

xz ) Ψ1,λ,1

(y1y2

xa

)
.
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According to Lemma 5.17 and Corollary5.18, we have:

f1(x, ψv,λ(x,y)
xa )

f1(x, y1y2
xz ) = 1 +

∑
j1>j2+1>1

Fj1,j2(x)yj1
1 y

j2
2

= 1 + O
(x,y)−→0

(x,y)∈Sλ×D(0,r)

(|y1|) ,

for some analytic and bounded functions Fj1,j2(x), j1 > j2. As in the proof
of Lemma 5.17, using the fact that ψλ admits the identity as weak Gevrey-1
asymptotic expansion, we deduce that Ψ1,λ,1(w) = 1, and then:

ψ1,λ(x,y) = y1 + f1

(
x,
ψv,λ(x,y)

xa

)∑
n>2

Ψ1,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n
= y1 +

∑
k=(k1,k2)∈N2

k1>k2+2

ψ1,λ,k(x)yk1
1 yk2

2 .

It remains to show that ψ1,λ admits y1 as Gevrey-1 asymptotic expansion
in Sλ ×D(0, r). From the computations above, we deduce:

|ψ1,λ(x, y1, y2)− y1|

6
∑
n>2

∣∣∣∣∣Ψ1,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n−1 f1(x, ψv,λ(x,y)
xa )

f1(x, y1y2
xa ) y1

∣∣∣∣∣ .
Using Lemma 5.19, Corollary 5.18 and the same method as at the end of
the proof of Lemma 5.17, we can show the following: we can take r1, r2 > 0
small enough such that for all closed sub-sector S′ of Sλ for all r̃1 ∈ ]0, r1[
and r̃2 ∈ ]0, r2[, there exists A,B > 0 satisfying:

(5.37) (x, y1, y2) ∈ S′×D(0, r̃) =⇒ |ψ1,λ(x, y1, y2)−y1| 6 A exp
(
− B
|x|

)
.

A similar proof holds for ψ2,λ, ψ2,−λ and ψ1,−λ. �

Remark 5.22. — It should be noticed that in the expressions
ψ1,λ(x,y) = y1 + f1

(
x,
ψv,λ(x,y)

xa

)∑
n>2

Ψ1,λ,n

(y1y2

xa

)( y1

f1(x, y1y2
xa )

)n
ψ1,−λ(x,y) = y1 +f1

(
x,
ψv,−λ(x,y)

xa

)∑
n>0

Ψ1,−λ,n

(y1y2

xa

)( y2

f2(x, y1y2
xa )

)n
given by Lemma 5.20, the expansion of ψ1,λ with respect to y = (y1, y2)
starts with a term of order 1, namely y1, followed by terms of order at
least 2, while in the expansion of ψ1,−λ, the term of lowest order is a
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constant, namely Ψ1,−λ,0(0). Similarly, the expansion of ψ2,−λ (with respect
to y = (y1, y2)) starts with y2, while the expansion of ψ1,−λ starts with the
constant Ψ2,λ,0(0).

5.3. Description of the moduli space and some applications

From Lemmas 5.19 and 5.20, we can give a description of the moduli
space Λλ(Ynorm)× Λ−λ(Ynorm) of a fixed analytic normal form Ynorm.

5.3.1. A power series presentation of the moduli space

We use the notations introduced in Section 4. We denote by O(C) the
set of entire functions, i.e. of functions holomorphic in C. We consider the
functions f1 and f2 defined in (5.7) and introduce four subsets of (O(C))N,
denoted by E1,λ(Ynorm), E2,λ(Ynorm), E1,−λ(Ynorm) and E2,−λ(Ynorm), de-
fined as follows. On remind the notations{

N(1,+) = N(2,−) = 1
N(1,−) = N(2,+) = −1.

Definition 5.23. — For j ∈ {1, 2}, a sequence (ψn(w))n>N(j,±)+1 ∈
(O(C))N belongs to Ej,±λ(Ynorm) if there exists an open polydisc D(0, r)
and an open asymptotic sector

(5.38) S±λ ∈ ASarg(±λ),2π

such that for all r̃1, r̃2, δ > 0 with

0 < r̃i + δ < ri , i ∈ {1, 2}

there exists C > 0 such that for all x ∈ Sλ (resp. x ∈ S−λ) and for all
w ∈ C, if |wxa| 6 r̃1r̃2 then:

|ψn(w)| < C
|f1(x,w)|n−1

(r̃1 + δ)n , ∀ n > 2, if (ψn(w))n>2 ∈ E1,λ(Ynorm)

|ψn(w)| < C

|xa|
|f1(x,w)|n+1

(r̃1 + δ)n , ∀ n > 0, if (ψn(w))n>2 ∈ E2,λ(Ynorm)

|ψn(w)| < C

|xa|
|f2(x,w)|n+1

(r̃2 + δ)n , ∀ n > 0, if (ψn(w))n>2 ∈ E1,−λ(Ynorm)

|ψn(w)| < C
|f2(x,w)|n−1

(r̃2 + δ)n , ∀ n > 2, if (ψn(w))n>2 ∈ E2,−λ(Ynorm) .
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As explained in Section 4, we can associate to any pair

(ψλ, ψ−λ) ∈ Λλ(Ynorm)× Λ−λ(Ynorm)

two germs of sectorial biholomorphisms of the space of leaves corresponding
to each “narrow” sector, which we denote by Ψλ and Ψ−λ, defined by:

(5.39) Ψ±λ := H±λ ◦ ψ±λ ◦ H−1
±λ ,

where H±λ is given by Corollary 5.9. According to Lemmas 5.19 and 5.20,
if we write Ψ±λ = (x,Ψ1,±λ,Ψ2,±λ), then for j = 1, 2 we have:

(5.40)

Ψj,λ(h1, h2) = hj +
∑

n>N(j,+)+1

Ψj,λ,n(h1h2)hn1

Ψj,−λ(h1, h2) = hj +
∑

n>N(j,−)+1

Ψj,−λ,n(h1h2)hn2

(Ψj,±λ,n)n ∈ Ej,±λ. Conversely, given (Ψj,±λ)n ∈ Ej,±λ for j = 1, 2, the
estimates made in Section 4 show that

ψ±λ := H−1
±λ ◦Ψ±λ ◦ H±λ ,

where Ψ±λ(x,h) = (x,Ψ1,±λ(h),Ψ2,±λ(h)), belongs to Λ±λ(Ynorm). Con-
sequently, we can state:

Proposition 5.24. — We have the following bijections:

Λλ(Ynorm) ∼−→ E1,λ(Ynorm)× E2,λ(Ynorm)
ψλ 7−→ (Ψ1,λ,Ψ2,λ)

and

Λ−λ(Ynorm) ∼−→ E1,−λ(Ynorm)× E2,−λ(Ynorm)
ψ−λ 7−→ (Ψ1,−λ,Ψ2,−λ)

(notice that we identify here Ψ±λ(x,h) = (x,Ψ1,±λ(h),Ψ2,±λ(h)) with
(Ψ1,±λ(h),Ψ2,±λ(h))).

5.3.2. Analytic invariant varieties and two-dimensional saddle-nodes

We can give a necessary and sufficient condition for the existence of an-
alytic invariant varieties in terms of the moduli space described above. We
recall that for any vector field Y ∈ [Ynorm] as in (1.1) (cf. Definition 1.14),
there always exist three formal invariant varieties:

• C = {(y1, y2) = (g1(x), g2(x))},
• H1 = {y1 = f1(x, y2)}
• and H2 = {y2 = f2(x, y1)},
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where g1, g2, f1, f2 are formal power series with null constant term. The
first one is classically called the center variety, and we have C = H1 ∩H2.
If Y = Ynorm, then: 

C = {y1 = y2 = 0}
H1 = {y1 = 0}
H2 = {y2 = 0}.

Proposition 5.25. — Let Y ∈ [Ynorm] and (Φλ,Φ−λ) ∈ Λλ(Ynorm) ×
Λ−λ(Ynorm) be its Stokes diffeomorphisms. We consider

Ψ± = H±λ ◦ Φ±λ ◦ H−1
±λ

as above. Then:
(1) the center variety C is convergent (analytic in the origin) if and only

if Ψ2,λ,0(0) = Ψ1,−λ,0(0) = 0;
(2) the invariant hypersurface H1 is convergent (analytic in the origin)

if and only if for all n > 0, we have Ψ1,−λ,n(0) = 0;
(3) the invariant hypersurface H2 is convergent (analytic in the origin)

if and only if for all n > 0, we have Ψ2,λ,n(0) = 0.

Proof. — It is a direct consequence of the power series representation
(5.40) of the Stokes diffeomorphisms (Φλ,Φ−λ). Let us explain item (2)
(the same arguments hold for (1) and (3) with minor adaptation). The fact
that Ψ1,−λ,n(0) = 0 for all n > 0 means that Ψ1,−λ is divisible by h1.
Equivalently, both Φ1,λ and Φ1,−λ are divisible by y1, so that the analytic
hypersurface {y1 = 0} has the same pre-image by the sectorial normalizing
maps Φ+ and Φ−. These pre-images glue together in order to define an
analytic invariant hypersurface H1. �

Notice that if we consider the restriction of a formal normal form Ynorm
to one of the formal invariant hypersurfaces, we obtain precisely the normal
form for two-dimensional saddle-nodes as given in [17]. When one of these
hypersurfaces is convergent (i.e. analytic), we recover the Martinet–Ramis
invariants by restriction to this hypersurface, as we present below.

Proposition 5.26. — Suppose that the formal invariant hypersurface
H1 is convergent (i.e. analytic in the origin). Then, the Martinet–Ramis
invariants for the saddle-node Y|H1 are given by:

Ψ2,λ(0, h2) = h2 + Ψ2,λ,0(0) ∈ Aff(C)

Ψ2,−λ(0, h2) = h2 +
∑
n>2

Ψ2,−λ,n(0)hn2 ∈ Diff(C, 0).

Similar result holds for the hypersurface H2.
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5.3.3. The transversally symplectic case and quasi-linear Stokes
phenomena in the first Painlevé equation

Let us now focus on the transversally symplectic case studied in Theo-
rem 1.24. Let Ynorm ∈ SN diag,0 be transversally symplectic (i.e. its residue
is res(Ynorm) = 1). Using the notations introduced in paragraph 5.3.1, we
define the following sets:

(E1,λ(Ynorm)× E2,λ(Ynorm))ω

:=
{

Ψλ = (Ψ1,λ,Ψ2,λ) ∈ E1,λ(Ynorm)× E2,λ(Ynorm)
such that: det(DΨλ) = 1

}
and

(E1,−λ(Ynorm)× E2,−λ(Ynorm))ω

:=
{

Ψ−λ = (Ψ1,−λ,Ψ2,−λ) ∈ E1,−λ(Ynorm)× E2,−λ(Ynorm)
such that: det(DΨ−λ) = 1

}
.

According to Proposition 5.24, the map

Λ±λ(Ynorm) −→ E1,±λ(Ynorm)× E2,±λ(Ynorm)

ψ±λ 7−→ Ψ±λ := H±λ ◦ ψ±λ ◦ H−1
±λ

given in (5.39) is a bijection (notice that again, we identify here Ψ±λ(x,h) =
(x,Ψ1,±λ(h),Ψ2,±λ(h)) with (Ψ1,±λ(h),Ψ2,±λ(h))). An easy computation
based on (5.3) gives:

(5.41) (H−1
±λ)∗

(
dy1 ∧ dy2

x

)
= dh1 ∧ dh2 + 〈dx〉 .

This means in particular that ψ±λ is transversally symplectic with respect
to ω = dy1∧dy2

x , i.e.

(5.42) (ψ±λ)∗(ω) = ω + 〈dx〉 ,

if and only if Ψ±λ = (Ψ1,±λ,Ψ2,±λ) preserves the standard symplectic form
dh1 ∧ dh2 in the space of leaves, i.e. det(DΨ±λ) = 1. In other words:

Proposition 5.27. — We have the following bijections:

Λωλ(Ynorm) ∼−→ (E1,λ(Ynorm)× E2,λ(Ynorm))ω
ψλ 7−→ (Ψ1,λ,Ψ2,λ)
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and

Λω−λ(Ynorm) ∼−→ (E1,−λ(Ynorm)× E2,−λ(Ynorm))ω
ψ−λ 7−→ (Ψ1,−λ,Ψ2,−λ)

(notice that we identify here Ψ±λ(x,h) = (x,Ψ1,±λ(h),Ψ2,±λ(h)) with
(Ψ1,±λ(h),Ψ2,±λ(h))).

5.3.4. Quasi-linear Stokes phenomena in the first Painlevé equation

In [2], we link the study of quasi-linear Stokes phenomena (see [13] for
the first Painlevé equation) to our Stokes diffeomorphisms. For instance, in
the case of the first Painlevé equation, we show that the quasi-linear Stokes
phenomena formula found by Kapaev in [13] allows to compute the terms
Ψ2,λ,0(0) and Ψ1,−λ,0(0) in (5.40). More precisely, elementary computations
(using Kapaev’s connection formula) give:

Ψ2,λ,0(0) = iΨ1,−λ,0(0) = e
iπ
8
√
π

2 3
8 3 1

8 .

Moreover, our description of the Stokes diffeomorphisms implies a more
precise estimate of the order of the remaining terms in Kapaev’s formula.
In a forthcoming paper, we will use the study of some non-linear Stokes
phenomena for the second Painlevé equations (see e.g. [6]) in order to com-
pute coefficients of the Ψi,±λ’s.
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